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Abstract. The representation of argumentative settings in terms of abstract arguments and
attacks has been considerably promoted by the work of Dung; his abstract argumentation
frameworks (AFs) are a key formalism in AI nowadays. Claims are an inherent part of each
argument; they substantially determine the structure of the abstract representation. Never-
theless, a claim-based analysis is often considered secondary. This leads not only to a lack
of theoretical knowledge about the behavior of claim-based semantics but also restricts the
modeling capacities of AFs to problems that do not involve claims in the evaluation. In this
work, we address this issues and conduct a structural analysis of claim-based argumentation
semantics utilizing claim-augmented argumentation frameworks (CAFs) which extend AFs
by assigning a claim to each argument. Our main contributions are as follows: We first pro-
pose novel variants for preferred, naive, stable, semi-stable, and stage semantics based on
claim-defeat and claim-set maximization, complementing existing CAF semantics. Among
our findings is that for a certain subclass, namely well-formed CAFs, the different versions
of preferred and stable semantics coincide, which is not the case for the other semantics. We
then conduct a principle-based analysis of the semantics with respect to general and well-
formed CAFs by adapting well-investigated principles to the realm of claims on the one
hand and introduce genuine principles on the other hand. Finally, we study the expressive-
ness of the semantics by characterizing their signatures. In summary, this paper provides a
thorough analysis of fundamental properties of abstract argumentation semantics (along the
lines of existing results for Dung AFs) but from the perspective of the claims the arguments
represent. This shift of perspective provides novel results which we deem relevant when
abstract argumentation is used in an instantiation-based setting.
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1 Introduction

Argumentation is a vibrant research area in the field of non-monotonic reasoning and
knowledge representation. Originally studied predominantly under philosophical and lin-
guistic aspects, argumentation theory has gained increasing attention in artificial intel-
ligence research nowadays [1, 2, 3]. Argumentation theory, in its essence, is concerned
with the justification of defeasible statements (claims) through logical or evidence-based
reasoning based on assumptions, premises, or facts (common knowledge). Arguments are
commonly understood as supporting structures of defeasible statements. An argument
can be seen as a tool to support, defend, or justify a particular claim. Logic-based ap-
proaches identify the claim of an argument with a logical formula and the support of
the claim with a (defeasible) proof [4, 5]; likewise, the claim in rule-based approaches
is a sentence of a formal language while the support consists of assumptions and facts
that infer the claim based on a deductive system [6, 7]. Other argumentation systems
also consider evidence-based support of a defeasible statement; examples include juridical
argumentation [8, 9] or decision-making procedures in medicine [10].

The evaluation of the acceptance status of a claim (or a set of claims) crucially depend
on the acceptance of arguments. One of the most prominent approaches for the evalu-
ation of argument acceptance in the area of computational argumentation are abstract
argumentation frameworks (AFs) [11]. They provide a general schema for analyzing
discourses by treating arguments as abstract entities while an attack relation encodes
(asymmetric) conflicts between them, thus giving rise to a graph-like representation of
inconsistent information. Dung AFs are appealing because of their simple yet powerful
design; they have been proven useful in particular because they capture the behavior of
various knowledge representation formalisms via so-called instantiation procedures. De-
pending on the particular task, such procedures are used to model discourses, medical
and legal cases [2]; the abstract representation allows for an intuitive representation of
argumentative settings, we refer to AF instantiations of structured argumentation for-
malisms such as assumption-based argumentation (ABA) [12, 13], ASPIC+ [14, 6], or
logic-based approaches [15] in this context. Dung AFs moreover provide an orthogonal
view on other non-monotonic reasoning paradigms such as defeasible reasoning and logic
programming [11, 16, 17]. We note that in many of the aforementioned instantiations, the
semantics correspondence of the involved formalisms is oftentimes obtained by extracting
the claims of the arguments using additional mappings in the final step of the procedure.

In Dung AFs, the acceptance status of arguments is evaluated with respect to different
argumentation semantics. Crucial concepts include, e.g.,

• conflict-freeness, which formalizes that arguments which are jointly acceptable should
not be in conflict with each other,

• defense, stating that a set of jointly acceptable arguments should defend itself, i.e.,
it should counter-attack each attacker, or

• maximality of the outcome. There are several semantics which incorporate different
maximality-criteria; one of them requires that a set of jointly acceptable arguments
should be ⊆-maximal.

In his seminal paper [11], Dung introduced fundamental argumentation semantics which
are based on these concepts. A set of arguments is admissible if it is conflict-free and
defends itself; it is complete if it additionally contains all arguments it defends; grounded if
it is contained in each complete set; preferred if it is a⊆-maximal admissible set; and stable
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if it is conflict-free and attacks all other arguments. In subsequent works, researchers
extended the initial set of argumentation semantics in various ways, they considered,
e.g., semi-stable [18, 19] or stage semantics [20] which relaxes stability of a set of jointly
acceptable arguments by requiring that the set of admissible or conflict-free arguments,
respectively, together with all defeated arguments is ⊆-maximal; but also further single-
status semantics like ideal [21] and eager semantics [22]. For a comprehensive overview,
we refer the interested reader to [23].

The acceptance of claims naturally depends on the acceptance of arguments. It is
evident that a set of claims is acceptable only if there is a set of acceptable arguments
that supports it. This gives rise to the following fundamental relation between claim
acceptance and argument acceptance:

• Existence of a supporting argument-set : a set of claims is jointly acceptable if there
exists a set of jointly acceptable arguments with the desired claims (we say: such a
set of arguments realizes the claim-set).

The particular way how argumentation semantics are lifted to claim-based semantics,
however, is not unique. While concepts like conflict-freeness and defense naturally depend
on the set of arguments that realizes a given claim-set, it is less obvious how maximality-
criteria translate to semantics on claim-level. Consider for instance preferred semantics
which returns ⊆-maximal admissible sets. One way is to compute the preferred sets
of arguments of the given AF and extract the claims of the acceptable arguments in
a second step. Alternatively, ⊆-maximality of admissible sets can be understood on
claim-level and select those admissible sets which are ⊆-maximal in terms of their claims.
Note that both approaches formalize inherently different concepts, theoretically as well
as practically: since several arguments can have the same claim it is evident that the two
approaches might yield different sets of jointly acceptable claims.

The difference between claim acceptance and argument acceptance has been already
discussed in several contexts, e.g., in the context of floating conclusions [24], related to
reasoning by cases [25]; also, in terms of different justification stages [26]; moreover, it is
also subject to a computational complexity analysis by [27, 28] where it has been shown
that classical decision problems admit a higher complexity when considered in terms of
claims than the analogous problem for AFs. The discrepancy between argument-based
and claim-based maximization in, e.g., preferred semantics is then often circumvented by
constructing frameworks under structural restrictions such that both variants coincide.
However, for a certain class of semantics that take also the attacked arguments into
account, so-called range-based semantics which includes semi-stable and stage semantics,
the maximization step (which is performed on the union of all acceptable and defeated
elements), it is even impossible to capture the respective outcome with an according AF
semantics via standard instantiation methods (e.g., L-stable semantics of logic programs,
cf. Section 2 and [17]).

In order to grasp the different approaches to maximization in claim-centered argumen-
tation, we propose novel concepts of lifting argumentation semantics based on maximiza-
tion to claim-level. We identify two different classes of claim-based semantics: inherited
and claim-level semantics. While inherited semantics (as introduced in [27]) evaluate a
given Dung AF and extract claims of the successful sets in the final step of the evaluation,
claim-level semantics give claims a more active role in the determination of the outcome,
thus mimicking the behavior of range-based semantics of related formalisms that operate
on conclusion-level. For this, we consider maximization on claim-level (as outlined above
regarding preferred semantics) on the one hand, and introduce a genuine notion of claim-
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defeat on the other hand in order to capture maximization of the range on claim-level.
Our notion of claim-defeat gives moreover rise to novel variants of stable semantics.

We present a systematic analysis of both classes of semantics by adapting the principle-
based approach to argumentation semantics [29, 30] to the realm of claim-based reasoning;
moreover, we consider the relations of claim-based semantics and their expressiveness in
terms of signatures [31]. The principle-based methodology is well-suited for a systematic
analysis of claim-based semantics: such a classification yields theoretical insights into the
nature of the different semantics on the one hand and can help to guide the search for
suitable semantics appropriate in different scenarios on the other hand. The claim-based
analysis in terms of principles furthermore complements similar studies on classical argu-
mentation semantics and sheds light on the different levels of arguments and claims (for
instance, although preferred semantics satisfy the central principle of I-maximality, i.e.,
⊆-maximality of its extensions, it is not necessarily the case that claim-based preferred
semantics satisfy I-maximality, as we will see). The characterization of the signature of
a semantics, i.e., the set of all possible extension-sets a framework can possess under the
given semantics, is key to understand its expressive power. Apart of the theoretical in-
sights, knowing which extensions can jointly be modeled within a single framework under
a given semantics is for instance crucial in dynamic scenarios in which argumentation
frameworks undergo certain changes [32].

We base our work on claim-augmented argumentation frameworks (CAFs) [27] which
extend Dung AFs in a minimal way by assigning each argument a claim (which is, analo-
gous to arguments, in the spirit of abstract argumentation, considered as abstract entity).
CAFs help to streamline the instantiation process by providing means to access the claims
of the arguments in each step of the procedure; for standard instantiation methods this
means that the semantics correspondence of CAFs and the original instance can be ob-
tained in a more direct way (cf. Section 2). In our work, we furthermore investigate
the behavior of claim-based semantics when restricted to a class of CAFs that appears
in many instantiation procedures: in well-formed CAFs, arguments with the same claim
attack the same arguments, thus confirming to a common behavior of attack construction
in argumentation. Our main contributions are as follows:

• We introduce claim-based definitions for preferred, naive, stable, semi-stable and
stage semantics and by that provide argumentation semantics that shift maximiza-
tion of extensions from argument-level to claim-level, and compare them to their
inherited counter-part.

• We provide a full picture of the relations between all considered inherited and claim-
based semantics for both general and well-formed CAFs.

• We conduct a principle-based analysis of claim-based argumentation semantics. We
introduce novel principles genuine for claim-based semantics on the one hand and
study well-known properties of argumentation semantics such as e.g., I-maximality,
naivety, and reinstatement in terms of claim-based reasoning on the other hand.
We compare claim-level semantics and inherited semantics as well as general CAFs
and well-formed CAFs with respect to this properties.

• Finally we study the expressiveness of claim-based semantics. We characterize
the signatures of the considered semantics for both general CAFs and well-formed
CAFs.
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Parts of this paper have been presented at the 9th European Starting AI Researchers’
Symposium (STAIRS), see [33], and at the 17th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2020), cf. [28]. The conference
and workshop versions present claim-based semantics for CAFs and include results on I-
maximality, relations between the semantics, and expressiveness of both variants of stable,
semi-stable, stage, preferred, and naive semantics. Apart from improved notation regard-
ing claim-defeat and claim-level semantics, we significantly deepen the investigations of
the claim-based semantics in the present paper by conducting an in-depth principle-based
analysis of the considered semantics with respect to general and well-formed CAFs (cf.
Section 6); moreover, we extend our expressiveness results to admissible and complete
semantics.

2 Logic Programs and Claim-based Argumentation: A Nat-
ural Fit

The instantiation of logic programs (LPs) into AFs and generalizations thereof has been
frequently discussed in the literature [11, 16, 17] and reveals the close connection of both
formalisms. The correspondence of stable model semantics for LPs with stable seman-
tics in AFs is probably the most fundamental example [11], but also other semantics
of LP admit equivalent argumentation semantics [16]. In this section, we examine the
close connection of logic programs and conclusion-driven argumentation formalisms. We
reveal shortcomings of classical AF instantiations of logic programs regarding 3-valued
model semantics and the maximization of range-based semantics. We propose an adap-
tion of range-based semantics (in particular for semi-stable semantics) for CAFs that
naturally covers maximization on atom-level in LPs and thus gives rise to the missing
argumentation-based counterpart of L-stable model semantics.

We consider normal logic programs that consist of a set of rules of the form

c← a1, . . . , am, not bm+1, . . . , not bm

where c is the head and {a1, . . . , am, not bm+1, . . . , not bm} is called the body of the
rule. By L(P ) we denote the set of all atoms appearing in P . There are many different
semantics for evaluating logic programs, most prominently stable model semantics; in the
following we consider partially stable (p-stable) model semantics based on 3-valued model
semantics that generalize 2-valued model semantics by allowing for undefined atoms. A
3-valued model of a program P is a tuple (T, F ) with minimal T and maximal F such
that T ∩ F = ∅, T ∪ F ⊆ L(P ), and (T, F ) satisfies all (apart from certain undefined)
rules in P . Atoms in T are considered true and atoms in F are set to false. Atoms that
are neither contained in T not F are considered undefined (in contrast to 2-valued model
semantics it is not required that T ∪ F = L(P )). The model (T, F ) or sometimes simply
T is also called a p-stable model of P . We refer the interested reader to A for more details
on 3-valued model semantics.

In the following example, we will adapt an instantiation by [17].

Example 2.1. Consider the following logic program P :

r0 : a← not d
r1 : d← not a
r2 : b← not a

r3 : c← not a, not b
r4 : e← not e
r5 : e← not a, not e
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We construct our corresponding AF as follows: First, each rule ri yields an argument xi.
Second, attacks between arguments are obtained by considering the negative body elements
of the associated rules as possible weak points: an argument xi attacks another argument
xj if the head of the corresponding rule ri appears negated in the body of the rule rj. We
obtain the following AF (a formal definition of the translation can be found in A):

F : x0

x2

x3

x1

x5 x4

As the reader may verify, both the program P as well as its associated AF have no stable
models. Under 3-valued model semantics that returns, roughly speaking, stable models
that allow for undecided atoms, the program P returns the following answer sets (we
consider only the atoms set to true in the 3-valued models): ∅, {a}, and {d, b}. As
shown in [17], complete semantics preserve p-stable model semantics under the presented
translation using an additional mapping that extracts the claims of the arguments: the
complete extensions of F are given by ∅, {x0}, and {x1, x2}; extracting the corresponding
claims yields the p-stable models of P .

There is however a weakness in the translation: establishing the correspondence be-
tween AFs and LPs requires an intermediate step (i.e., the re-interpretation of the argu-
ments in terms of their claims) and is thus not directly given. This issue can be circum-
vented by extending AFs in a minimal way: claim-augmented argumentation frameworks
(CAFs) as introduced by [27] allow for assigning an abstract element to each argument
that is considered the claim of the argument. This simple extension streamlines the
correspondence between LPs and abstract argumentation in a natural way:

Example 2.2 (Example 2.1 ctd.). Consider again our LP from Example 2.1 and the AF
instantiation, we obtain a CAF naturally by assigning each argument xi the atom in the
head of the corresponding rule. We obtain the following CAF:

F : x0
ax2b

x3c

x1d

x5
e

x4
e

Utilizing the CAF representation of our LP P , we obtain the correspondence in a direct
fashion: following [27], the accepted claim-sets of a CAF are obtained by evaluating the
underlying AF and interpreting the conclusions in terms of the claims. The complete
claim-sets of F are thus given by ∅, {a}, {d, b}, and {d, c} which coincides with the
p-stable models of our program P .

The representation of such instantiation procedures as CAFs handles the correspon-
dence of conclusion-oriented formalisms such as logic programms without detours, i.e.,
no additional steps or mappings are needed. In this way, CAFs establish a closer relation
between the two paradigms. Let us furthermore point out a conceptual advantage of
CAFs that goes beyond their usage regarding instantiation procedures: with CAFs it is
possible to capture situations in which two arguments represent the same conclusion, a
scenario which cannot be formalized with standard argumentation frameworks without
further assumptions.

This observation reveals an even more powerful advantage of CAFs: they are flexible
enough to capture semantics that make use of the conclusions in the evaluation. This
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advantage, however, has not been fully exploited so far. In [27], semantics fully depend
on the argument structure of the AF. Claims come into play only in the very last step of
the procedure when the accepted sets of arguments have already been identified; in this
final step, the claim of each argument is inspected. This so-called inherited semantics
yield the desired results in many situations; there are however semantics for which this
simple evaluation procedure does not suffice.

Let us consider semi-stable semantics. Semi-stable semantics yield admissible sets
(i.e., sets of arguments that are conflict-free and defend themselves) with maximal range,
i.e., they return sets that contain as much accepted or explicitly rejected arguments as
possible. L-stable semantics [34] can be considered as their LP-counterpart: here, the set
of all atoms which are either considered true or false in a 3-valued stable model is max-
imized. However, when evaluating our running example with respect to this semantics,
we observe an undesired discrepancy in the outcome.

Example 2.3 (Example 2.1 ctd.). Consider again our running example LP P and its
associated CAF F . We compute the L-stable models of P and obtain {a} (atoms b, c, d
are set to false) and {d, b} (here, a, c are set to false). Evaluating the CAF F under
semi-stable semantics however yields a unique extension: the argument x0 attacks all
remaining arguments except x4 and is thus maximal in this respect, thus {a} is the only
semi-stable claim-set of F .

This difference has been already observed by Caminada et al. [17] who proved that it is
impossible to capture L-stable semantics on argument level under standard instantiation
methods.

While it has been shown that inherited semantics often behave correctly, the example
above reveals that in some situations, results may deviate from the expected outcome
of the original problem. A crucial observation is that semantics for LPs operate on
conclusion (claim) level while abstract argumentation semantics as well as inherited CAF
semantics are evaluated on argument level. We are thus interested in developing adequate
semantics for CAFs which mimic the behavior of semantics performing maximization on
conclusion-level of the original problem (e.g. L-stable model semantics for LPs).

We observe two sources that may lead to a different outcome of the respective evalu-
ation methods:

• First, maximization is considered on different levels. In LPs, we maximize over
sets of atoms while in the associated CAFs we maximize over arguments. This is
however a mismatch since atoms in the LP correspond to claims in the CAF.

• The second issue is more subtle: while we successfully identify the claims of ac-
ceptable arguments with atoms that are set to true, we do not have a similar cor-
respondence for atoms that are set to false. Coming back to our running example,
we observe that the arguments with claim e play a different role for the claim-sets
{a} and {b, d} (the realization {x0} of {a} attacks one of them while the realization
{x1, x2} of {b, d} does not) although the atom e is undecided with respect to both
L-stable models of P . The underlying issue is that evaluation methods for CAFs
that have been considered so far do not take the defeat of claims, i.e., the successful
attack of all occurrences of a given claim, into account.

Inspired by this observations, we propose semantics that operate on claim-level (claim-
level semantics or cl-semantics, for short). With this adjustments, we are able to capture
semantics of conclusion-oriented formalisms such as LPs or assumption-based argumen-
tation [12]. Let us demonstrate the idea:
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Example 2.4 (Example 2.1 ctd.). Let us consider again our CAF F and its complete
argument-sets ∅, {x0}, and {x1, x2}. We propose a new evaluation method for semi-
stable semantics (co-called claim-level-semi-stable or cl-semi-stable semantics) by max-
imizing accepted and defeated claims: The set {x0} defeats the claims b, c, d; the claim
e is not defeated because x0 does not attack all occurrences of e. The set of accepted
and defeated claims with respect to the extension {x0} (the claim-range of {x0}) is thus
given by {a, b, c, d}. The set {x1, x2} defeats the claims a, c, thus {x1, x2} has claim-range
{a, b, c, d} which coincides with the claim-range of {x0}.

We can verify that these extensions are indeed our only cl-semi-stable claim-sets: the
claim-range of the empty set is empty; the set {x1, x3} only defeats the claim a. We
thus obtain that cl-semi-stable semantics in F yield the same outcome as L-stable model
semantics for P .

The formal result showing that the proposed adaption of semi-stable semantics (the
definition of cl-semi-stable semantics is given in Section 4.3) indeed matches L-stable
semantics can be found in A.

3 Preliminaries

Abstract Argumentation We introduce abstract argumentation frameworks [11]; for
a comprehensive introduction, see [3, 35]. We fix U as countable infinite domain of
arguments.

Definition 3.1. An argumentation framework (AF) is a pair F = (A,R) where A ⊆ U
is a finite set of arguments and R ⊆ A×A is the attack relation. Given an argument a,
we say that a attacks b if (a, b) ∈ R; a set of arguments E ⊆ A attacks b if (a, b) ∈ R
for some a ∈ E; E attacks another set of arguments D ⊆ A if E attacks some argument
b ∈ D. We use a+F = {b | (a, b) ∈ R} and a−F = {b | (b, a) ∈ R}; we extend both notions
to sets S as expected: E+

F =
⋃
a∈E a

+
F , E−F =

⋃
a∈E a

−
F . We call E⊕F = E ∪ E+

F the range
of E in F . If no ambiguity arises, we drop the subscript F .

Semantics for AFs are defined as functions σ which assign to each AF F = (A,R) a
set σ(F ) ⊆ 2A of extensions. We consider for σ the functions cf , ad , co, na, gr , stb, pr ,
ss and stg which stand for conflict-free, admissible, complete, naive, grounded, stable,
preferred, semi-stable and stage, respectively.

Definition 3.2. Let F = (A,R) be an AF. A set E ⊆ A is conflict-free (in F ), if there are
no a, b ∈ E, such that (a, b) ∈ R. cf (F ) denotes the collection of sets being conflict-free
in F . For E ∈ cf (F ), we define

• E ∈ na(F ), if there is no D ∈ cf (F ) with E ⊂ D;

• E ∈ ad(F ), if each a ∈ E is defended by E in F ;

• E ∈ co(F ), if E ∈ ad(F ) and each a ∈ A defended by E in F is contained in E;

• E ∈ gr(F ) if E is a ⊆-minimal complete extension;

• E ∈ pr(F ) iff E is a ⊆-maximal complete extension;

• E ∈ stb(F ), if E⊕F = A;

• E ∈ ss(F ), if E ∈ ad(F ) and @D ∈ ad(F ) with E⊕F ⊂ D⊕F ;
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• E ∈ stg(F ), if @D ∈ cf (F ), with E⊕F ⊂ D⊕F .

We recall that for each AF F , stb(F ) ⊆ stg(F ) ⊆ na(F ) ⊆ cf (F ) and stb(F ) ⊆
ss(F ) ⊆ pr(F ) ⊆ ad(F ); also stb(F ) = ss(F ) = stg(F ) in case stb(F ) 6= ∅. Moreover,
semantics σ ∈ {na, pr , stb, stg , ss} deliver incomparable sets (anti-chains): for all E,D ∈
σ(F ), E ⊆ D implies E = D. The property is also referred to as I-maximal.

Claim-based Reasoning Next we define claim-augmented argumentation frameworks
according to [27].

Definition 3.3. A claim-augmented argumentation framework (CAF) is a triple F =
(A,R, cl) where F = (A,R) is an AF and cl : A→ C is a function which assigns a claim
to each argument in A; C is a set of possible claims. The claim-function is extended
to sets in the following way: For a set E ⊆ A, cl(E) = {cl(a) | a ∈ E}. We call an
argument a ∈ A an occurrence of claim cl(a) in F . Given a set of claims S ⊆ cl(A), we
call a set of arguments E ⊆ A with cl(E) = S a realization of S in F .

Notation. We write F = (F, cl) as an abbreviation for F = (A,R, cl) with AF F =
(A,R) (for CAF G, we denote the corresponding AF G). Sometimes we drop (F, cl)
or (A,R, cl) when specifying a CAF F in definitions or propositions; the name of the
corresponding AF, set of arguments, attack relation, and claim-function is then implicitly
assumed to be F,A,R, and cl , respectively. Also, we use subscript-notation AF , RF , and
clF to indicate the affiliations.

In [27], semantics of CAFs are defined based on the standard semantics of the under-
lying AF. The extensions are interpreted in terms of the claims of the arguments. We
call this variant inherited semantics (i-semantics).

Definition 3.4. For a CAF F = (F, cl) and a semantics σ, we define the inherited
variant of σ as σc(F) = {cl(E) | E ∈ σ(F )}. We call a set E ∈ σ(F ) with cl(E) = S a
σc-realization of S in F .

Example 3.5. Consider a CAF F given as follows:

F : x1
x

x2
x

y1
y

The CAF F has two arguments that support the same claim: both arguments x1 and x2
have the same claim x. The set {x} has two realizations, namely {x1} and {x2}. Since
the sets are conflict-free and admissible, the set {x} has two conflict-free (or admissible)
realizations. It has, however, only one stbc-realization: the set {x2} is stable in F as it
attacks all remaining arguments whereas {x1} is not.

Basic relations between different semantics carry over from standard AFs, i.e. for any
CAF F , stbc(F) ⊆ ssc(F) ⊆ prc(F) ⊆ adc(F) and stbc(F) ⊆ stgc(F) ⊆ nac(F) ⊆ cfc(F);
moreover, if stb(F) 6= ∅ then stbc(F) = ssc(F) = stgc(F). On the other hand observe that
we lose fundamental properties of semantics like I-maximality of preferred, naive, stable,
semi-stable, and stage semantics:

Example 3.6. Let us consider again the CAF from Example 3.5. We observe that there
are two stable extensions in F : {x2} and {x1, y1}. The resulting i-stable claim-sets are
{x} and {x, y} which shows that i-stable semantics do not necessarily yield incomparable
sets. Observe that nac(F) = stbc(F) = ssc(F) = stgc(F) = prc(F) in this case, thus the
same observation also holds for i-preferred, i-naive, i-stage, and i-semi-stable semantics.
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We consider a class of CAFs that appears in many different contexts: well-formed
CAFs incorporate the basic observation that attacks typically depend on the claim of the
attacking argument.

Definition 3.7. A CAF (A,R, cl) is called well-formed if a+F = b+F for all a, b ∈ A such
that cl(a) = cl(b).

In well-formed CAFs we can speak of claims attacking arguments: we say that a claim
c ∈ cl(A) attacks an argument a ∈ A if (x, a) ∈ R for some (and thus for each) argument
x ∈ A having claim c. Likewise, we say that S ⊆ cl(A) attacks a ∈ A if there is a claim
c ∈ S that attacks a.

Observe that the instantiation procedure from [17] that has been adapted to CAFs
in Example 2.1 returns well-formed CAFs since the outgoing attacks depend on the
head of the corresponding rule. Indeed, it can be checked that the resulting CAF from
Example 2.1 is well-formed. LP instantiations are one of the numerous examples of
formalisms with well-formed attack relation [11, 5, 6, 7]. Well-formed CAFs indeed appear
in many different formalisms and applications. Nevertheless, we observe that also non-
well-formed CAFs play an important role in argumentation, e.g., when one considers
preferences between arguments or other elements of the knowledge base (cf. [36, 37]). In
ASPIC+, for example, only successful attacks are considered in the instantiation of the
AF (a CAF instantiation can be easily obtained by assigning each argument its claim),
thus it can be the case that arguments with the same claim attack different arguments.
As we consider the two classes as equally valuable, we conduct our analysis with respect
to both classes.

4 Introducing Claim-level Semantics: Maximization and
Defeat

In this section, we establish claim-based semantics that perform maximization on sets of
acceptable claims as well as on the range on claim-level. For this, we establish a defeat
notion for claims: intuitively, a claim is defeated if each occurrence of the claim is at-
tacked. Our investigations give rise to novel versions of preferred and naive semantics
(when considering maximization of claim-sets) which are discussed in Section 4.1; vari-
ants of stable semantics (using our novel notion of claim-defeat) which are introduced in
Section 4.2; and semi-stable and stage semantics (when maximizing over sets of accepted
and defeated claims) which combine both aspects and are discussed in Section 4.3.

4.1 Maximization of claim-sets

Let us first consider two prominent semantics that involve maximization: preferred and
naive semantics return ⊆-maximal admissible respectively conflict-free sets. We intro-
duce variants of preferred and naive semantics for CAFs by shifting maximization from
argument- to claim-level.

Definition 4.1. Given a CAF F and a set of claims S ⊆ cl(A). Then

• S is cl-preferred (S ∈ cl -pr(F)) iff S is ⊆-maximal in adc(F);

• S is cl-naive (S ∈ cl -na(F)) iff S is ⊆-maximal in cfc(F).

For a set S ∈ cl -pr(F) (S ∈ cl -na(F)), we call E ∈ ad(F ) (E ∈ cf (F )) a cl -pr -
realization ( cl -na-realization, respectively) of S in F .

9



We consider the following example.

Example 4.2. Let us consider the following two CAFs F and F ′:

F : x1
x

x2
x

y1
y

F ′ : x1
x

y1

yz1
z

x2
x

The CAF F already appears in Example 3.5; it is not well-formed and its i-preferred and
i-naive claim-sets are {x} and {x, y}: indeed, F has four conflict-free sets of arguments
{x1}, {y1}, {x1, y1}, and {x2}; all except {y1} are admissible; thus the sets {x1, y1} and
{x2} are naive and preferred in the underlying AF. Extracting the claims of the sets yields
{x, y} and {x}.

Now, to compute the cl-naive and cl-preferred claim-sets of F , we first compute the
admissible and naive claim-sets of F , which yields the conflict-free claim-sets {x}, {y},
and {x, y}; and the admissible claim-sets {x, y} and {x}. Taking the ⊆-maximal claim-
sets, we obtain in both cases the unique claim-set {x, y} as the cl-preferred and cl-naive
outcome of F .

The CAF F ′, yield the same claim-sets under inherited and claim-level preferred se-
mantics, namely the sets {x, y} and {x, z}. For naive semantics, the variants differ:
inherited semantics yield the sets {x}, {x, y} and {x, z} while claim-level semantics re-
turn {x, y} and {x, z}. Observe that F ′ is well-formed.

We first observe that maximization on claim-level constitutes a strengthening of their
inherited counterparts that perform maximization on argument-level. That is, each cl-
preferred (cl-naive) claim-set is also i-preferred (i-naive).

Proposition 4.3. For each CAF F , cl -σ(F) ⊆ σc(F) for σ ∈ {pr ,na}.

Proof. We show that each ⊆-maximal admissible (conflict-free) claim-set possesses a ⊆-
maximal admissible (conflict-free, respectively) realization: Consider a set S ∈ cl -σ(F)
and let E denote an admissible (conflict-free) realization of S in F that is ⊆-maximal
among all admissible (conflict-free) realizations of S, i.e., E cannot be extended with
further arguments with claims in S without violating admissibility (conflict-freeness, re-
spectively). We observe that E is a ⊆-maximal admissible set in F : otherwise, there is
an admissible set of arguments D ⊆ A such that E ⊂ D. By choice of E, D contains an
argument a with claim cl(a) /∈ S. Thus we have found an admissible (conflict-free) set of
claims cl(D) that properly extends S, contradiction to ⊆-maximality of S in adc(F).

Note that the other direction does not hold: We have already seen that i-preferred
as well as i-naive claim-sets are not necessarily I-maximal (cf. Example 3.5); cl-preferred
and cl-naive semantics, on the other hand, yield I-maximal sets per definition.

The above proposition moreover reveals an alternative view on cl-preferred and cl-
naive semantics: they can be equivalently defined by maximizing over i-preferred or i-naive
claim-sets, respectively.

Proposition 4.4. For a CAF F and a set of claims S ⊆ cl(A), it holds that

• S ∈ cl -pr(F) iff S is ⊆-maximal in prc(F);

• S S ∈ cl -na(F) iff S is ⊆-maximal in nac(F).

10



Proof. In Proposition 4.3, we have already seen that each cl-σ claim-set is contained in
σc(F). We moreover observe that each set that is ⊆-maximal in σc(F) is also ⊆-maximal
in adc(F) (cfc(F), respectively) by monotonicity of the claim-function; moreover, each ⊆-
maximal i-preferred (i-naive) claim-set is has an admissible (conflict-free) realization.

For well-formed CAFs, both variants of preferred semantics coincide. As we show
next, i-preferred semantics yield claim-sets that are incomparable for this class.

Lemma 4.5. For each well-formed CAF F = (F, cl) and E,D ∈ pr(F ), E 6=D, it holds
that cl(E) 6⊆ cl(D).

Proof. First assume, there exists an a ∈ E attacking some b ∈ D in F . It follows that
cl(a) /∈ cl(D), otherwise the argument c ∈ D with cl(c) = cl(a) also attacks b due to
well-formedness; since D is conflict-free, this cannot be the case. Suppose now that no
a ∈ E attacks some b ∈ D. We need at least one attack (a, b) from E to D, otherwise
E ∪D ∈ pr(F ). But then E needs to attack b since E is admissible, so we are done.

As a consequence we obtain that each i-preferred claim-set has a unique preferred
realization in the underlying AF.

Corollary 4.6. |pr(F )| = |prc(F)| for every well-formed CAF F = (F, cl).

Moreover, inherited and claim-level preferred semantics coincide in well-formed CAFs,
implying that i-preferred semantics also satisfy I-maximality in this case.

Proposition 4.7. cl -pr(F) = prc(F) for each well-formed CAF F .

For naive semantics, we cannot hope for an analogous result as the well-formed CAF
F ′ from Example 4.2 demonstrates: Here, the two variants yield different claim-sets as
outcome. The example furthermore shows that i-naive semantics violates I-maximality
(even for well-formed CAFs).

4.2 Introducing claim-attacks - Stable semantics

Having discussed maximization on claim-level, our next step is to establish the crucial
notion of defeat of claims. As sketched in Section 2, inherited CAF semantics lack a
notion of claim-defeat that indicates the difference between defeated and undecided claims.
Recall that in the CAF F associated to the LP in Example 2.1, the partial attack from set
{x0} on the claim e (only one occurrence of e has been attacked) has led to accepting only
the set {a} as semi-stable claim-set, although the claim-range of {a} and {b, d} coincide.
Our goal is to establish a definition of claim-defeat that renders e in this situation as
undecided. The basic assumption is that a claim is defeated if all occurrences are attacked.
Our choice is justified as such a behavior can be observed by LPs and other formalisms
that evaluate on conclusion-level.

Let us furthermore point out that defeating a claim be achieved by a set of arguments
rather than by a set of claims. In Example 2.1, another argument would be necessary
that helps x0 to attack all occurrences of e.

Definition 4.8. Given a CAF F , we say that a set of arguments E ⊆ A defeats a claim
c ∈ cl(A) iff for all x ∈ A with cl(x) = c, there is y ∈ E such that (y, x) ∈ R, i.e., E
attacks each occurrence of c in F . We write E ∗F = {c ∈ cl(A) | E defeats c in F} to
denote the set of claims that are defeated by E in F .
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Note that the function · ∗ is monotone, that is, if E ⊆ D then E ∗F ⊆ D∗F for any
E,D ⊆ A.

Example 4.9. Consider the CAF F given as follows:

F : x1

a
y1

b
x2

a
z1

c
x3

a

The set of arguments {y1, z1} defeats the claim a (i.e., {y1, z1}∗F = {a}) because each
occurrence of a is attacked: y1 attacks x1, and z1 attacks x2 and x3. Moreover, the
argument x2 defeats claim b as it attacks the argument y1 which is the unique argument
carrying this claim.

Having established a notion for claim-defeat, we are ready to define the claim-range
as a claim-based counterpart to the range in AFs. Again, the claim-range depends on a
particular set of arguments. Intuitively, the claim-range of a set of arguments E contains
all claims that are accepted by E, i.e., all claims contained in E, as well as all claims that
are rejected by E, i.e., all claims that are defeated by E.

Definition 4.10. Given a CAF F and a set of arguments E ⊆ A. By E~F = cl(E)∪E ∗F
we denote the claim-range of E in F . If E~F = cl(A) we say that E has full claim-range
in F .

Example 4.11. Let us consider again the CAF F from Example 4.9. The claim-range of
{y1, z1} is given by {a, b, c} (i.e., {y1, z1}~F = {a, b, c}). Thus the set has full claim-range,
i.e., it holds that cl(A) = {y1, z1}~F . For {x2} we obtain {x2}~F = {a, b}.

From Example 4.9, we learn that the claim-range with respect to a given set of claims
is in general not unique: the maximal realization {x1, x2, x3} of claim a has full claim-
range {a, b, c}, while the realization {x1} has claim-range {a}, the realization {x2} has
claim-range {a, b}. The claim-range of a claim-set is thus realization-dependent.

For well-formed CAFs, however, each claim-set admits a unique claim-range: recall
that claims attack the same arguments in each well-formed CAF F , i.e., E+

F = D+
F for

every realization of a given claim-set S. It follows that each realization defeats the same
claims.

Proposition 4.12. Given a well-formed CAF F and a set of claims S ⊆ cl(A), then
E ∗F = D∗F and E~F = D~F for every two realizations E, D of S in F .

Intuitively, we consider a set to be claim-level stable if it has full claim-range. As
commonly observed for claim-based reasoning, the semantics depends on a particular
realization. We thus consider a set of claims S to be cl-stable in a given CAF F if it has
a realization E that has full claim-range, i.e., E~F = S ∪ E ∗F = cl(A). Following Dung
AFs, we furthermore require that the realization E is conflict-free in F . While in Dung
AFs, a stable set of arguments is also admissible we observe that this is in general not
the case for CAFs:

Example 4.13. Consider the CAF F from Example 4.9. Following our intuitive defini-
tion of claim-level stable semantics, we obtain that the set {a, b} is cl-stable in F : Indeed,
the realization E = {y1, x3} is conflict-free and defeats the claim c, thus the set has full
claim-range: E~F = {a, b, c}. Observe that E is not admissible in F since the argument
y1 is not attacked against the attack from x2.
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Inspired by this observation, we thus consider also an alternative variant of stable
semantics that requires admissibility of the realization.

Definition 4.14. Given a CAF F and a set S ⊆ cl(A). We say that

• S is a cl-cf -stable claim-set (S ∈ cl -stbcf (F)) iff there exists a cfc-realization E of
S in F such that E~F = cl(A);

• S is a cl-ad -stable claim-set (S ∈ cl -stbad (F)) iff there exists an adc-realization E
of S in F such that E~F = cl(A).

A set of arguments E cl -stbcf -realizes a claim-set S iff cl(E) = S, E is conflict-free in F
and E~F = cl(A); likewise, E cl -stbad -realizes a claim-set S iff cl(E) = S, E is admissible
in F and E~F = cl(A).

The proposed variants relax inherited stable semantics. Indeed, a set of arguments E
can have full claim-range without attacking all arguments that are not contained in E.
For the claim-level variants it suffices that some argument with claim c is contained in
E in order to accept c.

Example 4.15. Let us consider the following CAF F :

F : a2

a
a1

a

b

b

The framework has no stable extension since there is no argument that attacks the self-
attacker a2. Moreover, the only admissible set is ∅, thus there is no cl-ad-stable claim-
set either. We obtain however a cl-cf -stable claim-set by considering the set {a1}: the
argument defeats claim b and carries claim a, thus {a1}~F = {a, b} = cl(A). We obtain
that cl -stbcf (F) = {{a}}. Observe that F is not well-formed.

Proposition 4.16. For any F = (A,R, cl), stbc(F) ⊆ cl -stbad (F) ⊆ cl -stbcf (F).

Proof. To show that stbc(F) ⊆ cl -stbad (F), we observe that each stable extension E of the
underlying AF F is admissible and attacks all remaining arguments. Thus, each claim is
either accepted by E (i.e., E contains an occurrence of the claim in question) or defeated
by E. We obtain E~F = cl(A) for each stable extension of F . Moreover, we observe
that each set of arguments E that realizes a cl-ad -stable claim-set is also conflict-free.
Consequently, we obtain that cl -stbad (F) ⊆ cl -stbcf (F).

The CAF F from Example 4.15 shows that cl -stbad (F) 6= cl -stbcf (F) since cl -stbad (F) =
∅ but cl -stbcf (F) = {{a}}. A small modification of the CAF F shows that cl -stbad (F) 6=
stbc(F): If we delete the attack from a2 to a1 we obtain a single cl-ad -stable claim-set
{a} (witnessed by the ad -realization {a1} in F ) but stbc(F1) = ∅. Observe that both
considered CAFs are not well-formed. We will show next that for well-formed CAFs, all
considered variants of stable semantics coincide.

Proposition 4.17. stbc(F) = cl -stbad (F) = cl -stbcf (F) for each well-formed CAF F .

Proof. We show that cl -stbcf (F) ⊆ stbc(F): Consider a cl-cf -stable claim-set S and a
cl -stbcf -realization E of S in F that is ⊆-maximal among all conflict-free realizations of
S. We show that E is stable in the AF F . We show that E attacks all arguments that are
not contained in E, i.e., E+

F = A \E. Let x ∈ A \E and let cl(x) = c. In case c /∈ S, we
have that all occurrences of c—including x—are attacked. Consider now the case c ∈ S,
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i.e., there is an argument y ∈ E such that cl(y) = c. By maximality of E, we observe that
E ∪ {x} is not conflict-free; thus either (a) (x, x) ∈ R or there is z ∈ E such that either
(b) (z, x) ∈ R or (c) (x, z) ∈ R. In case (a) then also (y, x) ∈ R by well-formedness; in
case (b) we are done; in case (c) we have (y, z) ∈ R by well-formedness and therefore E
is not conflict-free, contradiction.

We obtain that cl -stbcf (F) ⊆ stbc(F). By Proposition 4.16, stbc(F) ⊆ cl -stbad (F) ⊆
cl -stbcf (F), thus the statement follows.

Finally, we show that both variants of stable semantics allow for alternative charac-
terizations in terms of inherited complete and preferred semantics (for admissible-based
cl-stable semantics) and in terms of inherited naive semantics (for conflict-free-based sta-
ble semantics), respectively.

Proposition 4.18. Given a CAF F and a set of claims S ⊆ cl(A). Then the following
statements are equivalent:

1. S ∈ cl -stbad (F);

2. there is a coc-realization E of S in F with E~F = cl(A);

3. there is a prc-realization E of S in F with E~F = cl(A).

Moreover, the following two statements are equivalent:

4. S ∈ cl -stbcf (F);

5. there is a nac-realization E of S in F with E~F = cl(A).

Proof. To prove (1) ⇔ (2) ⇔ (3), we first observe that (3) ⇒ (2) ⇒ (1) follows from the
inclusions pr(F ) ⊆ co(F ) ⊆ ad(F ). To show (1) ⇒ (3), consider a set S ∈ cl -stbad (F)
and let E denote an adc-realization of S in F with S ∪ E ∗F = cl(A). Then there is some
D ∈ pr(F ) with D ⊇ E. We show that D is a prc-realization of S in F , that is, cl(D) = S:
Towards a contradiction, assume that there is some c ∈ cl(A) \ S such that c ∈ cl(D),
that is, there is some x ∈ D with cl(x) = c. By S ∪ E ∗F = cl(A) we have c ∈ E ∗F thus
there is some y ∈ E ⊆ D that attacks x in F , contradiction to D being conflict-free. It
follows that cl(D) = S; moreover, D attacks each claim in cl(A) \ S by monotonicity of
· ∗, thus the statement follows.

To prove (4) ⇔ (5), it suffices to show (4) ⇒ (5); the other direction is immediate
since cf (F ) ⊆ na(F ). Now, let S ∈ cl -stbad (F) and let E denote a cfc-realization of
S in F with S ∪ E ∗F = cl(A). Similar as above, we consider a naive extension D in F
with E ⊆ D and show that cl(D) = S: In case there is some claim c ∈ cl(A) \ S that is
contained in cl(D), there is some y ∈ E ⊆ D that attacks an argument x ∈ D with claim
cl(x) = c, contradiction to D being conflict-free. We obtain that D is a nac-realization of
S in F that defeats all claims in cl(A) \ S.

4.3 Bringing the two together - Semi-stable and Stage semantics

Semi-stable and stage semantics combine both methods that we have established in the
preceeding sections: they are designed to minimize undecidedness (starting from admissi-
ble or conflict-free sets, respectively). In terms of claims, semi-stable and stage semantics
return ⊆-maximal sets of claims that are either accepted or defeated with respect to a
given extension.

Semi-stable and stage semantics weaken stable semantics by dropping the requirement
that the claim-range has to contain all claims that are present in the framework.
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Definition 4.19. Given a CAF F and a set of claims S ⊆ cl(A). We say that

• S is a cl-stage claim-set (S ∈ cl -stg(F)) iff there exists a cfc-realization E of S in
F such that there is no D ∈ cf (F ) with E~F ⊂ D~F ;

• S is a cl-semi-stable claim-set (S ∈ cl -ss(F)) iff there exists an adc-realization E
of S in F such that there is no D ∈ ad(F ) with E~F ⊂ D~F .

A set of arguments E cl -stg-realizes a claim-set S iff cl(E) = S, E is conflict-free in
F and E~F ) is ⊆-maximal; likewise, E cl -ss-realizes a claim-set S iff cl(E) = S, E is
admissible in F and E~F ) is ⊆-maximal.

In contrast to the semantics we considered so far, we observe that the proposed
variant of semi-stable semantics neither constitutes a strengthening nor a weakening of
its inherited counterpart. The following example shows that even for well-formed CAFs,
cl-semi-stable and i-semi-stable semantics potentially yield different claim-sets.

Example 4.20. Consider the following CAF F :

a

ab1b

c

c dde e

b2b

f1

f

f2

f

The admissible claim-sets of F are given by S1 = {d}, S2 = {b, d} and S3 = {a}. Let
us now consider the claims they defeat: S1 defeats claim a, S2 defeats the claims c and
a; and S3 defeats claims c and d. Computing the claim-range of the sets yields the range
{a, d} for S1; the range {a, b, c, d} for S2, and {a, c, d} for S3 (recall that for well-formed
CAFs, each realization of a claim-set has the same range, it is thus possible to consider
the claim-range of a set of claims). We obtain that cl -ss(F) = {{b, d}}. Observe that
{a} is the only i-semi-stable claim-set.

Regarding stage semantics, we furthermore consider the conflict-free claim-set {c} that
defeats claim e. We thus obtain two cl-stage claim-sets: {c} and {b, d}. We observe that
{c} togehter with {a} are the i-stage extensions of F .

We thus obtain that both semi-stable as well as stage semantics yield different exten-
sions in both variants.

We consider alternative characterizations of both range-based semantics.

Proposition 4.21. Given a CAF F and a set of claims S ⊆ cl(A). The following
statements are equivalent:

1. S ∈ cl -ss(F);

2. there is a coc-realization E of S in F with ⊆-maximal claim-range E~F among com-
plete extensions;

3. there is a prc-realization E of S in F with ⊆-maximal claim-range E~F among pre-
ferred extensions.

Moreover, the following two statements are equivalent:

4. S ∈ cl -stg(F);

5. there is a nac-realization E of S in F with E~F = cl(A).
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Proof. The proof proceeds analogous to the proof of Proposition 4.18. To prove (1) ⇔
(2) ⇔ (3), we first observe that (3) ⇒ (2) ⇒ (1) follows from the inclusions pr(F ) ⊆
co(F ) ⊆ ad(F ). To show (1) ⇒ (3), consider a set S ∈ cl -ss(F) and let E denote a
cl -ss-realization of S in F , that is, E~F is ⊆-maximal among admissible extensions. Then
there is some D ∈ pr(F ) with D ⊇ E. As in the proof of Proposition 4.18, we obtain that
D is a prc-realization of S in F ; moreover, D defeats each claim that is defeated by E by
monotonicity of · ∗, and thus E~F = D~F holds. Consequently, D~F is ⊆-maximal among
preferred extensions: Assume otherwise, then there is a preferred extension T in F with
T~F ⊃ D~F = E~F , contradiction to ⊆-maximality of E~F in F among admissible extensions.
We have shown D~F is ⊆-maximal among preferred extensions, thus the statement follows.

Likewise, we show (4)⇒ (5) to prove the equivalence (4)⇔ (5); the other direction is
immediate since cf (F ) ⊆ na(F ). Let S ∈ cl -stg(F) and let E denote a cl -stg-realization
of S in F . As in the proof of Proposition 4.18, there exists a naive extension D in F with
E ⊆ D and cl(D) = S; similar as above, we obtain that D~F is ⊆-maximal among naive
extensions. Thus the statement follows.

4.4 Summary

In the preceding subsections, we introduced novel variants of claim-based argumentation
semantics by lifting certain evaluation-steps onto claim-level. Performing maximization
on claim-level gave rise to alternative variants of preferred and naive semantics. We
discussed claim-defeat which led to two novel claim-level variants of stable semantics;
finally, bringing the two together gave rise to claim-level semi-stable and stage semantics.

Interestingly, it turned out that cl-preferred and i-preferred as well as all stable vari-
ants collapse when we consider them on well-formed CAFs. This means that if arguments
with the same claim have the same outgoing attacks, it holds that argument-level and
claim-level maximization of admissible sets yield the same outcome. Also, if stable exten-
sions in well-formed CAFs defeat all claims it follows that all arguments are attacked as
well; i.e., for stable semantics in well-formed CAFs, claim-defeat and argument-attacks
are interchangeable concepts. However, as we have seen, the notions do not coincide, even
if the CAF is well-formed: range-based semantics potentially yield a different outcome
as Example 4.20 demonstrates. This means as soon as we relax the condition and move
to ⊆-maximality instead of universal quantification over the set of all arguments/claims
not contained in the extension we observe fundamental differences between claim-defeat
and argument-attack. Likewise, claim-set and argument-set maximization on arbitrary
sets does not necessarily yield the same outcome in well-formed CAFs. As we have seen,
i-naive and cl-naive extensions potentially differ (cf. Example 4.2). It turns out that
admissibility plays an important role for the concurrence of i- and cl-preferred semantics.

Let us end this section with a brief discussion about our focus on claim-based variants
of maximization and defeat and why we did not provide a claim-based variant of defense
(explaining the lack of claim-level variants of admissible, complete, and grounded seman-
tics). Generally speaking, the reason is that claim-defense coincides with their traditional
argument-based counter-part. Let us take a closer look on the notion. Intuitively, de-
fense obeys the following logic: an entity (e.g., an argument, a claim) is defended iff each
attacking unit is counter-attacked. Now, with our notion of claim-defeat at hand, this
abstract view gives rise to the following notion of claim-defense:

a set of arguments E claim-defends a claim c in a given CAF F iff
E attacks each set of arguments D that claim-defeats c.
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(a) Relations between CAF semantics.

stbc = cl -stbcf = cl -stbad

cl -ssssc stgccl -stg

prc = cl -pr

nac

cl -na

adc

coc
grc

cfc

(b) Relations for well-formed CAFs.

Figure 1: Relations between semantics for general CAFs (a) and well-formed CAFs (b).
An arrow from σ to τ indicates that σ(F) ⊆ τ(F) for each (well-formed) CAF F .

That is, E must attack some argument b ∈ D for each attacking set D of c. This means
that there must be some argument x with claim c that is defended by E (in the underlying
AF); otherwise, we can find a set of arguments that claim-defeats c but is not attacked
by E. With these combinatorial considerations, claim-defense can be reformulated as
follows: a set of arguments E claim-defends a claim c in F iff there exists an argument
x with claim c that is defended by E in F . Thus claim-defense coincides with classical
defense on argument-level.

Notation. We sometimes drop ‘inherited’ or ‘claim-level’ (prefix ‘i-’ or ‘cl-’, respectively)
when speaking about a semantics for which only one version exists or for if both variants
coincide. For example, we refer to ‘i-grounded semantics’ by ‘grounded semantics’ since it
has no claim-level variant; and in the context of well-formed CAFs, we simply say ‘stable
semantics’ instead of ‘inherited’, ‘cl-cf -’. or ‘cl-ad-stable semantics’ because all variants
coincide.

5 Relations between Semantics

We first state a general observation which clarifies the relation between inherited and
claim-level semantics in case every argument possesses a unique claim. In that case, both
variants coincide with the standard AF semantics.

Lemma 5.1. For any σ ∈ {pr ,na, stb, ss, stg} and CAF F = (A,R, cl) with cl(a) = a
for all a ∈ A, we have cl -σ(F) = σc(F) =σ(F ).

It follows that negative results (via counter-examples) showing that two AF semantics
are not in a subset-relation immediate apply to (well-formed) CAFs.

Theorem 5.2. The relations between the semantics depicted in Figure 1 hold.

As already discussed in Section 3 the relations between inherited semantics follow
from the corresponding relations for Dung AFs. Moreover, in Section 4 the relations
between semantics that are based on the same Dung semantics have been settled: For
arbitrary CAFs we have

stbc(F) ⊆ cl -stbad (F) ⊆ cl -stbcf (F)
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by Proposition 4.16; moreover, by Proposition 4.3, it holds that

cl -pr(F) ⊆ pr c and cl -na(F) ⊆ nac.

For well-formed CAFs, all stable variants coincide (by Proposition 4.17), also, i-preferred
and cl-preferred semantics yield the same outcome (by Proposition 4.7). Finally, semi-
stable and stage semantics are incomparable, even in the well-formed case (cf. Exam-
ple 4.20).

Next we discuss the remaining ⊆-relations. First, we notice that each cl-ad -stable
claim-set is cl-semi-stable, since each such set has full (and thus ⊆-maximal) claim-range;
likewise, each cl-cf -stable set is cl-stage.

Proposition 5.3. cl -stbad (F) ⊆ cl -ss(F) and cl -stbcf (F) ⊆ cl -stg(F) for any CAF F .

Furthermore, recall that cl-semi-stable and cl-stage semantics can be equivalently
defined via preferred and naive semantics, respectively (cf. Proposition 4.21). We thus
obtain that each cl-semi-stable (cl-stage) claim-set is cl-preferred (cl-naive, respectively).

Proposition 5.4. cl -ss(F)⊆prc(F) and cl -stg(F)⊆nac(F) for any CAF F .

This concludes the proofs for all ⊆-relations for admissible-based semantics as shown
in Figure 1 for both well-formed and general CAFs.

Although cl-naive semantics do not coincide with i-naive semantics in the well-formed
case, we observe that cl-naive semantics joins in the ⊆-chain of conflict-free-based se-
mantics: for well-formed CAFs, cl-naive semantics are a superset of both inherited and
claim-level stage semantics.

Lemma 5.5. cl -stg(F) ⊆ cl -na(F) and stgc(F) ⊆ cl -na(F) for each well-formed CAF
F .

Proof. First, consider a cl-stage set S ∈ cl -stg(F). Towards a contradiction, assume
S /∈ cl -na(F). That is, there is some T ∈ cfc(F) with T ⊃ S. Now, since F is well-
formed, each realization of S and T attack the same claim. By monotonicity of the range-
function, we obtain that D~F ⊃ E~F for each realization D of T and E of S; contradiction
to S ∈ cl -stg(F).

Now, consider a i-stage claim-set S ∈ stgc(F), i.e., there is a set E ⊆ A with cl(E) = S
such that E ∪ E+

F is maximal wrt. subset-relation. Now, assume that S /∈ cl -na(F), i.e.
there exists a set T ∈ cfc(F) such that T ⊃ S. Consider a cfc-realization D of T in
F . Now, since E is stage in F , there is some x ∈ E ∪ E+

F such that x /∈ D ∪ D+
F . By

well-formedness, D+
F ⊇ E+

F , thus we have x ∈ E and x 6∈ D. We can assume that x and
D are conflicting; otherwise consider D′ = D∪{x} instead. Since x and D are conflicting
and since x /∈ D+

F , there exists y ∈ D such that (x, y) ∈ R. Since T ⊂ S, there is
z ∈ D such that cl(x) = cl(z). By well-formedness, (z, y) ∈ R, contradiction to D being
conflict-free.

We discuss counter-examples for the remaining cases: First, we use Lemma 5.1 to
transfer known results for relations for AF semantics to CAF semantics.

Proposition 5.6. Let Sem be the set of all semantics under our consideration. There is
a well-formed CAF F such that α(F) * β(F) for

1. α = cfc, β ∈ Sem \ {cf c};
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2. α = adc, β ∈ Sem \ {cf c, ad c};
3. α = coc, β ∈ Sem \ {cf c, ad c, coc};
4. α = grc, β ∈ Sem \ {cf c, ad c, coc, grc};
5. α ∈ {cl -pr , prc}, β ∈ Sem \ {cfc, ad c, coc, cl -pr , prc};
6. α ∈ {cl -na,nac}, β ∈ Sem \ {cfc, cl -na,nac};
7. α ∈ {cl -ss, ssc}, β ∈ {cl -stg , stgc, cl -na,nac, cl -stbcf , cl -stbad , stbc} and

8. α ∈ {cl -stg , stgc}, β ∈ {adc, cl -ss, ssc, cl -pr , pr c, cl -stbcf , cl -stbad , stbc}.
It remains to provide a counter-example for the absence of⊆-relations between ssc, cl -ss

and cl -pr (stgc, cl -stg and cl -na respectively) for general CAFs.

Example 5.7. Consider the following (non-well-formed) CAF F :

F : a b1

b2

c

d

Let us first note that in F , the set of conflict-free and admissible sets coincides, thus
all admissible-based and conflict-free based semantics coincide, in particular: cl -pr(F) =
cl -na(F), cl -ss(F) = cl -stg(F), and ssc(F) = stgc(F).

The sets E1 = {b1} and E2 = {b2, c} are ⊆-maximal conflict-free sets in F and have ⊆-
maximal (claim-)range: E1 attacks the arguments a, b2, and c, thus it has argument-range
{a, b1, b2, c} and claim-range {a, b, c}; the set E2 attacks arguments b1 and d, yielding
argument-range {b1, b2, c, d} and claim-range {b, c, d}.

We obtain that {b} and {b, c} are inherited and claim-level semi-stable and stage in F .
On the other hand, the set {b, c} is the unique cl-naive and cl-preferred claim-extension
of F .

The crucial observation in the above example is that cl-naive and cl-preferred seman-
tics are I-maximal while the others are not; i.e., it might be the case that semi-stable and
stage variants yield claim-sets S, T that are in ⊆-relation to each other (S ⊂ T ). Among
other principles, we will discuss this property in depth in Section 6.

Finally, let us discuss the connection between cl-stable and cl-semi-stable and cl-
stage semantics. Recall that for inherited semantics, stbc(F) = ssc(F) = stgc(F) in case
stbc(F) 6= ∅. We observe that this does not extend to cl-stable semantics.

Example 5.8. Let us consider the following CAF F :

F : a2

a
a1

a b

b

c

b

In F , we have cl -stbad (F) = cl -ss(F) = {{c}} and cl -stbcf (F) = cl -stg(F) = {{c}, {a, d}}.
However, we can obtain the following weaker version.

Lemma 5.9. For any CAF F , (a) cl -stbcf (F) 6= ∅ implies cl -stbcf (F) = cl -stg(F) and
(b) cl -stbad (F) 6= ∅ implies cl -stbad (F) = cl -ss(F).

Proof. In case cl -stbcf (F) is non-empty, we have that each S ∈ cl -stb(F) has ⊆-maximal
range (full range in fact), i.e., there is a cfc-realization E of S in F such that E~F = cl(A).
We obtain cl -stb(F) = cl -stg(F). Similar arguments hold for the respective admissible-
based semantics.
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6 Principles

Inspired by similar studies on AF semantics, we conduct a principle-based analysis of
CAF semantics in this section. The goal of our studies is to identify differences between
inherited and claim-level semantics on the one hand and to analyze the different behavior
of the semantics when restricted to well-formed CAFs when compared to the general case
on the other hand. We have already experienced in Section 4 that differences between
inherited and claim-level semantics vanish when restricting them to well-formed CAFs
(cf. Proposition 4.7 and 4.17). Our principle-based analysis aims to work out such specific
differences in greater detail. We consider principles restricted to the class Cu of all CAFs
as well as to the class Cwf of all well-formed CAFs.

In this section, we identify not only principles that are genuine for CAF semantics, but
consider also principles that extend well-known principles for AF semantics like conflict-
freeness or reinstatement to claim-based reasoning. In this aspect, let us recall that AFs
can be seen as a special case of CAFs by taking the identity function as claim-function.
By Lemma 5.1, we obtain that negative results (via counter-examples) carry over to CAFs
for those principles that are a faithful generalization of AF principles. To compare our
principles with the corresponding AF case, it will be useful to consider the CAF-class
Cid = {(F, id) | F is an AF} that contains each AF as equivalent CAF representation.

We subdivide our principles in three different groups: in Section 6.1, we consider prin-
ciples that address properties of the underlying structure of the framework with respect
to specific semantics; in Section 6.2, we consider basic properties like conflict-freeness
and admissibility inspired by similar principles for AF semantics; and in Section 6.3, we
study set-theoretical principles that give insight into the expressiveness of the considered
semantics.

6.1 Meta-principles

Let us start our principle-based analysis with the fundamental principle which has been
already informally introduced in the introduction: the realizability principle states that a
claim-set requires a set of arguments that supports it in order to be acceptable in a given
framework.

Principle 6.1 (Realizability). A semantics ρ satisfies the realizability principle in C iff
for every CAF F ∈ C, for every claim-set S, S ∈ ρ(F) only if there is a set of arguments
E ⊆ A that realizes S in F .

The realizability principle is at the core of argumentative claim justification: a claim
cannot be accepted if there is no argument for it. By definition, each semantics under
consideration satisfies this fundamental principle.

The next principle we consider is common to many claim-based reasoning formalisms:
the argument-name independence principle states that the specific names of the arguments
do not play a role when evaluating a given framework with respect to the claims. Coming
back to our introductory example of an LP-instantiation from Section 2, we observe that
it does not matter that the specific argument-naming schema does not play a role. More
precisely, instead of calling the arguments in Example 2.1 x0, . . . , x5 it would have been
equally possible to name them x, y, z, u, v, w. Evaluating the resulting CAF with respect
to complete semantics yields in both cases the claim-sets ∅, {a}, {d, b}, and {d, c}.

In order to formalize argument-name independence, let us first consider CAF iso-
morphisms. Graph-theoretically speaking, our CAF isomorphisms are arc- and labelling-
preserving bijections.
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Definition 6.2. A bijective function f : AF → AG between two CAFs F and G is
an isomorphism if f is attack-preserving i.e., (x, y) ∈ RF iff (f(x), f(y)) ∈ RG for all
x, y ∈ AF , and claim-preserving, i.e., cl(x) = cl(f(y)) for all a ∈ AF . F and G are
isomorphic to each other iff there is an isomorphism f : AF → AG.

Principle 6.3 (Argument-names independence). A semantics ρ satisfies the argument-
names independence principle in C iff for every two CAFs F and G in C which are
isomorphic to each other, it holds that ρ(F) = ρ(G).

It is easy to see that all considered CAF semantics satisfy this principle.

Remark 6.4 (Relation to AFs). We note that the adaption of argument-name indepen-
dence to AFs by restricting it to the class Cid yields a principle that allows to compare only
identical AFs (due to the definition of CAF-isomorphism) and is thus trivially satisfied
by all possible semantics. The alternative adaption of the principle by considering native
AF-isomorphisms (graph-theoretically speaking, an arc-preserving bijection), on the other
hand, results in a principle that is not satisfied by any non-trivial argumentation seman-
tics considered in the literature since the names of the arguments trivially matter when
evaluating AFs: Indeed, a simple counter-example are given by AFs F = ({a}, ∅) and
G = ({b}, ∅) which are AF-isomorphic to each other but yield different extensions ({a}
and {b}, respectively).

Next we discuss a principle that seems closely related at first sight: the language
independence principle [29, 30], also referred to as abstraction principle [38, 39], formalizes
that a semantics is independent of the specific names of the elements that occur in a
framework. To be more precise, a semantics σ satisfies abstraction (for AFs) if two AF-
isomorphic frameworks F and G (via isomorphism f) satisfy σ(f(F )) = f(σ(F )), i.e., the
order of applying f and σ does not matter.

In contrast to argument-name independence, which states that two isomorphic frame-
works yield identical claim-extensions independently of the considered argument-names,
the language independence principle states that the evaluation process does not depend
on the names of the abstract objects (i.e., arguments and claims) in the frameworks.

For an appropriate adaption to CAFs, let us consider the following concept of a
generalized isomorphism between two CAFs that preserves the claim-structure but not
the specific names of the claims (speaking in graph-theoretical terms, we consider an
arc-preserving vertex bijection which preserves equivalence classes of labels).

Definition 6.5. A bijective function f : AF → AG between two CAFs F and G is a
generalized isomorphism if f is attack-preserving i.e., (x, y) ∈ RF iff (f(x), f(y)) ∈ RG
for all a, b ∈ AF , and preserves the claim-structure, i.e., cl(x) = cl(y) iff cl(f(x)) =
cl(f(y)) for all x, y ∈ AF . We say that F and G are generalized isomorphic to each other
iff there is a generalized isomorphism f : AF → AG. We call the function fc : cl(AF )→
cl(AG) with fc(cl(x)) = cl(f(x)) f -induced claim-isomorphism.

Example 6.6. Let us consider our CAF F from Example 3.5 and another CAF G also
having three arguments. Both F and G are depicted below:

F : x1
x

x2
x

y1
y

G : a
α

b
α

c

β

The CAFs F and G are not isomorphic to each other as the claims which appear in the
CAFs do not coincide. They are, however, generalized isomorphic to each other: indeed,
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the function f with x1 7→ a, x2 7→ b, and y1 7→ c satisfies (x, y) ∈ RF iff (f(x), f(y)) ∈ RG
and preserves the claim-structure by associating claim x in F with claim α in G and claim
y with claim β. The induced claim-isomorphism fc behaves accordingly and maps x to α
and y to β.

Principle 6.7 (Language independence). A semantics ρ satisfies the language indepen-
dence principle in C iff for every two CAFs F and G in C which are generalized isomorphic
to each other (via isomorphism f), it holds that ρ(F) = {fc(S) | S ∈ ρ(G)} for the f -
induced claim-isomorphism fc : cl(AF )→ cl(AG).

We observe that all considered semantics satisfy language independence. Let us note
that language independence in the above formulation is a faithful adaption of the corre-
sponding AF principle: restricting the principle to Cid yields precisely the desired principle
since each generalized isomophism between F ,G ∈ Cid corresponds to an AF-isomorphism
between F and G.

Next we consider another principle that is genuine for CAFs. The unique realizability
principle gives insights into the correspondence of claim-sets and their respective realiza-
tion.

Principle 6.8 (Unique realizability). A semantics ρ satisfies the unique realizability
principle in C iff for every CAF F ∈ C, for every S ∈ ρ(F) there is a unique set of
arguments E ⊆ A that ρ-realizes S in F .

Since each realization of a complete claim-set in a well-formed CAF attacks—and
thus defends—the same arguments, we obtain that each complete claim-set admits a
unique coc-realization. This property extends to all complete-based inherited semantics.
We furthermore obtain an analogous result for i-naive semantics that extends to i-stage
semantics.

Proposition 6.9. Grounded, complete, i-preferred, i-semi-stable,i-naive, i-stage, and i-
stable semantics satisfy unique realizability for well-formed CAFs.

Proof. Let us discuss the case for naive semantics: Consider a well-formed CAF F and
let S denote a i-naive claim-set of F . Now, assume that S has two na-realizations E 6= D
in F . Since both E and D are naive in F , there must be a conflict between them. Wlog,
assume that there is some argument x ∈ E that attacks some y ∈ D. On the other hand,
it holds that E+ = D+ by well-formedness, thus there is some z ∈ D that attacks y,
contradiction to D being conflict-free.

Since each stage extension is naive, the statement follows for i-stage semantics.

Interestingly, claim-level semantics are not uniquely realized as they do not require
⊆-maximality of their admissible (or conflict-free) realizations. Consider the following
trivial example with only two arguments both having the same claim c.

Example 6.10. Consider the well-formed CAF F = ({x, y}, ∅, cl) with cl(x) = cl(y) = c.
In F , all claim-level semantics return the same claim-set {c}. However, the extension
{c} has three possible realizations: {x}, {y}, and {x, y}, all witnessing the acceptance of
c.

We note that the alternative definitions of cl-semantics that consider complete, pre-
ferred, or naive semantics (cf. Propositions 4.4, 4.18, and 4.21) as their base sets indeed
satisfy unique realizability since the inherited variants transfer this property to the re-
spective semantics. This observation will be crucial for the following weaker version of
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unique realizability: maximal realizability requires that each extension possesses a unique
⊆-maximal realization.

Principle 6.11 (Maximal realizability). A semantics ρ satisfies the maximal realizability
principle in C iff for every CAF F ∈ C, for every S ∈ ρ(F), the set Emax =

⋃
E ρ-real. S E

is a ρ-realization of S in F .

If a semantics satisfies unique realizability it also satisfies maximal realizability. We
show that all claim-level semantics as well as i-conflict-free and i-admissible semantics
satisfy this principle in Cwf .

Proposition 6.12. All semantics under consideration satisfy maximal realizability for
well-formed CAFs.

Proof. Starting with inherited conflict-free and admissible semantics, we first observe
that two cfc-realizations E,D of a claim-set S are conflict-free since they attack the same
arguments, thus E∪D cfc-realizes S as well. Moreover, if E and D are adc-realizations of
S, it holds that both defend the same aruments, thus E∪D adc-realizes S. We thus obtain
that i-conflict-free and admissible semantics satisfy maximal realizability. The inherited
semantics in question satisfy the principle since they build on either i-conflict-free or
i-admissible semantics (and since they already satisfy unique realizability).

For cl-preferred and both variants of stable semantics, the statement follows since
they coincide with their respective inherited counter-parts. For the remaining semantics,
it suffices to consider the i-preferred (for cl-semi-stable semantics) respectively the i-naive
(for cl-naive and cl-stage semantics) realization of the claim-set in question: Consider a
well-formed CAF F and let S denote a cl-semi-stable claim-set of F . By our results from
Section 4, S has a prc-realization E in F . This realization contains all cl -ss-realizations
of S in F , i.e., E = Emax. The proof for cl-naive and cl-stage semantics is analogous.

Apart from grounded semantics, all remaining semantics considered in this paper
violate unique and maximal realizability in the general case. It suffices to extend Exam-
ple 6.10 in a minimal way:

Example 6.13. Consider the CAF F = ({x, y}, {(x, y), (y, x)}, cl) with cl(x) = cl(y) =
c. In F , all semantics return the claim-set {c}. However, the extension {c} has two
possible realizations {x} and {y} which shows that {c} is neither uniquely realizable nor
possesses a maximal realization.

Table 1 and 2 summarize our results from this section. Table 1 presents all considered
principles for general CAFs while Table 2 contains all principles for well-formed CAFs.
The realizability principle as well as the argument-name and language independence prin-
ciple are satisfied by all considered semantics, which confirms that this principles formalize
fundamental properties of claim-based reasoning. on the other hand, we observe that the
desirable unique and maximal realizability principles are not satisfied by any (except the
single-status grounded) semantics in the general case. For well-formed CAFs, the picture
is more diverse, in particular due to the difference between inherited and claim-level se-
mantics regarding unique realizability. Maximal realizability on the other hand is satisfied
by all except conflict-free and admissible semantics.

6.2 Basic Principles

In this section, we deepen the study of claim-based semantics by investigating fundamen-
tal properties of argumentation semantics in the context of claim-based reasoning. To
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Realizability
Arg-name

Ind.
Language

Ind.
Unique

Realizability
Maximal

Realizability

clc 3 3 3 7 7

adc 3 3 3 7 7

grc 3 3 3 3 3

coc 3 3 3 7 7

prc 3 3 3 7 7

cl -pr 3 3 3 7 7

stbc 3 3 3 7 7

cl -stbcf 3 3 3 7 7

cl -stbad 3 3 3 7 7

ssc 3 3 3 7 7

cl -ss 3 3 3 7 7

nac 3 3 3 7 7

cl -na 3 3 3 7 7

stgc 3 3 3 7 7

cl -stg 3 3 3 7 7

Table 1: Meta-principles w.r.t. general CAFs.

Realizability
Arg-name

Ind.
Language

Ind.
Unique

Realizability
Maximal

Realizability

clc 3 3 3 7 3

adc 3 3 3 7 3

grc 3 3 3 3 3

coc 3 3 3 3 3

prc 3 3 3 3 3

cl -pr 3 3 3 7 3

stbc 3 3 3 3 3

cl -stbcf 3 3 3 7 3

cl -stbad 3 3 3 7 3

ssc 3 3 3 3 3

cl -ss 3 3 3 7 3

nac 3 3 3 3 3

cl -na 3 3 3 7 3

stgc 3 3 3 3 3

cl -stg 3 3 3 7 3

Table 2: Meta-principles w.r.t. well-formed CAFs.
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begin with, we study claim-based semantics on argument level by analyzing the corre-
sponding realizations.

Principle 6.14 (Conflict-freeness). A semantics ρ satisfies conflict-freeness in C iff for
every CAF F ∈ C, for every S ∈ ρ(F), there is a conflict-free realization E of S in F .

By definition, each semantics considered in this paper satisfies conflict-freeness. The
next two principles require the existence of a realization that defends itself or is admissible,
respectively.

Principle 6.15 (Defense). A semantics ρ satisfies the defense principle in C iff for every
CAF F ∈ C, for every S ∈ ρ(F), there is a realization E of S in F that defends itself.

Principle 6.16 (Admissibility). A semantics ρ satisfies the admissibility principle in C
iff for every CAF F ∈ C, for every S ∈ ρ(F), there is an admissible realization E of S
in F .

Naturally, these principles are satisfied by all admissible-based semantics.

Proposition 6.17. Admissible, complete, grounded, cl-ad-stable, i-stable and both vari-
ants of semi-stable and preferred semantics satisfy defense and admissibility.

We refer to Example 4.15 which shows that cl-cf -stable semantics do not satisfy
admissibility. By Lemma 5.1, we obtain counter-examples for the remaining semantics
from the corresponding AF case.

The naivety principle has been introduced in [30] for AFs. In the context of claims, this
principle can be extended in two ways: First, by requiring the existence of a realization
that is maximal with respect to set-inclusion, and second, by requiring that the claim-set
itself is ⊆-maximal. Notice that this two natural choices reflect the different approaches
that underlie inherited and claim-level semantics, respectively.

Principle 6.18 (i-Naivety). A semantics ρ satisfies the inherited naivety principle in C
iff for every CAF F ∈ C, for every S ∈ ρ(F), there is a conflict-free realization E of S
in F which is ⊆-maximal in cf (F ).

Principle 6.19 (cl-Naivety). A semantics ρ satisfies the claim-level naivety principle in
C iff for every CAF F ∈ C, for every S ∈ ρ(F), it holds that S is ⊆-maximal in cfc(F).

We observe that the restriction of both principles to Cid results in the naivety prin-
ciple for AF semantics. By Lemma 5.1, we thus obtain counter-examples for admissible,
complete, grounded, preferred, and semi-stable semantics.

By definition, argument-dependent naivety is satisfied by inherited naive semantics.
It follows that all semantics ρ with ρ(F) ⊆ nac(F) for all CAFs F satisfy this principle
too. Apart from stable semantics which satisfies both principles, i-naivety can be seen as
complementary to the admissibility principle.

Proposition 6.20. All variants of naive, stage, and stable semantics satisfy inherited
naivety.

Claim-dependent naivety, on the other hand, is not satisfied by any of the consid-
ered semantics in the general case, except for cl-naive semantics. As we will see, cl-naive
semantics is one of the few principles that satisfy I-maximality in Cu . For cl-naive se-
mantics, the principle is satisfied by definition. By results from Section 5, we obtain the
following result.
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Proposition 6.21. Cl-naive semantics satisfy claim-level naivety. Moreover, all variants
of stage and stable semantics satisfy claim-level naivety in Cwf .

By Example 4.2, i-naive semantics can realize claim-sets that are in subset-relation,
even if the CAF is well-formed, showing that i-naive semantics violate claim-level naivety
even in the well-formed case.

The reinstatement principle first studied in [29] states that an extension should contain
all arguments it defends. We extend it to CAFs as follows:

Principle 6.22 (Reinstatement). A semantics ρ satisfies reinstatement in C iff for every
CAF F ∈ C, for every S ∈ ρ(F), if there is a realization E of S in F that defends an
argument a ∈ A then cl(a) ∈ S.

CF-reinstatement [29] additionally requires that the extension is not in conflict with
the argument it defends. We extend this principle to CAFs as follows:

Principle 6.23 (CF-Reinstatement). A semantics ρ satisfies CF-reinstatement in C iff
for every CAF F ∈ C, for every S ∈ ρ(F), if there is a realization E of S in F that
defends an argument a ∈ A and E ∪ {a} is conflict-free then cl(a) ∈ S.

Since each realization of a claim-set S attacks—and thus defends—the same arguments
in well-formed CAFs, we obtain that both principles are satisfied by each semantics which
yields complete extensions in Cwf (by definition, each semantics satisfies conflict-freeness
as stated above).

Proposition 6.24. Complete, grounded, preferred, stable, and both variants of semi-
stable semantics satisfy reinstatement and CF-reinstatement in Cwf .

Admissible, conflict-free, stage, and both variants of naive semantics do not satisfy
reinstatement, even for well-formed CAFs—the corresponding counter-examples coincide
with those for Dung AFs. Likewise, we obtain counter-examples for admissible and
conflict-free semantics for CF-reinstatement.

For i-naive semantics, we obtain the following counter-example:

Example 6.25. Consider the CAF F given as follows:

F : x1

x
y1

y

x2

x
z1

z
x3

x

The i-naive extensions of F are {x}, {x, y}, {x, z}, and {y, z}. For S = {x}, we can
find a conflict-free realization E of x, namely E = {x3}, that defends y1 (the argument
has no attacker) and E ∪ {y1} is conflict-free. Nevertheless, cl(y1) = y is not contained
in S. Note that F is indeed well-formed. Therefore, i-naive semantics does not satisfy
CF-reinstatement, not even on well-formed CAFs.

Interestingly, cl-naive semantics satisfies CF-reinstatement even in Cu as we show next.
This observation gives cl-naive semantics an exclusive status as it is the only semantics
under consideration that retains this fundamental property for general CAFs.

Proposition 6.26. Cl-naive semantics satisfy CF-reinstatement.

Proof. Consider a CAF F , a cl-naive extension S of F , and a realization E of S in F
that defends an argument a ∈ A and satisfies E ∪ {a} is conflict-free. It holds that S ⊆
cl(E ∪ {a}). Thus cl(a) is contained in S, otherwise, S is not ⊆-maximal in cfc(F).
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Since both variants of stage semantics are contained in cl-naive semantics for well-
formed CAFs, we obtain that CF-reinstatement is satisfied for stage semantics in Cwf .

Proposition 6.27. Cl-stage and i-stage semantics satisfy CF-reinstatement in Cwf .

The following counter-examples show that none of the considered semantics satis-
fies reinstatement for general CAFs; moreover, CF-reinstatement is satisfied by cl-naive
semantics only:

Example 6.28. Let us consider the following three CAFs F , F ′, and F ′′, where the
latter two are small adaptions of F :

F :

a1a a2 a

b1b

c1c
F ′ :

a1a a2 a

b1b

c1c a3 a
F ′′ :

a1a a2 a

b1b

c1c

First, we consider the CAF F and observe that he claim-set S = {a}, witnessed by
realization {a1}, is a ρ-extension of F for all except grounded and cl-naive semantics.
The realization E = {a2} of S defends the argument b1 against the attack from a1,
moreover, E ∪ {b1} is conflict-free, nevertheless, cl(b1) = b is not contained in S.

For grounded semantics, we adapt F by adding another argument a3 with claim a that
attacks c1 and a2—the resulting CAF is called F ′ and is depicted above. This argument
defends a1, thus {a}, witnessed by {a1, a3}, is grounded in the modified CAF. The real-
ization E = {a2} of {a} serves as counter-example also in this case. It follows that all
except cl-naive semantics fail to satisfy reinstatement and CF-reinstatement for general
CAFs.

The third CAF F ′′ shows that cl-naive semantics fail to satisfy reinstatement for
general CAFs: The realization E = {a2} of S = {a} defends b1 although b is not contained
in S.

Finally, let us consider a principle which states that a claim is credulously accepted if
it is not defeated by any claim-extension. We consider only claims that are cf -realizable,
that is, there is some argument with this claim that is not self-attacking.

Principle 6.29. A semantics ρ satisfies justified rejection in C iff for every CAF F ∈ C,
for every cf -realizable claim c ∈ cl(A), if there is no S ∈ ρ(F) with c ∈ S then there is
some ρ-realization E of a claim-set S′ ∈ ρ(F) that defeats c in F .

Proposition 6.30. Conflict-free, cl-stage and all variants of naive and stable semantics
satisfy justified rejection.

Proof. Conflict-free, i-naive, and cl-naive semantics satisfy this principle because, by def-
inition, if a claim c has an occurrence that is not self-attacking, then there is an extension
that contains this claim; thus the premise is never satisfied. Moreover, all stable vari-
ants satisfy justified rejection: if an extension does not contain a given claim c then c is
defeated by it.

Finally, also cl-stage semantics satisfy justified rejection: Since there is some conflict-
free set E in the underlying AF that contains the given claim c, either cl(E) extends to
a set with ⊆-maximal range (thus the premise is not satisfied) or there is some other set
D that defeats c.
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Proposition 6.31. I-stage semantics satisfy justified rejection in Cwf .

Proof. Consider a CAF F and a claim c ∈ cl(A). Assume that c is not contained in any
i-stable set. Observe that the set Ec of all cf-realizable arguments with claim c attacks all
remaining occurrences of it., i.e., all occurrences of c are contained in the range of Ec. By
our assumption, there must be a stage set E ⊆ A such that x ∈ E+ for all arguments with
cl(x) = c (otherwise, Ec is incomparable with all other stage sets and is thus contained
in some stage set). It follows that c is defeated by cl(E).

In general, i-stage and i-semi-stable semantics do not satisfy this principle:

Example 6.32. Let us consider the following CAF F :

x

c
y
c

z z

{z} is the unique stage and semi-stable extension in the underlying AF. However, the
extension does not defeat claim c.

For the remaining admissible-based semantics, we consider the following counter-
example:

Example 6.33. Let us consider the following well-formed CAF F :

x

x
y y z z

{z} is the only admissible set, thus it is the unique candidate for all admissible-based
realizations. Nevertheless, z does not defeat y.

Table 3 and Table 4 summarize our results for general and well-formed CAFs, re-
spectively. We observe that the conflict-freeness, admissibility, i-naivety, and the justified
rejection principle behave similar in general and well-formed CAFs. The only exception
are cl-cf -stable semantics which violate defense and admissibility in the general case but
satisfy both principles with respect to well-formed CAFs (recall that conflict-free-based
stable semantics coincide with the other stable variants in this case). Comparing our
results with the respective AF principles, we moreover obtain that the aforementioned
principles behave as expected; again, the only deviation are cl-cf -stable semantics which
do not satisfy defense and admissibility in the general case.

For cl-naivety, reinstatement, and CF-reinstatement, the picture looks different: in
the general case, reinstatement is not satisfied by any semantics while cl-naivety and
CF-reinstatement are both only satisfied by cl-naive semantics. As both properties are
considered characteristic for naive semantics, our results indicate that the claim-level
naive variant can be seen as reasonable generalization of naive semantics to claim-based
semantics. This theory is underlined by the fact that i-naive semantics do not satisfy any
of the aforementioned principles, even in the well-formed case.

6.3 Set-theoretical Principles

In this section, our object of interest is the structure of so-called extension-sets, i.e., sets of
sets of claims or, to be more precise, the set of all claim-extensions that are acceptable with
respect to a given semantics. We recall classical set-theoretical principles and introduce
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Confl.-
free

Defense/
Adm.

i-Na. cl-Na. Reinst.
CF-

Reinst.
Just.

Reject.

clc 3 7 7 7 7 7 3

adc 3 3 7 7 7 7 7

grc 3 3 7 7 7 7 7

coc 3 3 7 7 7 7 7

prc 3 3 7 7 7 7 7

cl -pr 3 3 7 7 7 7 7

stbc 3 3 3 7 7 7 3

cl -stbcf 3 7 3 7 7 7 3

cl -stbad 3 3 3 7 7 7 3

ssc 3 3 7 7 7 7 7

cl -ss 3 3 7 7 7 7 7

nac 3 7 3 7 7 7 3

cl -na 3 7 3 3 7 3 3

stgc 3 7 3 7 7 7 7

cl -stg 3 7 3 7 7 7 3

Table 3: Basic principles w.r.t. general CAFs.

Confl.-
free

Defense/
Adm.

i-Na. cl-Na. Reinst.
CF-

Reinst.
Just.

Reject.

clc 3 7 7 7 7 7 3

adc 3 3 7 7 7 7 7

grc 3 3 7 7 3 3 7

coc 3 3 7 7 3 3 7

prc 3 3 7 7 3 3 7

stbc 3 3 3 3 3 3 3

ssc 3 3 7 7 3 3 7

cl -ss 3 3 7 7 3 3 7

nac 3 7 3 7 7 7 3

cl -na 3 7 3 3 7 3 3

stgc 3 7 3 3 7 3 3

cl -stg 3 7 3 3 7 3 3

Table 4: Basic principles w.r.t. well-formed CAFs.
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novel principles in order to identify subtle differences between extension-sets for claim-
based semantics. Our set-theoretical principles give rise to certain closure-criteria of the
extension-sets and will be used to provide expressiveness-results for CAF semantics.

Let us first consider the well-known I-maximality principle [29].

Principle 6.34 (I-maximality). A semantics ρ satisfies I-maximality in class C iff for
every CAF F ∈ C, for every S, T ∈ ρ(F), if S ⊆ T then S = T .

Let us first discuss the general case. By definition, cl-preferred and cl-naive semantics
satisfy I-maximality; moreover, grounded semantics yield a unique extension and thus
satisfies this principle as well.

Proposition 6.35. Grounded, cl-naive, and cl-preferred semantics satisfy I-maximality.

The principle is not satisfied by any of the remaining semantics under consideration
for general CAFs. the CAF from Example 3.5 possesses the claim-extensions {x}, {x, y}
which are accepted under all except grounded, cl-naive, and cl-preferred semantics.

We obtain more positive results on well-formed CAFs: using our ⊆-inclusion results
from Section 5, we obtain that preferred, stable, as well as all variants of semi-stable and
stage semantics satisfy I-maximality in Cwf .

Proposition 6.36. Grounded, cl-naive, and all variants of preferred, semi-stable, stage,
and stable semantics satisfy I-maximality in Cwf .

Counter-examples for the remaining semantics are by the respective counter-examples
for AFs (using Lemma 5.1).

Next we consider the downward closure principle [40].

Principle 6.37 (Downward closure). A semantics σ is downward closed in C iff for
every CAF F ∈ C, for every S ∈ σ(F), if T ⊆ S then T ∈ σ(F).

Downward closure is satisfied only by conflict-free semantics for both general and
well-formed CAFs.

Proposition 6.38. Conflict-free semantics satisfy downward-closure.

In what follows, we will recall principles from [31], which, roughly speaking, explain
why particular sets (of arguments or, in our case, of claims) are not jointly acceptable
with respect to a particular semantics. Moreover, we introduce novel principles in the
same spirit of the aforementioned properties. In order to study such type of principles,
the following notion will be useful.

Definition 6.39. Given S ⊆ 2C and a set S ⊆ ⋃
T∈S T , we define the upper union of S

in S as
upS(S) =

⋃

S⊆T∈S
T.

If we consider an I-maximal extension-set S, we observe that the upper union becomes
the identity function on S. The upper union contains in this case only the input-set.

Proposition 6.40. Given a semantics ρ that satisfies I-maximality and a CAF F , it
holds that S = upρ(F)(S) for each S ∈ ρ(F).

Let us next recall the tightness and the conflict-sensitivity principle as introduced
in [31].
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U1
U2 U3

U4

U5

d

S

(a) Tightness-criteria visualized.

U1

U2

U3

d

S T

(b) Conflict-sensitivity-criteria visualized.

Figure 2: Graphical representation of the required conditions of tightness (2a) and
conflict-sensitivity (2b): In Figure 2a, the set S is covered by the upper union

⋃
i≤5 Ui of

d. If tightness is satisfied by semantics ρ, then S ∪ {d} is contained in ρ(F) for each F .
Figure 2b depicts the upper union

⋃
i≤3 Ui of an element d ∈ T which contains S. If S is

contained in the upper union of each element of T , then S ∪ T is a claim-extension with
respect to a semantics ρ that satisfies conflict-sensitivity.

Principle 6.41 (Tightness). A semantics ρ satisfies tightness in class C iff for every
CAF F ∈ C, for every S ∈ ρ(F) and for every claim d ∈ cl(A), if S ∈ upρ(F)({d}) then
S ∪ {d} ∈ ρ(F).

Principle 6.42 (Conflict-Sensitivity). A semantics ρ satisfies conflict-sensitivity in class
C iff for every CAF F ∈ C, for every S, T ∈ ρ(F), if S ∈ upρ(F)({d}) for all d ∈ T then
S ∪ T ∈ ρ(F).

Figure 2 gives a graphical visualization of both properties. If tightness is satisfied
by a semantics ρ, then S ⊆ ⋃

i≤5 Ui = upρ(F)({d}) (as shown in Figure 2a) implies
S ∪ {d} ∈ ρ(F) for all CAFs F . Conflict-sensitivity is satisfied by a semantics ρ, if
S ⊆ ⋃

i≤3 Ui = upρ(F)({d}) as depicted in Figure 2b for all d ∈ T implies S ∪ T ∈ ρ(F)
for each CAF F .

Remark 6.43. In [31], conflict-sensitivity and tightness has been introduced via so-called
pairs: a couple c, d forms a pair if there is an extension that contains both a and b. A
semantics satisfies conflict-sensitivity iff for every two extensions S, T , if every couple
c, d forms a pair then the union of S and T is an extension itself. A semantics satisfies
tightness if for every extension S, for every claim d, if each couple c, d is a pair for every
c ∈ S, then S ∪ {d} is an extension. Our formulation is indeed equivalent to the original
formulation: S is contained in the upper union of a claim d iff c, d form a pair for all
c ∈ S; conflict-sensitivity generalizes this concept to each claim d ∈ T .

Grounded semantics satisfy conflict-sensitivity and tightness since they are single-
status semantics. However, both properties turn out to be too strong when it comes to
claim-based semantics, even for well-formed CAFs.

Example 6.44. We consider the extension-set S = {{a, b}, {b, c}, {a, c}} which is neither
tight nor conflict-sensitive. We generate the following well-formed CAF F :

a1 b1

b2

c2

a3

c3

31



U1

U2
U3

U4

U5

T

S

Figure 3: Graphical representation of the required conditions of cautious closure: the set
S is covered by the upper union

⋃
i≤5 Ui of T . If cautious closure is satisfied by semantics

ρ, then this implies that S ∪ T is contained in ρ(F). We have replaced the single claim d
in Figure 2a by a set of claims T .

For each claim c in a claim-set Si ∈ S, we introduce an argument ci in F . Each claim-set
S is attacked by claims not appearing in S, for example, the set {a, b} is attacked by
claim c. In this way, we ensure that F is well-formed. It can be checked that ρ(F) = S
for cl-naive semantics and for (all variants of) preferred, stable, semi-stable and stage
semantics, moreover, S∪{∅} corresponds to adc(F) and coc(F), while S∪{{a}, {b}, {c}} =
nac(F) and S ∪ {∅, {a}, {b}, {c}} = cfc(F).

We consider a novel principle that generalizes tightness and conflict-sensitivity.

Principle 6.45 (Cautious closure). A semantics ρ is cautiously closed iff for every CAF
F , for every S, T ∈ ρ(F), if S ⊆ upρ(F)(T ) then S ∪ T ∈ ρ(F).

Instead of single claims c ∈ cl(A), we consider claim-sets that are contained in ρ(F).
Figure 3 provides a graphical representation of this generalized criteria. We show that
each semantics that satisfies conflict-sensitivity also satisfies cautious closure. It follows
that each AF semantics that satisfies conflict-sensitivity (e.g., admissible, grounded, pre-
ferred, stable, semi-stable, and stage semantics) satisfies the generalized principle as well.

Proposition 6.46. Conflict-sensitivity implies cautious closure.

Proof. Given a CAF F and two sets S, T ∈ ρ(F). Moreover, let S ⊆ upρ(F)(T ). This
means in particular that S is contained in the upper union of each single claim d ∈ T , i.e.,
S ∈ upρ(F)({d}) for all d ∈ T . If ρ(F) is conflict-sensitive, we obtain S ∪ T ∈ ρ(F).

Since I-maximal extension-sets S satisfy S = upS(S) for each S ∈ S, we obtain that
each semantics that satisfies I-maximality satisfies cautious closure as well.

Proposition 6.47. I-maximality implies cautious closure.

We obtain that grounded (by Proposition 6.46), cl-preferred and cl-naive semantics
satisfy cautious closure even in the general case.

Proposition 6.48. Grounded, cl-preferred and cl-naive semantics satisfy cautious closure
in Cu .

For the remaining semantics, we consider the following counter-example:
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Example 6.49. We consider the extension-set S = {{a, b}, {b, c}, {a, c}, {a}}. The set
S is not cautiously closed: indeed, the upper union of {a} is given by {a, b, c} and thus
contains {b, c}. Nevertheless, {a, b, c} is not contained in S.

We generate the following CAF F by introducing an argument ci for each claim c,
for each claim-set Si ∈ S. Moreover, cl(ci) = c. The attack-relation is defined as follows:
two arguments ci, dj attack each other iff i 6= j.

a1 b1

b2

c2

a3

c3

a4

The construction ensures that each claim-set has its unique realization that attacks all
remaining arguments. In F , all attacks are symmetric and thus admissible-based and
conflict-free semantics coincide. We obtain that all considered semantics ρ apart from
grounded, cl-naive, and cl-preferred semantics satisfy S ⊆ ρ(F), moreover, the set {a, b, c}
is not accepted with respect to any of the considered semantics. Hence cautious closure is
violated by all apart from grounded, cl-naive, and cl-preferred semantics.

Cautious closure is satisfied by several semantics if one considers the restriction to
well-formed CAFs. First, by Proposition 6.47, we obtain that preferred, stable, cl-naive,
and both variants of semi-stable and stage semantics satisfy cautious closure.

Proposition 6.50. Grounded, admissible, preferred, stable, cl-naive, and both variants
of semi-stable and stage semantics satisfy cautious closure in Cwf .

Proof. It remains to give the proof for admissible semantics. Given a well-formed CAF
F and let S, T ∈ adc(F) with S ⊆ upρ(F)(T ). We show that S ∪ T ∈ adc(F).

Consider ad -realizations E,D ⊆ A of S and T , respectively. By Dung’s fundamental
lemma, the union E ∪ D defends itself in F . Now assume there is a conflict in E ∪ D,
i.e., there are arguments x, y ∈ E ∪D such that (x, y) ∈ R. Wlog let x ∈ E and y ∈ D
(as both E,D are admissible it is not the case that both arguments x, y are contained
in either E or D). Since S ⊆ upρ(F)(T ) there is some admissible superset T ′ ⊇ T such
that T ∪ {cl(x)} ⊆ T ′. Let D′ denote an ad -realization of T ′ and let x′ ∈ D′ denote the
occurrence of cl(x) in D′, that is, cl(x′) = cl(x). Then (x′, y) ∈ R by well-formedness.
Since D defends itself, there is an argument z ∈ D that attacks x′. Let z′ ∈ D′ denote
the occurrence of claim cl(z′) in D′, that is, cl(z′) = cl(z). By well-formedness, we have
that (z′, x′) ∈ R, contradiction to D′ ∈ ad(F ).

Complete, conflict-free and i-naive semantics do not satisfy cautious closure. Exam-
ple 6.44 serves as a counter-example for conflict-free and i-naive semantics; for complete
semantics, we consider the following counter-example.

Example 6.51. Consider the following CAF where each argument is assigned its unique
argument name (i.e., cl = id):

a gb c d e f

Both {b} and {f} are complete, but their union {b, f} is not complete as it defends the
argument d.
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We consider a relaxation of cautious closure.

Principle 6.52 (Weak cautious closure). A semantics ρ is weakly cautiously closed iff
for every CAF F , for every S, T ∈ ρ(F), if upρ(F)(T ) then there is U ∈ ρ(F) with
S ∪ T ⊆ U .

First, we observe that each semantics that satisfies cautious closure also satisfies weak
cautious closure.

Proposition 6.53. Cautious closure implies weak cautious closure.

We thus obtain the following result.

Proposition 6.54. Grounded, cl-preferred and cl-naive semantics satisfy weak cautious
closure in Cu .

Example 6.49 serves as counter-example for the remaining semantics in the general
case.

For well-formed CAFs, we obtain that complete semantics satisfy this weaker version
of cautious closure.

Proposition 6.55. Complete semantics satisfy weak cautious closure in Cwf .

Proof. To show that coc(F) is weakly cautiously closed for each well-formed CAF F ,
consider two claim-sets S, T ∈ coc(F) with upρ(F)(T ). Clearly, S and T are admissible in
F . By Proposition 6.51, we obtain S ∪T ∈ adc(F), thus there is some complete claim-set
U ∈ coc(F) with S ∪ T ⊆ U .

By Proposition 6.54, we additionally obtain the following result.

Proposition 6.56. Grounded, admissible, preferred, stable, cl-naive, and both variants
of semi-stable and stage semantics satisfy weak cautious closure in Cwf .

Example 6.44 shows that weak cautious closure is not satisfied by i-naive and conflict-
free semantics for well-formed CAFs.

Let us next consider a principle that characterizes a crucial property of complete
semantics. if two extensions S, T are contained in some other extension U , i.e., S∪T ⊆ U ,
then there is a unique ⊆-minimal extension that contains S∪T . For this, it will be useful
to define so-called completion-sets of a given set of claims.

Definition 6.57. Given a CAF F , a semantics ρ and a set of claims S ⊆ cl(A), we
let Cρ(F)(S) = {T ∈ ρ(F) | S ⊆ T, @T ′ ∈ ρ(F) : S ⊆ T ′ ⊂ T} denote the minimal
completion-sets of S in F .

If |Cρ(F)(S)| = 1 we slightly abuse notation and write Cρ(F)(S) to denote the unique
minimal completion-set of S.

Principle 6.58 (Unique completion). A semantics ρ satisfies unique completion in C iff
for every CAF F ∈ C, for every S, T ∈ ρ(F), |Cρ(F)(S ∪ T )| ≤ 1.

Proposition 6.59. Cautious closure implies unique completion.

Proof. The unique completion of two extensions S, T ∈ ρ(F) in question is given by the
union T ∪ S. In case there are several completions of T ∪ S, we have that S ⊆ upρ(F)(T )
and thus S ∪ T ∈ ρ(F).
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We thus obtain that unique completion is satisfied by grounded, cl-naive, and cl-
preferred semantics in the general case and additionally by admissible, stable, and both
versions of semi-stable and stage semantics in Cwf .

Proposition 6.60. Grounded, cl-naive, and cl-preferred semantics satisfy unique com-
pletion in Cu . Moreover, admissible, preferred, stable, cl-naive, and both variants of
semi-stable and stage semantics satisfy unique completion in Cwf .

For general CAFs, the principle is not satisfied by any of the remaining semantics: a
counter-example is given by Example 6.49, here, {a} has two minimal completions {a, b}
and {a, c}.

Likewise, neither i-naive nor conflict-free semantics satisfy unique completion in Cwf :
in Example 6.44, the sets {a, b}, {a, c}, {b, c} as well as the singletons {a}, {b}, {c} are
conflict-free and i-naive claim-sets, thus each singleton has two minimal completions.

We end this section by showing that for well-formed CAFs, unique completion is
satisfied by complete semantics.

Proposition 6.61. Complete semantics satisfy unique completion in Cwf .

Proof. Recall that in well-formed CAFs, each realization of a claim-set attacks the same
arguments. Thus, every realization of T ∪ S for two extensions S, T ∈ coc(F) in a well-
formed CAF F defends the same arguments. It follows that S ∪ T admits a unique
completion in case T ∪ S is ad -realizable in F .

We summarize our results in Table 5 and Table 6 for general and well-formed CAFs,
respectively. Apart from grounded semantics which satisfies almost all set-theoretical
principles under consideration by definition, only cl-naive and cl-preferred semantics sat-
isfy I-maximality, (weak) cautious closure, and unique completion in the general case.
Tightness and conflict-sensitivity are also not satisfied in the well-formed case. Cautious
closure, on the other hand, is satisfied by all but complete admissible-based semantics;
weak cautious closure and unique completion are satisfied by complete semantics as well.

7 Expressiveness

In this section, we investigate the expressive power of the considered semantics. As
already observed in the previous section, claim-based semantics are in general more ex-
pressive than their AF counterparts: several semantics violate I-maximality in the general
case, moreover, it is possible to construct (well-formed) CAFs that violate tightness and
conflict-sensitivity which is impossible for e.g., preferred and admissible semantics, re-
spectively, as shown by Dunne et al. [31].

In order to study the expressive power of the considered semantics, we provide char-
acterizations of the signatures of the semantics [31]. The signature captures all possible
outcomes which can be obtained by argumentation frameworks when evaluated under a
semantics and thus characterizes the expressiveness of a semantics.

Formally, the signature ΣAF
σ of an AF-semantics σ is defined as ΣAF

σ = {σ(F ) |
F is an AF}. We adapt the concept to CAFs respectively well-formed CAFs as follows.

Definition 7.1. Given a semantics τ , the signature of τ with respect to general and
well-formed CAFs, respectively, is given by

ΣCAF
τ = {τ(F) | F is a CAF}
Σwf
τ = {τ(F) | F is a well-formed CAF}.
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I-Max.
Downw.
Closure

Tight
Conflict-
sensitive

Cautious
Closure

w-Cautious
Closure

Unique
Compl.

clc 7 3 7 7 7 7 7

adc 7 7 7 7 7 7 7

grc 3 7 3 3 3 3 3

coc 7 7 7 7 7 7 7

prc 7 7 7 7 7 7 7

cl -pr 3 7 7 7 3 3 3

stbc 7 7 7 7 7 7 7

cl -stbcf 7 7 7 7 7 7 7

cl -stbad 7 7 7 7 7 7 7

ssc 7 7 7 7 7 7 7

cl -ss 7 7 7 7 7 7 7

nac 7 7 7 7 7 7 7

cl -na 3 7 7 7 3 3 3

stgc 7 7 7 7 7 7 7

cl -stg 7 7 7 7 7 7 7

Table 5: Set-theoretical principles w.r.t. general CAFs.

I-Max.
Downw.
Closure

Tight
Conflict-
sensitive

Cautious
Closure

w-Cautious
Closure

Unique
Compl.

clc 7 3 7 7 7 7 7

adc 7 7 7 7 3 3 3

grc 3 7 3 3 3 3 3

coc 7 7 7 7 7 3 3

prc 3 7 7 7 3 3 3

stbc 3 7 7 7 3 3 3

ssc 3 7 7 7 3 3 3

cl -ss 3 7 7 7 3 3 3

nac 7 7 7 7 7 7 7

cl -na 3 7 7 7 3 3 3

stgc 3 7 7 7 3 3 3

cl -stg 3 7 7 7 3 3 3

Table 6: Set-theoretical principles w.r.t. well-formed CAFs.

36



Note that ΣAF
σ yields a collection of sets of arguments while ΣCAF

τ and Σwf
τ yield a

collection of sets of claims. In order to compare argument-based signatures with their
claim-based variants, we identify AFs with CAFs where each argument is assigned its
unique argument name (i.e., cl = id) as done in Section 6. For any AF-semantics σ, it
holds that

ΣAF
σ ⊆ Σwf

σc ⊆ ΣCAF
σc and ΣAF

σ ⊆ Σwf
cl-σ ⊆ ΣCAF

cl-σ

since each AF corresponds to a (well-formed) CAF with an unique claim per argument;
moreover, each well-formed CAF is indeed a CAF.

7.1 Expressiveness of CAF Semantics

We begin our investigations with the class of general CAFs. As we will see, almost every
extension-set can be expressed with only very soft restrictions, i.e., CAF semantics are
in general very expressive, as the following theorem shows:

Theorem 7.2. The following characterisations hold:

ΣCAF
grc = {S ⊆ 2C | |S| = 1}

ΣCAF
cfc = {S ⊆ 2C | S 6= ∅, S is downwards closed}

ΣCAF
adc

= {S ⊆ 2C | ∅ ∈ S}
ΣCAF
coc

= {S ⊆ 2C | S 6= ∅,⋂S∈S S ∈ S}
ΣCAF
ρ = {S ⊆ 2C | S 6= ∅, S is I-maximal}, ρ ∈ {cl -pr , cl -na}

ΣCAF
ρ = {S ⊆ 2C | S = {∅} or ∅ /∈ S}, ρ ∈ {stbc, cl -stbcf , cl -stbad}

ΣCAF
ρ = ΣCAF

stbc \ {∅}, ρ ∈ {prc,nac, ssc, cl -ss, stgc, cl -stg}

From Section 6, we know that conflict-free semantics are downwards closed and that cl-
preferred and cl-naive semantics satisfy I-maximality. This confirms that it is impossible
to construct CAFs where conflict-free extension-sets are not downwards-closed or, e.g.,
cl-naive semantics violate I-maximality, as postulated in the theorem. Moreover, the
grounded extension is always unique, the empty set is always admissible, the intersection
of all complete sets is complete, and stable semantics might return empty extension-sets.

In the remaining part of this section, we show that for each extension-set S which
obeys the ρ-specific requirements, we can construct a CAF F that returns exactly S as
ρ-extensions, i.e., ρ(F) = S.

First, each extension-set S with |S| = 1 is expressible under grounded semantics: it
suffices to consider the CAF F = ({c ∈ S | S ∈ S}, ∅, id) with no attacks. Second, in order
to obtain S = {∅} we consider the empty framework F = (∅, ∅, cl) which satisfies ρ(F) = S
for all considered semantics. Third, stable semantics can express S = ∅: as for AFs, it
suffices to consider a single self-attacking argument; the CAF F = ({a}, {(a, a)}, id) thus
yields an example for stbc(F) = cl -stbad (F) = cl -stbcf (F) = ∅.

Next, we define a method which can be used to construct CAFs that return each non-
empty extension-set S that obeys the semantics-specific requirements for all apart from
admissible and complete semantics. Note that we have used the construction already in
Section 6 in Example 6.49 to show that grounded, cl-naive, and cl-preferred semantics
do not satisfy cautious closure in general. The basic idea is to add an argument ci for
each claim c from claim-set Si in a given extension-set S that attacks all arguments not
associated to claims in Si. In this way, each claim-set realizes itself in the resulting CAF.
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Construction 7.3. Given a non-empty extension-set S = {S1, . . . , Sn} ⊆ 2C , we define
FuS with

A = {ci | Si ∈ S, c ∈ Si},
R = {(ci, dj) | ci, dj ∈ A, i 6= j},

and cl(ci) = c for all ci ∈ A.

Proposition 7.4. Given a non-empty extension-set S ⊆ 2C , ∅ /∈ S, let FuS be defined as
in Construction 7.3, and let Sem denote the set of all semantics under consideration. It
holds that

1. if ∅ /∈ S, ρ(FuS ) = S for ρ ∈ Sem \ {cfc, adc, coc, grc, cl -pr , cl -na};

2. if S is I-maximal, ρ(FuS ) = S for Sem \ {cfc, adc, coc, grc};

3. if S is downward closed, ρ(FuS ) = S for {cfc, adc, coc}.

Proof. Consider a non-empty extension-set S = {S1, . . . , Sn} and let FuS be constructed
according to Construction 7.3. For each Si ∈ S, we consider the realization Ei = {ci | c ∈
Si}.

(1) To show that ρ(F) = S for each of the considered semantics, we first observe
that each attack is symmetric. We thus obtain prc(FuS ) = nac(FuS ) and ssc(FuS ) =
stgc(FuS ); also, cl -ss(FuS ) = cl -stg(FuS ) and cl -stbcf (FuS ) = cl -stbad (FuS ) (since
cfc(FuS ) = adc(FuS )).

Second, we observe that for each Si ∈ S, the realization Ei is stable in the underlying
AF, therefore, stbc(FuS ) 6= ∅ and thus stbc(FuS ) = ssc(FuS ) = stgc(FuS ). We moreover
obtain S ⊆ stbc(FuS ). As the CAF possesses a stable extension, we furthermore
conclude that cl -stbcf (FuS ) = cl -stg(FuS ) (by Lemma 5.9) and thus cl -ss(FuS ) =
cl -stg(FuS ) = cl -stbcf (FuS ) = cl -stbad (FuS ).

Third, we observe that all stable variants coincide. It suffices to show that cl -stbcf (FuS ) ⊆
stbc(FuS ). Consider a cl-cf -stable set S and its cl -stbcf -realization E in FuS . We first
observe that S ⊆ Si for some Si ∈ S because all other claim-sets do not have a
conflict-free realization in FuS . Moreover, E ⊆ Ei because all other realizations of E
are not conflict-free. E attacks all arguments with claims c /∈ S. Now, assume there
is an argument a ∈ A \E with cl(a) ∈ S that is not attacked by E. This is the case
only if cl(a) ∈ Si. As each claim of the claim-set Si has exactly one realization in
Ei we have found a claim that is neither defeated nor contained in E, contradiction
to our assumption E cl -stbcf -realizes S in FuS . Thus the statement follows.

Finally, we observe that prc(FuS ) = stbc(FuS ) since each ⊆-maximal admissible set
in F attacks all other arguments. As there are no other ⊆-maximal admissible sets
in the underlying AF we obtain prc(FuS ) ⊆ S. By S ⊆ stbc(FuS ) = prc(FuS ) ⊆ S we
have shown that ρ(FuS ) = S for all considered semantics as required.

(2) Let us now assume that S is I-maximal. By (1), we obtain the statement for all
semantics in Sem \ {cfc, adc, coc, grc, cl -pr , cl -na}. Since cl-preferred and cl-naive
semantics can be equivalently defined based on preferred and naive argument-
extensions, respectively (cf. Proposition 4.4), it holds that ρ(FuS ) = S for ρ ∈
{cl -pr , cl -na}.
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(3) Finally, let us assume that S is downward-closed. By (1), we obtain that S \ {∅} =
ρ(FuS ) for all semantics in Sem \ {cfc, adc, coc, grc, cl -pr , cl -na}. As each subset of
i-naive claim-sets is conflict-free, we obtain cfc(FuS ) = S as required. As observed
in (1), conflict-free and admissible semantics coincide in FuS ; moreover, ∅ =

⋂
S∈S S

is contained in S, furthermore, each realization Ei of Si contains all arguments it
defends, consequently, we furthermore obtain coc(FuS ) = S.

Evaluating FuS under admissible and complete semantics might yield additional claim-
sets. As observed in the proof of Proposition 7.4, adc(FuS ) is downwards-closed for each
extension-set S. Moreover, the grounded extension is always empty in FuS since there are
no arguments that are unattacked. Consequently, S∪{∅} ⊆ coc(FuS ) for each extension-set
S. We observe however that in both cases, the construction produces a CAF that accepts
at least all claim-sets in S with respect to admissible and complete semantics.

Proposition 7.5. Consider an extension-set S and let FuS be defined as in Construc-
tion 7.3. It holds that S ⊆ ρ(FuS ) for ρ ∈ {adc, coc}.

For complete semantics, we adapt the construction appropriately. It suffices to apply
Construction 7.3 to S \ {⋂S∈S S} and add isolated arguments for all claims in

⋂
S∈S S.

Proposition 7.6. Given a non-empty extension-set S ⊆ 2C with
⋂
S∈S S ∈ S. Let T =

S \ {⋂S∈S S} and let FuT = (A,R, cl) be defined as in Construction 7.3. We define
F = (A ∪ A′, R, cl ′) with A′ = {ac | c ∈

⋂
S∈S S} and cl ′(ac) = c for ac ∈ A′ and

cl ′(a) = cl(a) otherwise. It holds that coc(F) = S.

Proof. Consider an extension-set S = {S1, . . . , Sn}. We first observe that all arguments
in A′ are not attacked and thus contained in each complete set in F .

Second, we show that each claim-set Si ∈ S is coc-realized in F : For Si =
⋂
S∈S S,

we observe that F contains precisely one argument ac with claim c for all claims c ∈⋂
S∈S S. The set that contains all this arguments—the set A′—defends itself as it is

unattacked; moreover, it does not defend any other arguments as it has no outgoing
attacks. Consequently,

⋂
S∈S S ∈ coc(F). We furthermore note that no subset of

⋂
S∈S S

is complete.
In case Si 6=

⋂
S∈S S, we consider the realization Ei = {ci | c ∈ Si}∪A′ of Si. Observe

that Ei is conflict-free and attacks all remaining arguments by construction, thus it is
stable and in particular complete in F . Moreover, no subset of Si is complete since each
argument in Ei attacks all arguments in A \ Ei and thus defends all arguments in Ei.
Finally, we note that no superset of Ei is complete in F . Consequently, co(F ) = {Ei |
i ≤ n}. We thus obtain coc(F) = S, as desired.

It remains to give a construction for admissible semantics. We let [S] =
⋃
S∈S S denote

the set of all claims that appear in S.

Construction 7.7. Given a set S ⊆ 2C , we define FuadS = (F, cl) with

A = {xS | S ∈ S, S 6= ∅} ∪ {xc, dc | c ∈ [S]},
R = {(xS , xT ) | S, T ∈ S, S 6= T} ∪ {(xS , xc) | S ∈ S, c ∈ [S] \ S} ∪

{(xc, dc), (dc, dc) | c ∈ [S]} ∪ {(dc, xS) | S ∈ S, c ∈ S},

cl(xc) = cl(dc) = c and cl(xS) ∈ S, i.e., for xS we pick an arbitrary claim from the set
S.
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Example 7.8. Consider a claim-set S = {∅, {a}, {a, b}, {a, c}}. Following Construc-
tion 7.7, we introduce an argument xS for each claim-set in S ∈ S, moreover, we add
attacks between all such arguments xS and xT , T 6= S. Each such argument belongs
to the admissible extension that realizes S in the resulting CAF. We moreover introduce
two arguments for each of the claims a, b, c that appear in [S]: we add an argument xc
with claim c and a self-attacking argument dc. The resulting CAF FuadS looks as follows
(claims are omitted, arguments that represent claims are filled white):

FuadS :

xaxb xc

da

db dc

x{a}

x{a,b} x{a,c}

The set {x{a,b}, xa, xb} is admissible in FuadS : the argument x{a,b} defends the argument
xb against the attacks from the set-arguments x{a} and x{a,c}. Moreover, the arguments
xa and xb attack da and db, respectively, and thus defend the argument x{a,b}. It follows
that {a, b} is admissible realizable in FuadS . It can be checked that adc(FuadS ) = S.

Proposition 7.9. Given a set S ⊆ 2C such that ∅ ∈ S, and let FuadS be defined as in
Construction 7.7. It holds that adc(FuadS ) = S.

Proof. We denote the underlying AF of FuadS by F . First, let us show that each S ∈ S
is admissible realizable in F . Indeed, the set E = {xS} ∪ {xc | c ∈ S} is admissible in
F and satisfies cl(E) = S: E is conflict-free by construction, moreover, each argument
xc defends xS against the attack from dc. Furthermore, xS attacks all remaining set-
arguments. Thus E is admissible in F .

Next, we show that no proper superset of E is admissible in F : as each other set-
argument is attacked, it holds that E ∪{xT } is conflicting for each xT , T 6= S. Moreover,
each dummy argument dc is self-attacking, thus E ∪ {dc} is conflicting for each c ∈ [S].
Finally, since each claim-argument xc with c /∈ S is attacked by xS ∈ E, we obtain that
no proper superset of E is conflict-free.

It remains to show that no proper subset of E is admissible. First, we observe that
E \ {xS} is not admissible as it does not defend itself. In case we remove some argument
xc for some c ∈ S, we have that xS is no longer defended against the attack from dc.
Consequently, we obtain adc(FuadS ) = S.

7.2 Expressiveness of well-formed CAFs

Turning now to well-formed CAFs, we have already seen in Sections 4, 5, and 6 that
the semantics under considerations admit a different behavior compared to the general
case when restricted to this CAF-class. I-maximality is satisfied by preferred, cl-naive,
stable, and all variants of semi-stable and stage semantics; moreover, admissible and
complete semantics satisfy cautious respectively weak cautious closure, indicating that
not all extension-sets are expressible with respect to well-formed CAFs.

Our characterization results for well-formed CAFs can be summarized as follows:
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Theorem 7.10. The following characterisations hold:

ΣCAF
grc = {S ⊆ 2C | |S| = 1}
Σwf
cfc

= {S ⊆ 2C | S 6= ∅, S is downwards-closed}
Σwf
adc

= {S ⊆ 2C | ∅ ∈ S, S is cautiously closed}
Σwf
coc

= {S ⊆ 2C | S 6= ∅,⋂S∈S S ∈ S, S is weak-cautiously closed

and satisfies unique completion}
Σwf
ρ = {S ⊆ 2C | S is I-maximal}, ρ ∈ {stbc, cl -stbcf , cl -stbad}

Σwf
ρ = Σwf

stbc
\ {∅}, ρ ∈ {prc, cl -pr , cl -na, ssc, cl -ss, stgc, cl -stg}

Remark 7.11. We remark that signature characterizations for well-formed CAFs for
some of the semantics, i.e., for conflict-free, cl-naive, grounded, admissible, complete,
preferred, stable, cl-semi-stable, and cl-stage semantics, can also be obtained through re-
cent expressiveness results for AFs with collective attacks (SETAFs) [41] and their rela-
tion to well-formed CAFs: SETAF signature characterizations provided in [42] translate
to well-formed CAFs via the semantics-preserving transformation presented in [43, 28].
It follows that the signatures for the aforementioned semantics coincide with their SETAF
counter-part. However, in order to obtain a well-formed CAF having specific extensions,
it is necessary to first construct a SETAF, determine its normal form, and apply the proce-
dure in[43]. In order to avoid this detour over SETAFs, we will present genuine signature
constructions for well-formed CAFs from Theorem 7.10 in the subsequent part of this sec-
tion. We moreover note that for admissible and complete semantics, the formulations of
the signature characterizations slightly differ: in [42], the distinctive characteristics of
admissible and complete semantics are set-conflict-sensitivity and set-com-closure, re-
spectively. The constructions furthermore show that our formulation in terms of (weak)
cautious closure and unique completion are indeed equivalent to the SETAF formulation,
thus offering an alternative view on admissible and complete semantics in SETAFs.

As the attentive reader might have noticed, Theorem 7.10 does not speak about i-
naive semantics. Indeed, the characterization of the signature for well-formed CAFs for
i-naive semantics remains an open problem. We discuss several observations and known
(im)possibility-results at the end of this section.

Signatures for grounded and conflict-free semantics coincide with those for general
CAFs using ΣAF

σ ⊆ Σwf
σc ⊆ ΣCAF

σc and the coincidence of ΣAF
σ = ΣCAF

σc for σ ∈ {cf , gr}.
I-maximality characterizes stable, preferred, cl-naive, and both variants of semi-stable

and stage semantics, as we show next. To do so, we consider a construction that has been
used already in Section 6 in Example 6.44 to show that tightness and conflict-sensitivity
is not satisfied by any of the (non-single-status) semantics under consideration. Now, let
us formally introduce the construction:

Construction 7.12. Given a set S = {S1, . . . , Sn} ⊆ 2C , we define F I-max
S with

A = {ci | c ∈ Si, 1 ≤ i ≤ n},
R = {(ci, dj) | 1 ≤ i, j ≤ n, c /∈ Sj},

and cl(ci) = c for all ci ∈ A.

The construction yield well-formed CAFs as arguments with the same claim attack
the same arguments. Figure 4 gives an example of the construction.
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F I-max
S : a1 b2

c2 c1

b3 a3d3

Figure 4: CAF F I-max
S for the extension-set S = {{a, c}, {b, c}, {a, b, d}} (cf. Construc-

tion 7.12)

Next we show that each I-maximal non-empty extension-set can be obtained under
preferred, stable, cl-naive, and both variants of semi-stable and stage semantics when
applying Construction 7.12. For the case S = ∅, we consider again the CAF that contains
a single self-attacking argument only. The following proposition thus proves signature
characterizations from Theorem 7.10 for all of the aforementioned semantics.

Proposition 7.13. Given an I-maximal non-empty extension-set S ⊆ 2C , let F I-max
S be

defined as in Construction 7.12. It holds that ρ(F I-max
S ) = S for ρ ∈ {stbc, cl -stbcf , cl -stbad ,

prc, cl -pr , cl -na, ssc, cl -ss, stgc, cl -stg}.

Proof. Let S = {S1, . . . , Sn}. For each claim-set Si ∈ S we denote its canonical realization
in F I-max

S by Ei = {ci | c ∈ Si}. Moreover, we write F to denote the underlying AF of
F I-max
S .

First, we show the statement for the admissible-based semantics. Since stb(F ) ⊆
pr(F ) holds, it remains to show (1) {{ci | c ∈ Si} | Si ∈ S} ⊆ stb(F ) and (2) pr(F ) ⊆
{{ci | c ∈ Si} | Si ∈ S}.

(1) By construction, Ei = {ci | c ∈ Si} is conflict-free in F for each Si ∈ S. Moreover,
Ei attacks all dj with j 6= i since Si and Sj are incomparable, hence there is an
c ∈ Si which does not occur in Sj . Thus Ei is a stable extension of F .

(2) Consider a preferred set E ∈ pr(F ). We show that E is a subset of {ci | c ∈ Si}
for some i ≤ n. First, we observe that cl(E) ⊆ Si for some Si ∈ S, otherwise, E
is conflicting: if E realizes a claim d that does not occur in Si then each argument
ci ∈ Si is attacked by arguments with claim d by construction. Thus cl(E) ⊆ Si for
some i ≤ n.

Now, towards a contradiction, assume that there is an argument cj ∈ E with i 6= j.
As Si and Sj are incomparable there is a claim d ∈ Si \ Sj that attacks cj (i.e.,
each argument with claim d attacks cj), in particular, the argument di attacks cj .
Since cl(E) ⊆ Si, there is no argument in E that attacks di, otherwise Si would be
conflicting. Consequently, E ⊆ Ei.
From (1), we already know that Ei ∈ pr(F ) for each Si ∈ S (since each stable
extension is preferred). Hence, by the ⊆-maximality of preferred extensions, it
holds that E = Ei.

By (1) & (2) we obtain S ⊆ stbc(F I-max
S ) ⊆ prc(F I-max

S ) ⊆ S, thus

stbc(F I-max
S ) = ssc(F I-max

S ) = cl -ss(F I-max
S ) = prc(F I-max

S ) = S.

Recall that in well-formed CAFs, all variants of stable semantics coincide. Likewise, all
variants of preferred semantics yield the same outcome.
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Next, we show that (3) cl -na(F I-max
S ) ⊆ S. First, we observe that each Si ∈ S is

cfc-realizable via Ei. Second, there is no E ⊆ A with cl(E) ⊃ Si: as already observed in
(2), there is no set of arguments E ⊆ A with cl(E) ⊃ Si that is conflict-free in F .

By (1) & (3) we obtain S ⊆ stbc(F I-max
S ) ⊆ cl -na(F I-max

S ) ⊆ S, thus

stbc(F I-max
S ) = stgc(F I-max

S ) = cl -stg(F I-max
S ) = cl -na(F I-max

S ) = S.

This concludes the proof of the proposition.

It remains to provide proofs for the signature characterizations for admissible and
complete semantics for well-formed CAFs. We show that the signature for admissible
semantics is characterized by cautious closure and empty-set-acceptance; moreover, we
show that complete semantics can express each extension-set S that is weakly cautiously
closed, satisfies unique completion and contains

⋂
S∈S S.

We start by introducing a construction that will serve as basis to express extension-
sets under admissible and complete semantics. For this, it will be convenient to introduce
a function minS(c) that returns, for a given extension-set S and a claim c ∈ [S], the
⊆-minimal sets in S that contain c.

Definition 7.14. Given an extension-set S ⊆ 2C and a claim c ∈ [S], we define minS(c) =
{M ∈ S | c ∈M,@S ∈ S(S ⊂M ∧ c ∈ S)}.

For I-maximal extension-sets, the function minS(c) will return all sets in extension-set
S that contain the claim c ∈ [S]. Indeed, if S \ {∅} is incomparable, then minS(c) = {M ∈
S|c ∈M} for each M ∈ S.

Example 7.15. Consider the extension-set S = {∅, {a, c}, {b, c}, {c}, {a, b, d}}. The ⊆-
minimal sets relative to claims in [S] are given by

minS(a) = {{a, c}, {a, b, d}} minS(b) = {{b, c}, {a, b, d}}
minS(c) = {{c}} minS(d) = {{a, b, d}}

Now, consider the I-maximal extension-set S′ = S \ {∅, {c}}. We obtain

minS′(a) = {{a, c}, {a, b, d}} minS′(b) = {{b, c}, {a, b, d}}
minS′(c) = {{a, c}, {b, c}} minS′(d) = {{a, b, d}}

We are ready to present our construction that will serve as basis to characterize
admissible and complete semantics.

Construction 7.16. Given an extension-set S ⊆ 2C , we define FS with

A = {cM | c ∈ [S],M ∈ minS(c)},
R = {(cM , c′M ′) | cM , c′M ′ ∈ A, c /∈ upS(M ′)},

and cl(cM ) = c for all cM ∈ A.

FS is well-formed since each attack depends on the claim of the attacking argument.
Moreover, in case S \ {∅} is incomparable, we have minS(c) = {M ∈ S|c ∈ M} and
upS(M) = M for each M ∈ S, thus FS can be written as

A = {cS | S ∈ S, c ∈ S},
R = {(cS , c′S′) | cS , c′S′ ∈ A, c /∈ S′},

with cl as above. Note that this construction corresponds to the CAF F I-max
S from

Construction 7.3. FS generalizes F I-max
S which extends to extension-sets that are not

I-maximal.
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Example 7.17. Consider the extension-sets SS = {∅, {a, c}, {b, c}, {c}, {a, b, d}} and
S′ = S \ {∅, {c}} from Example 7.15. We note that both S and S′ are cautiously closed.
Construction 7.16 yields the following CAFs:

FS: aac bbc

cc

babd aabddabd

FS′: aac bbc

cbc cac

babd aabddabd

Note that FS′ corresponds to the CAF from Figure 4. We observe that there is only one
single argument cc in FS with claim c while FS′ yields two arguments cbc and cac with
claim c.

Attacks of FS and FS′ are constructed as follows: For each minimal set M that induces
an argument cM , cM is attacked by all claims that are not contained in upS(M). For
M = {a, c}, we have upS({a, c}) = {a, c} as there are no proper supersets of {a, c}, thus
the argument aac is attacked by all arguments having claim b or d. The set {c} on the other
hand, is contained in all non-empty sets of S except {a, b, d}, yielding upS({c}) = {a, b, c};
consequently, cc is attacked only by the unique argument dabd having claim d.

We show that each set S ∈ S is admissible in FS in case S is weakly cautiously closed
and contains ∅.

Proposition 7.18. Given a set S ⊆ 2C that is weakly cautiously closed and contain ∅,
and let FS be defined as in Construction 7.16. Then S ⊆ adc(FS).

Proof. Let S ∈ S, and let E = {cM ∈ A|M ⊆ S}. Clearly, cl(E) = S; moreover, E is
conflict-free since c ∈ upS(M ′) for each cM , c

′
M ′ ∈ E using M ′ ⊆ S ⊆ upS(M ′). It remains

to show that S defends itself. Let cN denote an argument with claim c that attacks E.
We proceed by case distinction: (i) S ⊆ upS(N) and (ii) S 6⊆ upS(N).

(i) In case S ⊆ upS(N), there is T ∈ S such that N ∪S ⊆ T since S is weakly cautiously
closed. Thus we obtain a contradiction to cN attacks E by construction of FS.

(ii) In case S 6⊆ upS(N), there is some d ∈ S such that d /∈ T for all upper sets T ⊇ N
of N in S, i.e., d /∈ upS(N). Thus, by construction of FS, all arguments with claim
d attack cN . It remains to show that E contains an argument with claim d. Again,
by construction of FS, each claim in S appears as claim of some subset S′ of S, thus
there is an argument dS′ , d ∈ S′ for some S′ ⊆ S, with claim d that attacks cN .

As cautious closure is a special case of weak cautious closure, the statement also
holds true if S is cautiously closed. The other direction does not hold as the CAF FS in
Example 7.17 demonstrates: Here, the argument dabd defends itself, thus {d} is admissible
in FS although {d} /∈ S.

Next we show a property of FS that is crucial towards expressing suitable extension-
sets under complete semantics: If S is weakly cautiously closed, then each admissible set
E in FS satisfies

⋃
cM∈EM ⊆ S for some S ∈ S.

Proposition 7.19. Given a weakly cautiously closed extension-set S ⊆ 2C , then for all
E ∈ ad(FS), there is S ∈ S such that

⋃
cM∈EM ⊆ S.

44



Proof. Consider some E ∈ ad(FS). Then cl(E) ⊆ upS(M) for each M ∈ S with cM ∈ E,
otherwise there is d ∈ cl(E) that attacks cM , contradiction to conflict-freeness of E.

We show that for all arguments cM ∈ E, for each claim d ∈M , it holds that d does not
attack E. Consider an argument cM ∈ E. We proceed by case distinction: (i) M ⊆ cl(E)
and (ii) M 6⊆ cl(E).

(i) First assume M ⊆ cl(E). As observed above, cl(E) ⊆ upS(M ′) for each argument
c′M ′ ∈ E, thus d ∈ upS(M ′) for each d ∈ M and each argument c′M ′ ∈ E. By
construction of FS, no d ∈M attacks E.

(ii) Now assume M 6⊆ cl(E). Towards a contradiction, let us assume that there is a
claim d ∈M \cl(E) that attacks E. That is, there is some argument dN with claim
d that attacks E and N ⊆ M (since d ∈ M , there is N ⊆ M such that N is a
⊆-minimal set containing d in S). Since E defends itself, there is some argument
having claim e ∈ cl(E) satisfying e /∈ upS(N) (then e attacks dN by construction of
FS). But then we obtain e /∈ upS(N) ⊆ upS(M), contradiction to cl(E) ⊆ upS(M).

We have shown that for all arguments cM ∈ E, for each claim d ∈ M , it holds that d
does not attack E. This means that for every two arguments cM , c

′
M ′ ∈ E, it holds that

M ⊆ upS(M ′). By successive application of the weak cautious closure criteria, we obtain
that there is S ∈ S with

⋃
cM∈EM ⊆ S.

Moreover, in case S furthermore satisfies unique completion, then each union of two
sets in S defends all ‘missing elements’ of its completion-set in FS.

Proposition 7.20. Given a weakly cautiously closed extension-set S ⊆ 2C that satisfies
unique completion, let S, T ∈ S and let FS be defined as in Construction 7.16. Then S∪T
defends all arguments cM that satisfy (1) c ∈ CS(S ∪T ) \ (S ∪T ) and (2) M ⊆ CS(S ∪T ).

Proof. Given S, T ∈ S and consider an argument cM with c ∈ CS(S ∪ T ) \ (S ∪ T ) and
M ⊆ CS(S ∪ T ), and let c′M ′ be and attacker of cM in FS. Consequently, c′ /∈ upS(M).
Now assume cM is not defended against the attack from c′M ′ by S ∪ T . This is the case
only if S∪T is contained in the union of all upper sets of M ′, i.e., S∪T ⊆ upS(M ′). Since
S is weakly closed, there is some set U ∈ S that contains S∪T ∪M ′; by unique completion
we may furthermore assume that CS(S ∪ T ) ⊆ U . But then we have c′ ∈ U ⊆ upS(M),
contradiction to our initial assumption c′M ′ attacks cM .

Next we show that each weakly closed extension-set S that satisfies unique completion
and contains

⋂
S is a superset of coc(F). A crucial property is that arguments that

correspond to the same minimal set (i.e., they possess the same subscript) are attacked
by the same arguments.

Proposition 7.21. Given a set S ⊆ 2C that is weakly cautiously closed, satisfies unique
completion and contains

⋂
S, and let FS be defined as in Construction 7.16. Then S ⊇

coc(FS).

Proof. Assume there is S ∈ coc(FS) such that S /∈ S. Let E be a co-realization of S in
FS, then by Proposition 7.19, there is T ∈ S such that

⋃
cM∈EM ⊆ T .

Since E is complete, we have S =
⋃
cM∈EM : Consider some argument cM ∈ E. By

design of FS, each argument dM , d ∈ M , possesses the same attacker as cM thus dM
is defended by E because cM is defended by E. It is evident that dM is not attacked
by any argument a ∈ E (otherwise, a attacks cM ); moreover, dM does not attack any
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argument c′M ′ ∈ E since in this case, E attacks dM and thus also cM , contradiction to
conflict-freeness of E. By Proposition 7.20, we have that S =

⋃
cM∈EM contains all

arguments c′M ′ with c′ ∈ CS(S) \ S and M ′ ⊆ CS(S), thus we obtain S = CS(S) and thus
S ∈ S.

Although FS possesses characteristics that are necessary for realizing admissible and
complete extension-sets, we observe that the construction is not sufficient to express all
suitable extension-sets under admissible or complete semantics, respectively:

• FS does not realize admissible extension-sets (assuming S is cautiously closed and
contains ∅): As already mentioned, constructing FS might yield additional admis-
sible claim-sets that are not contained in S (cf. Example 7.17, here, S = {da,b,d} is
admissible in FS but S /∈ S).

• FS does not realize complete extension-sets (assuming S is weakly cautiously closed,
satisfies unique completion, and contains

⋂
S): While FS might produce too many

extensions for admissible semantics, the opposite is the case for complete semantics:
Let S = {∅, {a}, {b}, {a, b, c}}, then FS = ({aa, bb, cabc}, ∅, cl) which yields coc(FS) =
{{a, b, c}}. Thus for complete extensions, the challenge lies in differentiating all
complete subsets.

First, we extend FS to capture admissible claim-sets.

Construction 7.22. Given a set S ⊆ 2C and let FS = (A,R, cl) be defined as in Con-
struction 7.16. We define Fad

S = (Aad , Rad , clad ) with

Aad = A ∪ {xdcM |cM ∈ A, d ∈M},
Rad = R ∪ {(dM ′ , xdcM ), (xdcM , x

d
cM

), (xdcM , cM )|cM ∈ A, d ∈M},

and clad (cM ) = cl(cM ) = c for all c ∈ [S] and clad (xdcM ) = xdcM otherwise.

Example 7.23. Let S = {∅, {a}, {b, c}, {a, b, c}}. First, we construct the corresponding
CAF FS that contains no attacks; additionally, we get |M | new (self-attacking) arguments
for each cM ∈ A that attack cM and are attacked by each argument having claim d ∈M .
The resulting framework is thus given as follows:

Fad
S : aa bbc cbc

xaaa xcbbcxbbbc
xccbcxbcbc

The following lemma will be useful.

Lemma 7.24. For an extension-set S, let Fad
S be defined as in Construction 7.22, and

let E ⊆ A. Then

1. if an argument cM ∈ A is defended by E then it holds that M ⊆ cl(E);

2. adc(Fad
S ) ⊆ adc(FS);

3. E ∈ ad(F ad
S ) implies cl(E) =

⋃
cM∈EM .
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Proof. (1) follows since only arguments with claim d defend cM against the attack from
xdcM for all d ∈ M . To show (2), consider a set S ∈ adc(Fad

S ) and an ad -realization E of
S in F . Then E defends itself against all attackers in A, thus S ∈ adc(FS).

For (3), let us first observe that each admissible set E ∈ ad(FS) is contained in the
union of all minimal setsM that are associated to arguments in E, i.e., cl(E) ⊆ ⋃

cM∈EM .

This follows from the fact that c ∈M for every argument cM ∈ A. Moreover, E ∈ ad(F ad
S )

implies E ∈ ad(FS) implies that cl(E) ⊆ ⋃
cM∈EM . By (1) we obtain equality since each

argument cM requires d ∈ cl(E) for all d ∈M .

Proposition 7.25. Let S be cautiously closed and contain ∅. Then S = adc(Fad
S ).

Proof. We first prove that each set S ∈ S is indeed admissible: First, in case S = ∅ we
are done since the empty set is always admissible. Now, let S ∈ S be non-empty. We
show that E = {cM ∈ A|M ⊆ S, c ∈ S} is an admissible realization of S in Fad

S . It is
easy to see that cl(E) = S. Moreover, E is conflict-free since for every two arguments
cM , c

′
M ′ ∈ E, it holds that c ∈ upS(M ′) since M ′ ⊆ S ⊆ upS(M ′). Moreover, E defends

itself: Consider some argument x ∈ A that attacks an argument cM ∈ E. In case x is of
the form xdcM , it holds that E defends itself since M ⊆ S. In case x is of the form c′M ′ for
some claim c′, we proceed analogous as in the proof of Proposition 7.18 and obtain that
E defends itself against each attack.

The other direction is by Proposition 7.19 and by Lemma 7.24: Given an admissible
set E ∈ ad(F ad

S ) we have cl(E) =
⋃
cM∈EM . By Proposition 7.19, there is some S ∈ S

that contains cl(E); since S is cautiously closed, we obtain that cl(E) ∈ S since S serves
as witness for M ∈ upS(M ′) for every sets M,M ′ ∈ S that are associated to arguments
in cM , c

′
M ′ ∈ E.

Next we show that coc(Fad
S ) = adc(Fad

S ) iff S is cautiously closed and contains ∅.

Proposition 7.26. Let S be cautiously closed and contain ∅. Then S = coc(Fad
S ).

Proof. We have shown in Lemma 7.24 that each admissible set S ∈ Fad
S is realized by

E = {cM ∈ A | M ⊆ S}. In case E defends some argument cM /∈ E, we have M 6⊆ S,
that is, there is some argument xdcM that attacks cM and is defended by d ∈ M \ S but
not by S. Thus the statement follows.

In case S is weakly cautiously closed we observe that S 6= coc(Fad
S ): On the one hand,

we have that the empty set is complete in Fad
S since each argument has an attacker;

moreover, in case the minimal completion set of S ∪ T contains additional arguments for
two sets S, T ∈ S, i.e., in case CS(S ∪T ) /∈ {∅, S ∪T}, we have that S ∪T is also complete
in Fad

S .
In order to deal with this issue, we adapt a concept from [31]. We use defense formulas

to determine which arguments are needed to defend a given claim c.

Definition 7.27. Given an extension-set S ⊆ 2C and a claim c ∈ [S], we let defS(c) =
{S ∪ T | S, T ∈ S, c ∈ CS(S ∪ T ) \ (S ∪ T )}. The DNF defense formula of c is defined as
DcS =

∨
S∈defS(c)

∧
d∈S d.

Example 7.28. We consider a set S = {{a}, {a, c}, {a, b}, {a, b, c, d}}. S is weakly cau-
tiously closed, moreover,

⋂
S∈S S = {a} is contained in S. We obtain defS(a) = defS(b) =

defS(c) = ∅ and defS(d) = {{a, b, c}}. For a, b, and c, the corresponding DNF formula
corresponds to ⊥; for d, we have DdS = (a ∧ b ∧ c).

We are ready to present the construction for complete semantics.
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Construction 7.29. Given a set S ⊆ 2C and let FS = (A,R, cl) be defined as in Con-
struction 7.16. For every argument cM ∈ A, we consider the extended DNF defense
formula DcS ∨

∧
d∈M d and denote by CDcMS the corresponding CNF formula. We define

Fco
S = (Aco , Rco , clco) as follows

Aco = A ∪ {xγcM |cM ∈ A,M 6=
⋂

S∈S
S, γ ∈ CDcMS },

Rco = R ∪ {(dM ′ , xγcM ), (xγcM , x
γ
cM

), (xγcM , cM )|cM ∈ A, d ∈ γ},

and clco(cM ) = cl(cM ) = c for all c ∈ [S] and clco(xγcM ) = xγcM otherwise.

Observe that the grounded extension is realized by arguments that are unattacked in
case it is non-empty: auxiliary arguments for an argument CM are only constructed in
case M 6= ⋂

S∈S S. In every other case, cM is attacked by argument(s) xγcM determined
by the extended attack formula. Let us consider an example.

Example 7.30. Let us consider the set S = {{a}, {a, c}, {a, b}, {a, b, c, d}} from Exam-
ple 7.28. First, when constructing FS, we generate four arguments, one for each claim:
aa, bab, cac, and dabcd. Observe that none of this arguments are attacking each other.

We proceed by generating the auxiliary arguments: For the claims a, b, and c, the
DNF defense formula is empty. The extended DNF defense formula for the arguments
aa, bab, and cac thus corresponds to the conjunction of the respective sets in the subscript:
DaS = (a), DbS = (a ∧ b) , and DcS = (a ∧ c). The corresponding CNF formulae are thus
{{a}}, {{a}, {b}}, and {{a}, {c}}, respectively. For claim d, the DNF defense formula
is given by defS(d) = {{a, b, c}}, thus the extended DNF defense formula corresponding
to the argument dabcd is given by DdS ∨

∧
x∈M x = (a ∧ b ∧ c) ∨ (a ∧ b ∧ c ∧ d). Clearly,

this formula can be simplified to the single clause (a ∧ b ∧ c). The corresponding CNF is
CDdabcdS = {{a}, {b}, {c}}.

We are ready to give the construction. Note that no auxiliary arguments are generated
for aa since {a} =

⋂
S∈S S. The resulting CAF is depicted below:

Fco
S : aa bab cac dabcd

xabab xbbab xacac xccac xadabcd xbdabcd
xcdabcd

The argument aa is unattacked and does not defend any other argument, thus {a} is the
grounded extension as desired. It can be checked that the complete claim-sets coincide
with S (e.g., aa and bab jointly defend the argument bab).

Observe that the only difference between Fad
S and Fco

S for the extension-set S is that
Fad
S would contain an additional self-attacking node xddabcd that attacks and is counter-

attacked dabcd. In Fad
S , the set {aa, bab, cac} does therefore not defend dabcd, consequently,

{a, b, c} is complete in Fad
S . In Fco

S , on the other hand, dabcd is defended by {aa, bab, cac}
in Fco

S and we obtain coc(Fco
S ) = S.

In case S is cautiously closed and
⋂
S = ∅, the construction yields a CAF identical

to Fad
S . In this sense the construction refines Construction 7.22. We note that we lose a

useful property of Fad
S : While in Fad

S , each complete set S is realized by {cM |M ⊆ S},
the extended construction might cause the defense of additional arguments cM such that
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M 6⊆ S. By Lemma 7.19, this affects only arguments cM such that c ∈ S and M ∪ S
possesses a completion-set in S (all other arguments cM with claim c ∈ S are attacked by
some arguments in {cM |M ⊆ S}).

We are ready to show our last characterization result.

Proposition 7.31. Let S be weakly cautiously closed, satisfy unique completion and con-
tain

⋂
S. Then S = coc(Fco

S ).

Proof. Consider a set S ⊆ S and let E′ = {cM ∈ A | M ⊆ S}; moreover, let E =
E′ ∪ {cM ∈ A | c ∈ S, CS(S ∪M) = 1, ∃T,U ⊆ S : c ∈ CS(T ∪U) \ (T ∪U)}. Observe that
E is conflict-free since for every two arguments cM , c

′
M ′ ∈ E we have c ∈ S ⊆ upS(M ′)

(in case M ′ /∈ S we have CS(S ∪M ′) = 1 thus the statement holds also in this case).
Next we show that E defends itself: Consider some argument x ∈ A that attacks

an argument cM ∈ E. The case x is of the form c′M ′ for some c′ ∈ [S] is analogous
to the case distinction in the proof of Proposition 7.18. In case x is of the form xγcM
and M ⊆ S, E defends itself since γ ∩M 6= ∅. In case M 6⊆ S, there are T,U ⊆ S
with c ∈ CS(T ∪ U) \ (T ∪ U); by construction of Fco

S , T ∪ U ∈ defcS, we thus obtain
γ ∩ (T ∪ U) 6= ∅. We obtain that E defends itself against all attacker.

Moreover, E contains all arguments it defends: Assume there is an argument cM ∈ A
that is not contained in E but defended by E. We show that there is γ ∈ CDcMS such that
γ ∩ S = ∅. It suffices to show that for all T ∈ defS(c), there is d ∈ T such that d /∈ S (we
note that by definition of E, we have M 6⊆ S, thus there is a claim d ∈M \ S).

First note that in case c ∈ S and there is T ∈ defS(c) with T ⊆ S we have cM ∈ E:
By assumption cM is defended by E we have (1) E does not attack cM thus S ⊆ upS(M)
and therefore CS(S ∪M) = 1 is satisfied; and (2) there are sets A,B ⊆ S with T = A∪B
that defend c.

In case c ∈ S and there is no T ∈ defS(c) with T ⊆ S we are done: In this case, there
is γ ∈ CDcMS such that γ ∩ S = ∅ and thus cM is not defended against the attack xγcM .

Let us now consider the case c /∈ S. In case there is no T ∈ defS(c) with T ⊆ S we are
done: In this case, there is γ ∈ CDcMS such that γ ∩ S = ∅ and thus cM is not defended
against the attack xγcM .

In case c /∈ S and there is T ∈ defS(c) with T ⊆ S. Thus there are sets A,B ⊆ S
with T = A ∪ B that defend c. Consequently, CS(A ∪ B) 6⊆ S contradiction to unique
completion.

For the other direction, consider a set E ∈ co(F co
S ). We show that cl(E) ∈ S. In case

E = ∅, there is no argument in E that is unattacked. By construction of Fco
S , this is the

case only if
⋂
S∈S S = ∅, i.e., if ∅ ∈ S.

Now assume E 6= ∅. It holds that E contains all arguments cM with M ⊆ cl(E) since
each such argument is defended by M . Thus there is some S ∈ S such that cl(E) ⊆ S
by Lemma 7.19. Now assume cl(E) /∈ S. In this case, T = CS(

⋃
cM∈EM) is a proper

superset of cl(E). Observe that E is not constructed from a single ⊆-minimal set M , i.e.,
E contains arguments cM , c′M ′ with M 6= M ′ (since no proper subset of such a set M is
complete). Now, by design of Fco

S , there are sets U, V ∈ S with U, V ⊆ cl(E) and there
is c ∈ T \ cl(E) such that U ∪ V defend all arguments with claim c against the attacks of
arguments of the form xγcM for an arbitrary ⊆-minimal set M ⊆ T containing c. Now, let
M ⊆ CS(U ∪ V ) be a ⊆-minimal set in S that contains c. Then cM is defended by U ∪ V
against attacks from arguments in A by Proposition 7.20 (since c ∈ CS(U ∪ V ) \ (U ∪ V )
and M ⊆ CS(U ∪ V ) is satisfied).

Consequently, E defends cM against all attacks, moreover, E ∪ {cM} is conflict-free
since M ⊆ CS(U∪V ), thus E is not complete in F co

S , contradiction to our assumption.
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Inherited naive semantics Naive semantics are often perceived as the conflict-free
counter-part of preferred semantics as they have many common characteristics. It is thus
surprising that the semantics admit several differences when considered with respect to the
claims of the arguments. The variants of naive semantics differ even on well-formed CAFs
while preferred semantics suggest that maximization on argument-level and maximization
on claim-level coincide for in this case (recall that both variants of preferred semantics
coincide on well-formed CAFs).

We recall that i-naive semantics do not satisfy I-maximality, not even on well-formed
CAFs (cf. Example 4.2). On the other hand, it is not possible to express all i-maximal
extension-sets, as we show next. Let us first observe that, for each well-formed CAF
F , the set of all (non-self-attacking) occurrences of a claim c is contained in some naive
extension in the underlying AF F .

Proposition 7.32. Let F be a well-formed CAF. Then, for each c ∈ ⋃
S∈nac(F) S there

is an extension E ∈ na(F ) such that all (non-self-attacking) a ∈ A with cl(a) = c are
contained in E.

Proof. As c ∈ ⋃
S∈nac(F) S, there is an argument with claim c that is not self-attacking

in F . As F is well-formed, the set {a ∈ A | cl(a) = c, (a, a) /∈ R} is conflict-free in F and
thus contained in some E ∈ na(F ).

Lemma 7.33. For well-formed CAFs, the set S = {{a, b}, {a, c}, {b, c}} cannot be realized

with inherited na semantics, i.e. S 6∈ Σwf
nac.

Proof. Towards a contradiction assume there is a CAF F with nac(F) = S. By Propo-
sition 7.32 there are sets Ea, Eb, Ec ∈ na(F) containing all arguments with claim a, b,
and c respectively. Let us first assume that all three sets Ea, Eb, Ec are different and
have different claim sets, i.e. cl(Ea), cl(Eb), cl(Ec) are mutually distinct. W.l.o.g. we can
assume that cl(Ea) = {a, b}, cl(Eb) = {b, c} and cl(Ec) = {a, c}. That is, (a) there is
an argument bi ∈ Ea that is not in conflict with any argument with claim a; (b) there is
cj ∈ Eb that is not in conflict with any argument with claim b; and (c) there is ak ∈ Ec
that is not in conflict with any argument with claim c. Now consider the set {ak, bi}
which is conflict-free by (a). As {a, b, c} 6∈ S the set {ak, bi} has a conflict with cj . By
(c) the conflict has to be between bi and cj . However, from (b) we have that cj is not in
conflict with bi. That is, {ak, bi, cj} ∈ cf (F) and thus {a, b, c} ∈ nac(F), a contradiction
to nac(F) = S.

The remaining cases, i.e. (i) Ea, Eb, Ec are different but two of the sets have the same
claim-set, and (ii) at least two of the sets Ea, Eb, Ec coincide, can be shown to lead to a
contradiction by similar arguments.

Although i-naive semantics are not I-maximal, it is not possible to express all extension-
sets under naive semantics, in particular, it is not possible to express each I-maximal
extension-set. This shows that the signatures of i-naive and cl-naive semantics are in-
comparable. As summarized in Table 6, i-naive semantics satisfy none of the known
principles for AF or CAF semantics. The precise characterization of naive semantics
remains an open problem.

8 Discussion

In this work, we thoroughly investigated argumentation semantics in the realm of claim-
based reasoning. Our study includes the adaption of classical concepts of abstract argu-
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mentation to claim-based semantics on the one hand, and a principle-based analysis—
complemented by expressiveness results—on the other hand.

We proposed novel semantics for CAFs by shifting classical concepts of abstract argu-
mentation semantics to claim-level. We focused on claim-set maximization of conflict-free,
admissible, and range-based semantics, yielding novel variants of naive, preferred, stage,
and semi-stable semantics. Range-based semantics in the realm of claim-based reasoning
naturally require a concept of claim-defeat that furthermore gave rise to two different
versions of stable semantics. We settled the relation between the semantics in Sections 4
and 5. We showed that for well-formed CAFs, stable and preferred variants coincide,
while naive, stage, and semi-stable variants differ. The latter highlights the fundamental
difference between claim-set maximization on claim- and on argument-level in particu-
lar for range-based semantics. Thus, claim-level semantics give an alternative view on
claim justification in the spirit of abstract argumentation semantics. They furthermore
constitute an argumentation-based formalization of conclusion-focused knowledge rep-
resentation formalisms such as logic programs (cf. Section 2 and A). By doing so, we
deepen the close connection of logic programming semantics and argumentation seman-
tics; in particular, we succeed to capture L-stable semantics with cl-semi-stable seman-
tics which is—under standard instantiation methods—impossible for Dung AFs without
claims. Thus, our claim-level semantics incorporate evaluation methods which are com-
mon to conclusion-based knowledge representation formalisms on the one hand and add
a novel perspective to argumentation semantics by putting the focus on claim acceptance
(via claim-set maximization and claim-defeat) on the other hand. With this, we hope
to broaden the argumentation semantics landscape and to increase the flexibility of the
abstract model to capture even more potential use cases.

Our principle-based analysis includes a wide range of genuine and fundamental prin-
ciples for claim-based reasoning on the one hand as well as the adaption of many well-
investigated principles lifted to claim-level on the other hand. Our results show that
well-formed CAFs retain many of the desired properties like (CF-)reinstatement and I-
maximality on claim-level. Set-theoretical principles like conflict-sensitivity and tightness
are however violated, which already indicates the higher expressiveness of (well-formed)
CAFs when compared to AFs. Our findings moreover reveal that the behavior of claim-
based semantics with respect to general CAFs is more difficult to capture by means of
existing principles; in particular inherited semantics successfully withstand traditional
analysis methods. Exceptions are those principles that require the existence of a set of
arguments with specific properties (e.g., the defense principle which requires that a set of
claims has a realization that defends itself); notable is also the justified rejection principle
which is satisfied by stable and conflict-free-based semantics also in the general case. The
difficulty indicates that the ‘right’ principles that characterize the behavior of some if the
inherited semantics when considered with respect to general CAFs have yet to be found;
we consider this as an important point on our future agenda.

Finally, our expressiveness study (in terms of signature characterization) confirms that
claim-based semantics are more expressive than their AF counterpart, already when re-
stricted to the class of well-formed CAFs. In general CAFs, the restrictions are marginal.
Indeed, almost each extension-set can be expressed by most of the semantics apart from cl-
preferred and cl-naive which are constrained by I-maximality. This property also charac-
terizes many semantics in well-formed CAFs. We have furthermore identified generalizing
properties (i.e., (weak) cautious closure and unique completion) that are characteristic for
admissible and complete semantics, respectively, and presented constructions to realize
extension-sets confirming to this properties. By doing so, we provide explicit algorithms
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to construct a (well-formed) CAF that models a desired situation. Moreover, our signa-
ture results can prove useful when considering changes in argumentation frameworks or
their underlying knowledge bases following certain constraints since expressiveness char-
acterizations are the basis for certain (im-)possibility results regarding changes of the
extensions (cf. [32]).

Related Work Principles, postulates and properties of argumentation semantics have
been considered in different facets for different (structured and abstract) argumentation
formalisms, e.g., [29, 30, 15, 44, 45, 19, 46]. Likewise, expressiveness of argumenta-
tion semantics is an important topic that has been considered for different abstract for-
malisms [31, 42]. In contrast to most of the aforementioned works which investigate
principles and expressiveness in terms of arguments, our studies focus on claim-based
semantics. While there is naturally a close correspondence if not dependence between
this two viewpoints the differences are considerable as shown in the present work. We
also want to highlight in this regard in particular the work by Amgoud, Caminada,
Gorogiannis, and Hunter [44, 45, 15] which study rationality postulates for logic-based
argumentation systems also in terms of the conclusion-based outcome. In contrast to our
analysis they focus on consistency and closure properties. In our work, claims are con-
sidered abstract in order to investigate structural properties of the claim-based outcome.

We furthermore mention results on expressiveness and principle-based investigations
for AFs with collective attacks (SETAFs): As noted in Remark 7.11, well-formed CAFs
and SETAFs are closely related [43]. On the one hand, we thus obtain an alternative
characterization of the signatures for well-formed CAFs from signature results presented
in [42]. In particular, we obtain that the respective properties coincide, i.e., set-conflict-
sensitivity coincides with cautious closure and set-com-closure is equivalent to weak cau-
tious closure and unique completion. While set-conflict-sensitivity and set-com-closure
are formalized in terms of potential conflicts our formulations are conflict-independent
and yield an alternative view on the SETAF characterizations. On the other hand, the
close relation between well-formed CAFs and SETAFs reveals interesting parallels be-
tween our principle-based analysis for well-formed CAFs and the principle-based analysis
of SETAF semantics recently conducted in [46]. Indeed, we obtain similar results regard-
ing the common principles we investigated, i.e., for conflict-freeness, defense, admissi-
biltiy, (CF-)reinstatement, cl-naivety, and I-maximality. Apart from this principles, they
put their focus on the investigation of modularization, non-interference principles, and
SCC-recursiveness utilizing the so-called reduct [47], while we conducted set-theoretical
investigations and considered genuine principles for claim-based reasoning.

Future Work As already expressed above, the principles and properties formulated
in this work capture the behavior of the considered claim-based semantics to a different
extent; in particular inherited semantics in unrestricted CAFs lack principles that char-
acterize their distinct behavior. One point on our future agenda is thus to deepen the
principle-based analysis on inherited semantics. Moreover, we plan to adapt more clas-
sical AF principles to the realm of claim-based reasoning. Although the principle-based
investigation we conducted in the present work already collects many of the classical
principles that have been considered in the literature there are a lot of other principles
left that are worth studying in the context of claims (we refer to, e.g., directionality and
non-interference principles [29, 19]).

Another interesting future work direction would be to extend our analysis to other
CAF classes as well as to further semantics. While general CAFs capture all models
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that express claim-based argumentation and include in particular all possible ways to
deviate from well-formedness, there are certain restrictions that are imposed by preference
incorporation when considering concrete formalisms and methods. As shown in [37]
typical methods for preference incorporation (cf. [36]) give rise to different CAF classes
that lie between well-formed and unrestricted CAFs. It would be interesting to investigate
the behavior of the semantics with respect to this classes. Moreover, extending our
investigations to further claim-based semantics would be also a promising endeavor. In
this regard, we consider studies on other inherited semantics based on e.g., strong or
weak admissibility [29, 48] worth investigating. Also, it would be interesting to consider
alternative adaptions of claim-level semantics. Here, a in-depth study of conclusion-based
evaluation methods in related formalisms could be be a promising starting point which
is definitely a point on our future agenda.

Apart from is endeavors, we identify the investigation of claim-based evaluation meth-
ods in the context of applied argumentation techniques (e.g., for case studies or argument
mining [9, 10, 49]) as an interesting avenue for future work.
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programming semantics and argumentation semantics, Int. J. Approx. Reasoning 58
(2015) 87–111. doi:10.1016/j.ijar.2014.12.004.
URL https://doi.org/10.1016/j.ijar.2014.12.004

[18] M. Caminada, Semi-stable semantics, in: P. E. Dunne, T. J. M. Bench-Capon (Eds.),
Proceedings of the 1st Conference on Computational Models of Argument (COMMA
2006), Vol. 144 of Frontiers in Artificial Intelligence and Applications, IOS Press,
2006, pp. 121–130.

[19] M. Caminada, W. A. Carnielli, P. E. Dunne, Semi-stable semantics, J. Log. Comput.
22 (2012) 1207–1254. doi:10.1093/logcom/exr033.

54



[20] B. Verheij, Two approaches to dialectical argumentation: admissible sets and argu-
mentation stages, in: J. J. C. Meyer, L. C. van der Gaag (Eds.), Proceedings of the
8th Dutch Conference on Artificial Intelligence (NAIC’96), 1996, pp. 357–368.

[21] P. M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation, Artif.
Intell. 171 (10-15) (2007) 642–674.

[22] M. Caminada, Comparing two unique extension semantics for formal argumentation:
ideal and eager, in: Proceedings of the 19th Belgian-Dutch Conference on Artificial
Intelligence (BNAIC 2007), 2007, pp. 81–87.

[23] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and
their semantics, in: Handbook of Formal Argumentation, College Publications, 2018,
Ch. 4, pp. 159–236.

[24] J. F. Horty, Skepticism and floating conclusions, Artif. Intell. 135 (1-2) (2002) 55–72.
doi:10.1016/S0004-3702(01)00160-6.
URL https://doi.org/10.1016/S0004-3702(01)00160-6

[25] M. Beirlaen, J. Heyninck, C. Straßer, Reasoning by cases in structured argumen-
tation, in: A. Seffah, B. Penzenstadler, C. Alves, X. Peng (Eds.), Proceedings of
the Symposium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7,
2017, ACM, 2017, pp. 989–994. doi:10.1145/3019612.3019716.
URL https://doi.org/10.1145/3019612.3019716

[26] P. Baroni, R. Riveret, Enhancing statement evaluation in argumentation via multi-
labelling systems, J. Artif. Intell. Res. 66 (2019) 793–860. doi:10.1613/jair.1.

11428.
URL https://doi.org/10.1613/jair.1.11428
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A On the relation between CAFs and Logic Programs

Logic Programs in a Nutshell We consider normal logic programs (LPs) [50] with
default negation not . Such programs consist of rules r of the form

r : c← a1, . . . , an, not b1, . . . ,not bm

where 0 ≤ n,m and the ai, bi and c are ordinary atoms. We let head(r) = c, pos(r) =
{a1, . . . , an} and neg(r) = {b1, . . . , bm}; L(P ) is the set of all atoms occurring in P .

We introduce 3-valued model semantics following [51] which generalize stable model
semantics [52] by allowing for undefined atoms.

Definition A.1. A 3-valued Herbrand interpretation I of an LP P is a tuple I=(T, F )
with T ∪F ⊆ L(P ) and T ∩F =∅. We say a ∈ L(P ) is true iff a ∈ T , false iff a ∈ F and
undefined otherwise.

Given a program P with Herbrand interpretation I = (T, F ) we define the reduct P/I
of P w.r.t. I as follows: Starting from P ,

(i) remove each rule r from P with T ∩ neg(r) 6= ∅,

(ii) remove “not b” from each remaining rule whenever b ∈ F , and

(iii) for each a /∈ T ∪ F , replace each occurrence of “not a” by u.

Given two Herbrand interpretations I = (T, F ) and I ′ = (T ′, F ′), we write I ≤ I ′ iff
T ⊆ T ′ and F ⊇ F ′. A Herbrand interpretation I = (T, F ) is a 3-valued model of a
program P iff I is a ≤-minimal model of P/I satisfying, for all atoms a ∈ L(P ),

(a) a ∈ T iff there is a rule r ∈ P/I with a = head(r) and pos(r) ⊆ T , and

(b) a ∈ F iff for each rule r ∈ P/I with a = head(r) we have pos(r) ∩ F 6= ∅.

As P/I is a positive program, such a model exists and is unique. We are now ready to
define:

Definition A.2. A 3-valued interpretation I=(T, F ) of P is

• partially stable (p-stable) if I is a 3-valued model of P/I;

• well-founded if I is p-stable with ⊆-minimal T ;

• regular if I is p-stable with ⊆-maximal T ;

• stable if I is p-stable and T ∪ F = L(P );

• L-stable if I is p-stable and T ∪ F is ⊆-maximal among all p-stable models of P .

Given two rules r and s with head(s) ∈ body(r), we apply rule-chaining to obtain the
rule r′ by replacing the atom head(s) with body(s), i.e., r′ is a rule with head(r′) = head(r)
and body(r′) = (body(r) \ head(s)) ∪ body(s). A rule r is called atomic if pos(r) = ∅. A
program P is called atomic iff each rule in P is atomic.

Definition A.3. Let P be a logic program. An atom a in P is called reachable in P iff
it is possible to construct an atomic rule r from rules in P by successive rule-chaining
with head(r) = a. Atom a is called unreachable in P iff a is not reachable in P .
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Each acceptable (w.r.t. 3-valued model semantics) atom is reachable.

Proposition A.4. Let P be a logic program. It holds that all atoms in T of a 3-valued
model I = (T, F ) of P are reachable in P .

Proof. Let I = (T, F ) denote a 3-valued model of P and let U denote the set of unreach-
able atoms in P . We show that there is a 3-valued model I ′ = (T ′, F ) of P with T ′ ⊆ T
and T ′ ∩ U = ∅. Since I ′ ≤ I, it follows that I ′ = I and thus T contains no unreachable
atoms. We construct I via fixed point iteration:

I0 = (T 0, F ) = (T \ U,F )

In+1 = (Tn+1, F ) = ({a ∈ Tn | @r ∈ P/I : (a = head(r) ∧ pos(r) ⊆ Tn)}

Starting with the set of unreachable atoms in P , we remove in each step atoms from T
which require atoms outside of T to satisfy condition (a); one could say, we shrink T until
we reach a state in which all atoms in T are reachable within T . The procedure has a
fixed point (worst case we remove all atoms from T ) and is thus guaranteed to terminate.
We denote this fixed point by I ′ = (T ′, F ).

We show that I ′ is a 3-valued model of P . First observe that I ′ satisfies condition (b)
since (b) is satisfied by I and since the fixed point iteration did not change atoms that
are set to false in I. Moreover, I ′ satisfies condition (a):

(⇒): Consider an atom a ∈ T ′. That is, a is reachable in P with atoms from T .
By construction, there is a rule r in the reduct P/I with head(r) = a and pos(r) ⊆ T ′,
consequently the condition is satisfied.

(⇐): Consider an atom a ∈ L(P ) such that there is a rule r ∈ P/I with a = head(r)
and pos(r) ⊆ T ′. Since pos(r) ⊆ T ′ ⊆ T it holds that a ∈ T (by assumption I is a
3-valued model of P ); consequently, a ∈ T ′ as required.

Thus I ′ satisfies (a) and (b), moreover, we have I ′ ≤ I by construction. It follows
that I ′ = I and thus T contains no unreachable atoms.

Being reachable is a necessary but not a sufficient criteria for an atom a to appear in a
p-stable model of a given program P (consider for example the program P = {a← not a.},
then the atom a is reachable but not contained in a p-stable model of P ).

Next we show that unreachable atoms are always false.

Proposition A.5. Let P be a logic program and let a denote an atom which is unreachable
in P . For all 3-valued models I = (T, F ) of P , it holds that a ∈ F .

Proof. Consider an unreachable atom a ∈ L(P ) and a 3-valued Herbrand interpretation
I = (T, F ) with a /∈ F . By Proposition A.4, it holds that a /∈ T . Then I ′ = (T, F ∪ {a})
is a Herbrand interpretation satisfying conditions (a) and (b) in the reduct P/I for all
atoms a ∈ L(P ), moreover, it holds that I ′ < I. Thus I is not a 3-valued model of P .

Definition A.6. Let P be a logic program. Set P 0 = P and let

P i+1 = {head(s)← (body(s) \ {head(r)}) ∪ body(r) | r, s ∈ P i, head(r) ∈ body(s)}
∪ {r ∈ P i | r is atomic in P i}.

By P∞ we denote the fixed point of this procedure, i.e., P∞ = P i = P i+1 for some large
enough i ∈ N.

We prove a result that is considered folklore: rule-chaining is a syntactic operation
that does not change the semantics of a program.
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Proposition A.7. Let P be a logic program. I = (T, F ) denote a 3-valued model of P
iff I is a 3-valued model of P∞.

Proof. First, we note that the addition of a rule s′ which is obtained by replacing the
atom head(r) ∈ body(s) with body(r) for given rules r, s ∈ P does not affect the semantics.
That is,

(1) I = (T, F ) is a 3-valued model of P iff I is a 3-valued model of P ′ = P ∪{head(s)←
(body(s) \ {head(r)}) ∪ body(r)} for rules r, s ∈ P .

Proof of (1). Consider rules r, s ∈ P with p = head(r) and p ∈ body(s). Let s′ denote
the rule head(s) ← (body(s) \ {p}) ∪ body(r) and let head(s) = head(s′) = a. First, we
observe that P/I ⊆ P ′/I (since P ′ properly extends P by rule s′) for any model I of P
and P ′.

First, consider a 3-valued model I = (T, F ) of P . Note that conditions (a) and (b)
are satisfied in P ′/I for each atom b 6= a. It thus suffices to check the conditions for atom
a. In case a ∈ T , there is a rule t ∈ P/I with head(t) = a and pos(t) ⊆ T . Since P ′/I
is a superset of P/I, it holds that t ∈ P ′/I. Now assume a ∈ F and let us assume that
(a modified version of) s′ is contained in P ′/I (otherwise, we are done as P ′/I = P/I
in this case). Let s′′ denote the modified version. It holds that s′′ ∈ P/I. Since a ∈ F
we have pos(s′′) ∩ F 6= ∅. In case there is some b ∈ pos(s′′) ∩ F different from p (i.e.,
b 6= p = head(r)), we are done: in this case, b ∈ pos(s′). Now assume that p ∈ pos(s′′)∩F
is the unique atom contained in the intersection. But then pos(r) ∩ F 6= ∅ since p ∈ F .
Consequently, we obtain that pos(s′) ∩ F 6= ∅.

For the other direction, let us assume that I is a 3-valued model of P ′/I. Again,
conditions (a) and (b) are satisfied in P/I for each atom b 6= a. Let us now consider the
atom a. In case a ∈ T , there is a rule t ∈ P ′/I with head(t) = a and pos(t) ⊆ T . In case
t 6= s′′ for s′′ being the modified version of s′ in the reduct P ′/I we are done because then
it holds that t ∈ P/I as well. In case t = s′′ for s′′ being the modified version of s′ in the
reduct P ′/I, it holds that (the modified version of) s serves as witness for a ∈ T in P/I:
indeed, we have head(s) = a and pos(s) ⊆ pos(s′) ⊆ T . Now assume a ∈ F . That is, for
each rule t ∈ P ′/I with head(t) = a we have pos(t)∩F 6= ∅. From P/I ⊆ P ′/I we obtain
that condition (b) is satisfied in P/I as well. ♦

Next, we show that replacing an atom p ∈ body(s) with the body of each rule ri with
head(ri) = p (thus generating a new rule si for each such rule ri) also allows for deletion
of the rule s.

(2) Given s ∈ P with p ∈ body(s), and let R = {r1, . . . , rm} ⊆ P denote the set of rules
with rule head p. For each i ≤ m, we let si denote the rule obtained from replacing p
in body(s) with body(ri), i.e., si is of the form head(s)← (body(s) \ {p})∪ body(ri).
It holds that I = (T, F ) is a 3-valued model of P iff I is a 3-valued model of
P ′ = (P \ {s}) ∪ {s1, . . . , sm}.

Proof of (2). From (1) we know that the addition of rules s1, . . . , sm to P does not affect
the semantics. Let P ∗ = P ∪ {s1, . . . , sm}. Then I is a 3-valued model of P iff I is a
3-valued model of P ∗. The programs P ′ and P ∗ differ in exactly one rule, namely rule s.
Let head(s) = a. We show that the deletion of s preserves 3-valued models. Similar as
in (1), it suffices to discuss conditions (a) and (b) for atom a.

First, assume I = (T, F ) is a 3-valued model of P (and thus of P ∗). Observe that
P ′/I ⊆ P ∗/I (in case T ∩ neg(s) = ∅ we have P ′/I = P ∗/I). Let a ∈ T . Then there is a
rule t ∈ P ∗/I with head(t) = a and pos(t) ⊆ T . Again, we are done in case t 6= s because
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then t ∈ P ′/I holds. Now assume t = s. Then pos(s) ⊆ T and (a modified version of) s is
contained in the reduct P ∗. That is, neg(s) ∩ T 6= ∅. From pos(s) ⊆ T we obtain p ∈ T .
Thus there is a rule r′i ∈ P ∗/I with head(r′i) = p and pos(r′i) ⊆ T where r′i is a modified
version of rule ri ∈ P ∗ with head p. Thus there is a rule s′i ∈ P ′/I with head(s′i) = a and
pos(s′i) ⊆ T which corresponds to the rule si ∈ P ′ obtained by replacing p ∈ body(s) by
body(ri). Consequently, condition (a) is satisfied. In case a ∈ F it holds that condition
(b) is satisfied in P ′/I because P ′/I ⊆ P ∗/I.

For the other direction, assume I = (T, F ) is a model of P ′. Similar as above, in
case a ∈ T we obtain that condition (a) is satisfied in P ∗/I because P ′/I ⊆ P ∗/I. Now
assume a ∈ F . That is, each rule t with head(t) = a satisfies pos(t) ∩ F 6= ∅. We
show that the modified version s′ of s in P ∗/I satisfies the condition as well. Each s′i
(where s′i being the modified version of si in the reduct P ′/I) satisfies condition (b). In
case there is b ∈ pos(s′i) with b /∈ pos(ri) for some i ≤ m we are done. In this case,
b ∈ pos(s′). Otherwise, it holds that for all rules r′i ∈ P ′/I with head(r′i) = p there
is some c ∈ pos(r′i) ∩ F . As r′i ∈ P ′/I iff r′i ∈ P ∗/I we obtain p ∈ F . Consequently,
pos(s′) ∩ F 6= ∅ and we obtain that condition (b) is satisfied. ♦

Given P i we obtain P i+1 as follows: for each rule s ∈ P i, for each p ∈ pos(s), we
replace s with the set of rules obtained by replacing p with the body of all rules in P i

with head p. In case s is atomic we add it to P i+1. As shown in (2), replacing rules does
not change the 3-valued models of a program.

Reachability can be alternatively defined via P∞: An atom a is reachable if there
exists an atomic rule r ∈ P∞ with head(r) = a. We note that the rules in P∞ which are
not atomic can be deleted without changing the semantics in case each atom in P∞ is
reachable. Intuitively, such rules do not carry any additional information which has not
been incorporated yet. Recall that unreachable atoms are set to false. We thus obtain
the following result.

Proposition A.8. For each logic program P with unreachable atoms U ⊆ L(P ), there
exists an atomic program P ′ such that I ′ = (T, F ) is a 3-valued model of P ′ iff I =
(T, F ∪ U) is a 3-valued model of P .

Logic Programs and CAFs We recall the translation from LPs into AFs following
the translation given in [17].

Definition A.9. For an LP P , A is an argument (in P ) with

• Conc(A) = c,

• Rules(A) =
⋃
i≤nRules(Ai) ∪ {r}, and

• Vul(A) =
⋃
i≤nVul(Ai) ∪ {b1, . . . , bm}

iff there are arguments A1, . . . , An (in P ) and a rule r ∈ P with r = c← Conc(A1), . . . ,Conc(An),
not b1, . . . ,not bm, and r /∈ Rules(Ai) for all i ≤ n. The rule r is called the toprule of
A.

Given two arguments A and B, we say A attacks B if Conc(A) ∈ Vul(B). The
corresponding AF is denoted by FP = (AP , RP ).

By defining the atom in the head of the respective rules to be the claims of the
arguments, we obtain a CAF instantiation as follows:

62



Definition A.10. For an LP P , let FP = (AP , RP ) denote the AF obtained from Defi-
nition A.9. We obtain an associated CAF FP = (FP , clP ) by setting clP (A) = Conc(A)
for each A ∈ AP .

In [16, 17], a correspondence between LPs and their associated AF has been estab-
lished via appropriate mappings that assign each argument each conclusion. Having
incorporated this step in our formalism, we obtain the correspondence between CAFs
and LP in a more direct fashion.

Proposition A.11. Let P be a logic program and I = (T, F ) be a 3-valued interpretation.
I is P -stable iff T ∈ coc(FP ); well-founded iff T ∈ gr c(FP ); regular iff T ∈ pr c(FP );
stable iff T ∈ stbc(FP ).

As discussed in Section 2, L-stable semantics cannot be captured via established AF
semantics that operate exclusively on argument-level. Having formally defined our claim-
sensitive version of semi-stable semantics, we have successfully identified a semantics for
CAFs that matches L-stable model semantics, as the following result demonstrates.

Proposition A.12. Let P be a logic program, FP the associated CAF, and I = (T, F )
be a 3-valued interpretation. Then I is L-stable in P iff T ∈ cl -ss(FP ).

Proof. By Proposition A.5, it suffices to consider logic programs without unreachable
atoms: indeed, if atom a is unreachable, then we have that a ∈ F for each model I =
(T, F ). Removing unreachable atoms therefore does not change ⊆-maximality of T ∪ F .

Consider a logic program P without unreachable atoms. Notice that the corresponding
CAF FP contains (at least) one argument for each atom in P . By Proposition A.11, we
have T ∈ co(FP ) iff I = (T, F ) is p-stable in P . We obtain the correspondence of L-
stable semantics with cl-semi-stable semantics by observing that defeated claims (in FP )
correspond to (reachable) atoms that are set so false (in P ).

By Proposition A.7, we obtain that moving from P to P∞ does not change the
semantics of P , i.e., I is a 3-valued model of P iff I is a 3-valued model of P∞. It thus
suffices to show F = T ∗FP

for all p-stable models I = (T, F ) of P∞. By assumption
each atom is reachable we observe that each rule in P∞ is atomic. As each atomic
rule induces exactly one argument, there is a one-to-one correspondence between the
arguments constructed from P and the rules in P∞.

Let I = (T, F ) denote a 3-valued model of P .
First, we show that all arguments in the corresponding CAF FP with claims in F are

attacked by T . Consider some p ∈ F and let r denote a rule of P∞ with head(r) = p.
The rule r is of the form p ← not b1, . . . ,not bm. Since p ∈ F and since pos(r) = ∅ it
holds that T ∩ neg(r) 6= ∅. By definition of an argument in FP , each b ∈ neg(r) is a
vulnerability of A, i.e., b ∈ Vul(A). By definition of the attack relation, it holds that
each argument with claim b attacks A.

For the other direction, consider some claim p that is attacked by T in FP . That is,
for each argument A with claim p, it holds that Vul(A) ∩ T 6= ∅. Thus for each rule r
with head(r) = p, it holds that T ∩neg(r) 6= ∅. Consequently, P∞ does not contain rules
with head p. It follows that p ∈ F .
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