DBAI-TR-2012-76*
UMAP: A Universal Layer for
Schema Mapping Languages

Florin Chertes and Ingo Feinerer

Technische Universitdt Wien, Vienna, Austria
Institut fiir Informationssysteme
FlorinChertes@acm.org Ingo.Feinerer@tuwien.ac.at

Abstract. Schema mappings are fundamental notions in data exchange
and integration for relating source and target schemas. Visual mapping
languages provide graphical means to visually describe such transforma-
tions. There is a plethora of tools and languages available however all
use different notions and visualizations and are hardly extensible.

In this paper we propose a new universal layer for schema mapping lan-
guages which provides a unified abstraction and middleware for high-
level visual mapping languages. We use only standardized UML and OcCL
artifacts which allow for easy code generation in a number of target
languages (e.g. XML, Java, or C++ code) and for a modular extension
mechanism to support complex schema mappings (like second-order de-
pendencies). We illustrate our layer by translating key elements of Clip,
a recent visual mapping language more expressive than the well-known
IBM Clio mapping tool.

1 Introduction

Schema mappings are central notions both in data exchange and data integra-
tion. They provide a precise formalism for modeling and describing the process
of transforming source instances to target instances of a database in an infor-
mation exchange scenario. The most common formalism for expressing schema
mappings are logical formulae, typically in first-order or second-order logic [6].
The use of logics allows for exact definitions of the syntax and semantics of
schema mappings contributing to the success of data exchange in theoretical
research during the last decade [8].

Similarly, schema mappings have been of tremendous importance in indus-
trial data exchange applications, e.g., in the well-known IBM Clio mapping
tool [12,7]. However, in an industrial context visual languages for modeling
schema mappings have gained increasing importance over the last years. Visual
languages hide logical formalisms behind graphical notations and allow users
without deep technical and mathematical background to perform data exchange.

* Version 2

One of the most influential approaches along this line is Clip [13], a visual lan-
guage for explicit schema mappings. Clip defines a set of custom language el-
ements modeling source-to-target and hierarchical schema mappings. Clip and
similar visual language formalism have their merits for high-level modeling by
providing appropriate visual elements for the most common mappings.

Nonetheless, we observe a number of drawbacks. First, there is no unified for-
malism nor standard for the actual elements of such a visual mapping language:
supported elements depend on the concrete schema mappings supported by the
tool, and each visual language uses different visualizations for its elements. Sec-
ond, when automatically generating code from schema mappings, various tools
(IBM Clio, Altova MapForce, Stylus Studio, etc.) differ significantly in the num-
ber of target languages and the concrete implementation of the rules. Finally,
there is a lack of easy extension mechanisms that allow the user to model addi-
tional types of schema mappings, e.g., for second-order dependencies, or map-
pings in the non-relational case. Consequently, these challenging tasks need to
be addressed to foster the applicability of visual languages for schema mapping
design in industry.

In this paper we propose a new unifying layer for visual schema mapping lan-
guages based on standardized UML class diagrams [10] and OCL constraints [11].
This layer is intended as a middleware underlying high-level visual languages like
Clip or schema mapping toolkits like Clio but can also be used directly to visu-
ally design, model, and maintain schema mappings. By using only standardized
and well-understood artifacts (basic features of UML class diagrams and selected
OCL constraints) from the UML modeling language we obtain a precise syntax
and semantics for our layer which can be translated back to logics [3, 2]. Most ex-
isting UML toolkits support the generation of code from class diagrams which we
use for implementing our schema mappings in various target languages. Finally,
our approach is modular and allows easy extension of new schema mappings and
targets for code generation.

Our main contributions are:

— A theoretical presentation of our layer underlined by a translation of the
core Clip language elements to our UML-based formalism, demonstrating the
translation of source-to-target mappings to UML class diagrams augmented
with OCL-constraints. These constraints correspond to Select-Project-Join
constructs of SQL and can thus be efficiently implemented.

— The handling of more complex transformations like joins with grouping in
the context of nested schema mappings for tree-like data structures (e.g.,
necessary for XML data sources) in our proposed formalism. These transfor-
mations are characterized by more involved restructuring operations to map
the source schema to the target schema.

— A proposal on modeling advanced schema mappings like second-order depen-
dencies in our framework, emphasizing its modular extension mechanism.

The paper is structured as follows. Section 2 defines basic notions and pre-
liminaries. Section 3 presents the UMAP layer and a translation of basic core
features of Clip to UMAP with a special focus on source-to-target dependencies.

Section 4 covers nested mappings with groups and joins whereas Section 5 deals
with advanced topics like second-order dependencies and target dependencies.
Section 6 concludes.

2 Preliminaries

Schemas and instances. A schema R = {Ry,...,R,} is a set of relation
symbols R; each of a fixed arity. An instance I over a schema R consists of
a relation for each relation symbol in R, s.t. both have the same arity. For a
relation symbol R, we write R to denote the relation of R in I. We only consider
finite instances here.

Schema mappings. Let S = {S1,...,5,} and T = {T1,...,T;»} be schemas
with no relation symbols in common. A schema mapping is given by a triple
M = (S, T, Y) where S is the source schema, T is the target schema, and X' is
a set of logical formulae called dependencies expressing the relationship between
S and T.

Instances over S (resp. T) are called source (resp. target) instances. We write
(S, T) to denote the schema {S1,...,S,,T1,...,Tn}. If I is a source instance
and J a target instance, then (I, J) is an instance of the schema (S, T).

Given a (ground) source instance I, a target instance J is called a solution
for I under M if (I, J) = X. The set of all solutions for I under M is denoted
by Sol(I, M).

Dependencies. Source-to-target tuple generating dependencies (s-t tgd) are logi-
cal formulae of the form Va(¢(x) — Jyyp(x,y)). We write x for a tuple (x1, ..., zy,).
However, by slight abuse of notation, we also refer to the set {z1,...,2,} as .
Hence, we may use expressions like z; € or x C X, etc.

Equality-generating dependencies (egds) are of the form Va (¢p(x) — z; = z;)
with z;,z; € .

A second-order tuple generating dependency (SO tgd) is a logical formula of
the form If((Ve1(d1 — Y1) A+ A (Ve (dp, — ¥y))) where (1) each member
of f is a function symbol, (2) each ¢; is a conjunction of atomic formulas of the
form S(y1,...,yx) (with S € S and y; € x;), and equalities of the form ¢ = ¢/
(with ¢ and ¢ terms based on x; and f), (3) each v; is a conjunction of atomic
formulas of the form T'(¢y,...,ty) (with T € T where t1, ..., t; are terms based
on x; and f), and (4) each variable in &; appears in some atomic formula of ¢;.

Clip. Clip is a mapping language for relational and XML schemas. Schema ele-
ments are visually connected from source to target by lines interpreted as map-
pings. Both structural mappings and simple value mappings are supported. The
combination of value and structural mappings in Clip yields expressive language
elements extending those from Clio [12,7], one of the most prominent schema
mapping tools developed by IBM Almaden Research Center and the University
of Toronto, and gives users fine-grained control over generated transformations.
Mappings are compiled into queries that transform the source instances into
target instances. The main Clip language elements [13, Fig. 2] are as follows.

— Value nodes represent attributes and text. For example value: int, value:
String or @pid: int in Fig. 3.

— Single elements consist of a value node and have a name. Examples are
pname, ename and sal in Fig. 3.

— Multiple elements represent sets of elements. E.g. Proj/0..*] from Fig. 3.

— Value mappings are thin arrows with open ends. They are used to map values
from source to target. E.g. in Fig. 3 the arrow connecting ename with name.

— Builders or object mappings are thick arrows with closed ends connecting
elements. Examples are the four bold arrows in Fig. 3.

— Build nodes have at least one incoming builder and at most one outgoing
builder and express a filtering condition in terms of the variables in the
builders or enforce a hierarchy of builders if connected by context arcs.

— Grouping nodes are a special kind of build nodes used for grouping on at-
tributes. Fig. 9 gives an example.

— Context propagation trees are trees with build nodes and context arcs. E.g.
the arrow connecting the two build nodes in Fig. 3.

3 UMAP Layer and Translation of Clip Core Features

The UMAP layer abstracts source and target schemas as UML class diagrams.
We assume both source and target as XML schemas (since relational schemas
can be converted into XML schemas). The schemas represent trees consisting
of nodes, attributes and sets of nodes. Individual schema elements, i.e. nodes,
are modeled as classes, and attributes in the XML schema become attributes in
the corresponding UML class. Sets of elements are modeled as generic container
classes encapsulating the underlying class. The actual mappings between source
and target schemas are done by associations augmented by association classes.
We use OCL to specify constraints (post conditions and invariants) on the as-
sociations, association classes, and methods in association classes, to ensure the
desired semantics of the mapping.

It follows a detailed presentation of the UMAP layer exemplified by a trans-
lation of the core features of the Clip language. We map each Clip artifact to
a UML/OcL artifact of the UMAP layer. The Clip value nodes and single ele-
ments are translated by class attributes grouped semantically in a class. The
Clip multiple elements are modeled in UML as generic container classes (sets of
elements). The value mappings are modeled in UML with the help of an asso-
ciation class linking source to target. A class function named map implements
the mapping. The definition of the mappings is achieved through OCL expres-
sions which include also the filtering conditions. The builders or object mappings
are modeled in UML also with the help of an association class linking source to
target. A class function named build implements the iterator defined by OcL
expressions. The associations between association classes model the hierarchy of
builders. The context propagation tree is achieved with the help of the hierarchies
of association classes and associations between them. Each iterator modeled by
a class function named build from one level of the hierarchy triggers a class

function named map from a lower level in this hierarchy which maps source
to target values. The class function named map from that level triggers one or
more class functions named build from a lower level of the induced hierarchy of
functions. As a general characteristic of the translation from Clip to UML the
translations of the Clip value mappings and builders are associations classes us-
ing functions named map or build. Successive alternations of these two functions
correspond to the Clip feature of a context propagation tree. Joins and grouping
nodes are modeled with the help of the OCL expressions defining class functions
and attributes.

A simple mapping. A simple Clip mapping is presented in Fig. 1 (adapted

source target
| dept{1.."] department[1..*]

aname l:\[proiecl[o..“]

Ovalue: String) @name : String

Proj[0..*]
—EH employee[0..*]

id:int
O@pidin to @name : String
E pname
$r.sal.value > 11000
O value: String

—\:” regEmp[0.."]

O @pid:int

$r.ename.value

ename
O value: String
sal

QO value: String

Fig. 1. A simple Clip mapping (adapted from [13, Fig. 3])

from [13, Fig. 3]): an employee is created for each regEmp whose salary is greater
than 71000. For each employee the name is also copied from source to target.
In [13] is explained that this mapping is expressible in Clio. The authors mention
further that this mapping is under specified: there is no indication how to map
the dept from the source to department in the target. Using the notion of wuni-
versal solution [6] the authors explain that there are at least two such solutions:
an universal solution with a generic department for each mapped employee or
an universal solution with a single generic department for all mapped employees.
By adopting the principle of minimum-cadinality, the authors prefer the later
solution. For clarity we present the mapping of the source set regEmp/0.. *] to the
target set employeef0..*] without the source dept and the target department to
which they belong. Thus we represent only the essential part of Fig. 3 from [13]
using a class diagram in Fig. 2.

The Uml structure. The UML class diagram presents the structure and the
OcCL expressions define the operations used to map the source to the target.

olass System

Builder

+ Builder)
+ ~Builden)
regEmpSet + bulld(regEmpSets) employeedet const [quend

employeeSat

- m_tegEmps sstd:vector<regEmps [1.7]

: - m_employess :stdvectorzemployes
regEmpSet]) 1
T | L
pushBaskEmplregEmpa) wvoid

~emplopes Set()
pushBackEmployee(employesd) waid
virite0) weid {quend

getRegEmpSet) :std:vectorsiegEmp> cansid {quent
read) weid

PErr—
FEE—

‘aluehtap

-m_tegEmps -

! + Valuehiapd -m_employees o
+ wlizlueifza)
+ map(regEmp&) :employes const [quend employee
- ename sstdusting T
- sal int 1 - name custd:sting
I
1

regEmp

- age cint

o]

~employeel)

sethame(:std:stringZ) woid
gettamer) stdssting consté {quend)

regEmp0

regEmpiistd:stringé, int. int)
~gEna)

getSal) sintfquend

getlamel) stdustings fquend
gettiged) sintiquen}

o+t

e

Fig. 2. The class diagram with a simple mapping corresponding to Fig. 1

There are two classes on the source side: a class of type regEmpSet and a class
of type regEmp connected with the previous by aggregation with cardinality
1..* The class regEmp contains two attributes: ename of type string and sal
of type int. On the target side there are two classes: employeeSet and employee
connected by aggregation with the same cardinality as the previous aggregation
from the source side. The class regEmpSet from the source is connected to the
class employeeSet from the target by an association class: Builder. In the same
way the class regEmp from the source is connected to the class employee from the
target by an association class: ValueMap. Between these two association classes
there is an association which helps the class Builder to access the functionality
of the class ValueMap. The Builder association class iterates through the source
set using the function build. In each iteration by the help of the association
class ValueMap each regEmp is mapped to a employee using the function map.
These both functions, Builder::build and ValueMap::map are defined by OcCL
post-condition expressions.

Translating wvalue nodes, single elements and multiple elements. The
previously named classes translate the Clip structure to UML. Both Set classes:
regEmpSet and employeeSet, represent the multiple nodes in Clip language:
regEmp[0..*] and employee [0..*]. The other two classes regEmp and employee
put together all value nodes and single elements that structurally belong to the
multiple elements such as regEmp[0..*] and employee [0..%].

Translating value mappings and builders. The semantic of Clip value map-
pings and builders is achieved in the UML translation through artifacts of the
class diagram and the OCL expressions. We use in the class diagram the as-
sociation class ValueMap that connects the source type regEmp to the target
type employee. In the UML translation of Clip value mapping, the generation
of the target object from the source object is done by the help of the function
ValueMap::map. This mapping function is defined in OCL as follows:

context ValueMap: :map (rEmp: regEmp): employee
post: result = e: employee and e.name = rEmp.ename

In OcL [11, Section 7.6.2] it is mentioned that an operation could be defined
by a postcondition. The object that is returned by the operation can be referred
to by the keyword result. In our case the target to source mapping is defined
by the equality of the names. Other mapped attributes could be here similarly
detailed if necessary.

In the UML translation of Clip builder, the generation of the target set from
the source set is achieved by the use of the function Builder::build. This func-
tion iterates over the set regEmpSet generating the set employeeSet and by this
models the Clip builder. This mapping function is defined in OCL as follows:

context Builder::build(rEmpSet: regEmpSet): employeeSet
post: result = rEmpSet.m_regEmps->select(r | r.getSal() > 11000)
->collect(r: regEmp | ValueMap.map(r): emplyee)

The mapping definition starts from the source set regEmpSet and selects only
those objects from the source that have a salary greater as 11000 creating a set.
In the next step we obtain another set of type employeeSet from this set. This is
done by the use of the function collect that applies to each object of type regEmp
the function ValueMap::map. The result is an object of type employee. Further
the function collect inserts all this newly created objects in a set which is the
return value of the function Builder::build. The class Builder is the translation
of the Clip builder because it iterates on the source set, it selects the nodes to be
mapped to the target by the help of the OCL select function and then it creates
a totally different set using the collect function. The function collect uses the
association to the class ValueMap to effectively map each object from the source
to the target. The class ValueMap translates the Clip value mappings.

Context propagation. Consider the Clip mapping with context propagation
shown in Fig. 3. For each dept from the source a department in the target
is created and for each regEmp of a dept an employee of a department. The
mapped regEmps are only those with a salary greater than 11000. The mapping
is performed with the help of two builders, each with a build node and a context
arc connecting the build nodes. The builder started from dept acts as an outer
iterator on the builder started from regEmp, an inner iterator. This has the effect
that all regEmps of each distinguished dept from the source are mapped as the
employees of the corresponding department in the target. If the context arc is
omitted in Clip then all the employees are connected to each of the departments.

source

L]

dept[1 ,,*)——VD\>

dname

O @pid:int

Ovalue: String

_D| Praj[0..*]

O @pit

regEmp[0.."]

target

Ant

pname
r.sal.value > 1100)

O value: String

ename

O value: String
sal

O value: int

‘ department[1.."]

I:H project[0..*]

LO @name : String
employee[0..*]

_LO @name : String

Fig. 3. A Clip mapping with context propagation (adapted from [13, Fig. 4])

class System 7

ey deptBuilder departamentSet
m_depts :istd:vector<depts + deptBuilden) m_depataments :std:vectorsdepartaments
+ 0
+ deptSet) + buildideptSets) :depattamentSet const {quend + depatamentSet)
+ ndepiSet() + iepadamentSet)
+ getDeptSel) :stdvectorsdept> onsté [quend ! + pushBadkDepartamentidepartament®) woid
+ resdXML(wvoid + writeq) tvoid fquens}
+ pushBackDepi(deptd) avoid
- —m_departaments{/ 0.7
-m_depts \b a depthsp
departamert
dept + depthap(
- dname ::stdisting + ndeptifzo]) m_employeeSet employeeSet
L renEnagat e + mapidepté) :depatament const {quend
- ‘ J + depatament)
+ ~depaitament])
+ deptn) L N .
setEmployoeeSet(zmployeeSets) void
Dl std Srng s + urite(rstd ofstreama) nwaid {queng
+ et
-m_reqEmpsat /21 Builder "“fe'“"'”’“se'i/o.A
regEmpSet + Builder employes Sat
+ nBuilder)
- m_regEmps ::std:vector<regEmps [1.7 E 5
—regEmp gEmp= [1.7] + build(regEmpSets) remployeeSet const fquen] m_emplayess stdvestorsemployees [0.7]
+ regEmpSety ! } + employeeSet
+ pushBackEmp(iegEmps) veid ‘ + -employes et
+ getRegEmpSet) :ustdivectorsregEmp> consth {quend r ¢ pushBackEmployeelemployess) woid
o oI EETem, SEEEmEy v + writeCstdziotstreamds) woid [quen}
[\J/ - Valuehap -m_employees \|/ o
+ Valuebap) I
regEmp + ~lslenzag employes
ename :stdistring + map(regEmp&) Tmplovae const {quend - name :stdosting
sal cint

+

re gEmp(:istd:istringd, int. inf)
getSaln) cint fquend
getHame() s:std:stingd: fquend

o+

0
~emplo pee)
sethame(:std:string8) aoid
getName() tstdistring consta fquend)

ot o+

Fig. 4. The class diagram with context propagation corresponding to Fig. 3

The Uml structure. The UML class diagram in Fig. 4 presents the structure
and the OCL expressions define the operations used to map the source to the tar-
get. Supplementary to the previous case, in which only employees were mapped
from source to target, in this case departments with employees are mapped.
The mapping of the employees was already presented above. The classes and
the associations between them are reused and we repeat only the essential facts.
The employee is represented on the source side by the help of two classes: a
class of type regEmpSet and a class of type regEmp connected with the previous
by aggregation with cardinality 1..*. On the target side there are two classes:
employeeSet and employee connected by aggregation with the same cardinality
as the previous aggregation from the source side. The class regEmpSet from the
source is connected to the class employeeSet from the target by an association
class: Builder. In the same way the class regEmp from the source is connected to
the class employee from the target by an association class: ValueMap. Between
these two association classes there is an association which helps the class Builder
to access the functionality of the class ValueMap. The Builder association class
iterates through the source set using the function build. In each iteration, the
association class ValueMap maps each regEmp to an employee using the func-
tion map. Both functions Builder::build and ValueMap::map are defined by OcCL
post-condition expressions.

The association class ValueMap connects the source type regEmp to the
target type employee. The mapping function is defined in OCL as follows:

context ValueMap: :map (rEmp: regEmp): employee
post: result = e: employee and e.name = rEmp.ename

The generation of the target set from the source set is achieved by the use
of the function Builder::build. This function iterates over the set regEmpSet
generating the set employeeSet:

context Builder::build(rEmpSet: regEmpSet): employeeSet
post: result = rEmpSet.m_regEmps->select(r | r.getSal() > 11000)
->collect(r: regEmp | ValueMap.map(r): employee)

The mapping definition starts from the source set regEmpSet and selects only
those objects from the source that have a salary greater than 11000 creating a
set. In the next step we obtain another set of type employeeSet from this set.
This is done by the use of the function collect that applies to each object of type
regEmp the function ValueMap::map. The result is an object of type employee.
Further the function collect inserts all created objects in a set which is the return
value of the function Builder::build.

The department is represented on the source side by the help of two classes:
a class of type deptSet and a class of type dept connected with the previous
by aggregation with cardinality 1..*. On the target side there are two classes:
departmentSet and department connected by aggregation with the same cardi-
nality as the previous aggregation from the source side. The class deptSet from
the source is connected to the class departmentSet from the target by an as-
sociation class: deptBuilder. In the same way the class dept from the source

is connected to the class department from the target by an association class:
deptMap. Between these two association classes there is an association which
helps the class deptBuilder to access the functionality of the class deptMap. The
deptBuilder association class iterates through the source set using the function
deptBuilder::build. In each iteration, the association class deptMap maps each
dept to an department using the function deptMap::map. Both functions dept-
Builder::build and deptMap::map are defined by OCL post-condition expressions.

context deptMap::map(dep: dept): department
post: result = d: department and
d.m_employeeSet = Builder.build(dep.m_regEmpSet)

The input object of this operation is of type dept and the object that results
is of type department. The input object includes a set of source type regEmpSet
which is mapped to a set of target type employeeSet. This is done by the func-
tion Builder::build, already presented. If needed, other target attributes, based
on source attributes, could be defined here. The translation of Clip builder, gener-
ating a department set from a dept set is done by the function deptBuilder::build.
This function iterates over the source set generating the target set and so trans-
lating the Clip builder:

context deptBuilder::build(dSet: deptSet): departmentSet
post: result = dSet.m_depts->asSet()
->collect(r: dept | deptMap.map(r): department)

The postcondition starts from the source set deptSet and could select only
those departments fulfilling some conditions. In this case there are no conditions
so all the departments are selected. The next step is to obtain from this set
another set of type departmentSet. This is done by the function collect that
applies to each object of type dept the function deptMap::map. The result is
an object of type department. Further the function collect inserts all this newly
created objects in a set which is the return value of this function. The class
deptBuilder is the translation of the Clip builder because it iterates on the source
set, it selects the nodes to be mapped to the target by the help of the OCL select
function and then it creates a totally different set by the use of collect function.

A more complex mapping. A more complex Clip mapping is presented in
Fig. 5. The hierarchy of builders, i.e. builders connected by context arcs, enforces
the propagation of the outer iterator context to the inner iterators on Proj and
regEmp. The authors explain in [13] that Clip can achieve, through this config-
uration, the mapping of depts with Projs and regEmps from the source to the
target without loss of the structure what no other state-of-the-art-tools like Clio
can do. The main idea of translating from Clip into UML, developed in the pre-
vious case, is used and the results are presented in the class diagram Fig. 6. The
class diagram has on the source side six classes: dept, Proj and regEmp and the
set variant of each. The association class deptBuilder using the other association
class deptMap triggers the two inner iterators of the association classes Builder
and projBuilder. At each step in the outer iteration the function deptMap::map

source target
dept1 ')——VD\> department[1.]
RN
: N l:\[projecl[o..*]

aname Ny
tO @name : String

Ovalue: String

_{:]|PMWJ

O @pid:int H
pname ’
O value: String

—\:” regEmp[0.."]

O @pid:int

employee[0..*]

tO @name : String

r.sal value > 1100

ename
O wvalue: String
sal

QO value: int

Fig. 5. A more complex Clip mapping (adapted from [13, Fig. 5])

is used and the inner iterations transform all the qualified regEmp and Proj ob-
jects from the source to employee and project objects of the target types and
then the outer iteration attached them to the corresponding department. The
both inner iterators, the associations classes: projBuilder and Builder are trig-
gered using of associations existing between them and the associations classes:
deptMap, the outer iterator. All the functions are defined in OCL and are similar
to those used in the precedent two cases.

The OcL expressions for the mappings included in the association classes
ValueMap and Builder were already presented in the first two cases. The corre-
sponding OCL expressions for the association classes projMap and projBuilder
are presented next.

context projMap::map(p: Proj): project
post: result = pr: project and pr.name = p.pname

This OcCL expression defines the function projMap::map which maps a source
object of type Proj to a target object of type project.

context projBuilder::build(pSet: ProjSet): projectSet
post: result = pSet.m_Projs
->Set()->collect(r: Proj | projMap.map(r): project)

This OCL expression defines the function projBuilder::build which maps a
source set of Proj objects to a target set of project objects.

The OcL expression for the association class deptMap is similar to that of
the second case. This function has to define the mapping of two sets at the same
time.

context deptMap: :map(dep: dept): department
post: result = d: department and

class System /

deptBuilder
+ dsptauilden
deptast + ~deptBuilden() departament Set
+ build(deptSeif) :depatamentSet const {quang
Y - - m_deparaments ::std: vectorsdepaament>
1
+ 10
+ deptSety L
© et T et e SO
+ getbeptSet) istd:vectorsdepts conste [quend T pehBaddepntimuntdsssiepepiy
+ rzadd) woid writeQ void fquerd
-m_depts 0. m_departamentsy|/ 0.7
depthiap
dept departament
+ deptMap0
- dname std:sting + eptitep(- m_employeeSet employesSat
- m_regEmpSet segEmpSat + map(deptd) deparamentesnatiiET] m_projectSet ‘projectset
- m_ProjSet ProjSet :
] + depatament)
+ dept) I + ~depananenty
+ deptstastinga, regEmpSets, ProjSets) . waid
+ ~degt) + setProjectSstiprojaciSetd) void
+ getRegEmpSet) :regEmpSet consté [quend + i
+ getProjSet) ProjSet cansta {quan} + gelProjectet) projectSet consts. [quen}
proj Builder
-m_ProjSet 0.1 + sraipuiden -m_projectgat 0.1
+ ~prysuiiter)
Projset + build(ProjS el prejectet const [quant project st
- m_Puojs sstdvectnrsFroj> T T miprojeck R
1
+ Prajser L + projectsely
P + prectSet)
+ getProjSet) wistdivectorsProjs consiés fauend + pushBadkProject(prajects) -vaid
+_teadpistavitstre ama, st sting&) woid + wite(std;ofstieame) void fquen}
projhtap
-m_Projs + projidapg m_projects 0.
+ o0)
-3 2 e ol o
prame ::std:sting “ - name :std:sting
| — —
+ Proi0 + project)
+ ProjCistastings) + momfect()
+ P + setNametistdssting®) wvoid
+ getamep) :std:stingd fquend + getNameQ :rstasting consta {queny
-m_tegEmpset \[y 0.1 Builder
-m_smployeeSet \[; 0.1
+ Builder)
regEmpSat + ~Builder]) " Set
o reoEmpe et wadtoraragEmes (] + bulla(regEmpSsta) (emplayeesat const [uend) smployes
T - m_smployess «std:vectoremployess [0.7]
+ regEmpen ;
+ ~egEanfet] {r i)
4 getRegEmpSei() std:vectordragEmps constf {quensd + rempiopee Set()
+ readtstdritsheams, stdzstring, stdzstinga) oid + pushBakEmployes(zmplayeed) woid
+ wite(std: ofetreame) void [quend
-m_regEmps I
Valushap -m_employees 0
regEmp
+ Valughap) employes
- istdrstring + mlialuenag
- + map(egEmpa) employes sonst {quen] - name cistdisting
- T
i + employeelt
r2gEmR() L +
r2gEmpL: st sting, int, int) + sethlame(:std::shing&) wold
~=gERp(-

gethamen) ::istd:ising consté [quen]

aetsal) int fauen]
gethamen :stdvstingZ {quen}
gethge) intfquen]

I

Fig. 6. The class diagram with a more complex mapping corresponding to Fig. 5

d.m_employeeSet = Builder.build(dep.m_regEmpSet) and
d.m_projectSet = projBuilder.build(dep.m_ProjSet)

The translations of the Clip builders or value mappings to UML are asso-
ciations classes using respectively functions named build or map. This associa-
tion classes are used alternatively at successive levels developing a hierarchy of
functions. The function named build is always situated at the top level of the
hierarchy and map at the bottom level. The function build from the top level or
from another level of the hierarchy calls always only one function named map
from a successive lower level and vice versa: a map function calls one ore more
functions named build from a successive lower level. As already mentioned the
function at the lowest level, the bottom level of the hierarchy, is always named
map. This successive levels of alternations using functions named build and map
are translating the Clip feature called Context Propagation Tree or CPT to
UML.

The OcCL expression of the function deptBuilder::build is identical to the one
with the same name in the second case above.

This proves again that UML diagram produces the same mapping as the Clip
diagram.

4 Nested Mappings and Tree-Like Data Structures

A join constrained by a CPT. A join in Clip is achieved by a context

target

deptf1.."] project-empl[0..7]

dname Y ——O @pname : String
$p,@id f Sr.@id

Ovalue: String
| Proj[0..*]_§p

——O @ename : String

[, O @pidint

pname ~ ¢
O value: Stgng
—‘:” regEmp[0.."]

QO @pid:int

ename
- value: String
sal

O value: String

Fig. 7. A Clip mapping with a join constrained by a CPT (adapted from [13, Fig. 6])

propagation tree as shown in Fig. 7. The result is a flattened list of employees

olass System

deptSet project_smpSetBuilder

m_depls ::std:vectordept> + project_empSetBuilder)

+ ~pmject_ewpSetSuitder])

+ deplgen) o
5 o build{dsptSat®) project_ampSat canst fquent orojact
4 getDeptSet) stdiwector<depts const® {quend r
+ read) wold —t | ———————— - m_project_emps :std:ivectorsproject_emp>
-m_depts \l/ 0.x + project_empSet)
+ ~pmyect_empSet)
dept T+ pushBadProject_emp(project_empSetd) wvoid
1 + pushBackFroject_emp(project_empa) wvoid
- dname ustd:sting + wnite() -void {queny

- m_regEmpSet regEmpSet depthisp
- m_ProjSet Frojset

+ depthlap)

+ dept PR -m_project_emps o
+ depistdistings, regEmpSetd, ProjSat) + map(depts) :projestiemuSEUI]

+ ~dept]) project_emp
+ getRegEmpSet) sregEmpSet cansté fquend

+ getProjSet) :ProjSet sonsté [quen pname costdsting

ename :ostdsting

m_ProjSet \I/ 04 -m_regEmpSet \l/o.1

+ project_empe)
Projsat regEmpSet + project_empCistdzistringds stdnistingd)
+ ~pmect e ()
m_Projs ustdiwectoreProj - m_regEmps std-wector<regEmp= [1.%] + getProjName() :stdisting constZ [quend
+ getEmpHame() - std::sting consté {quen}
+ ProjSei) + regEmpSety)
+ ~AmySet) + wmgEmn Sel()
+ gelProjSet) :std:vestor<Projs const{quend| |+ 1) regEmp> constd fquen)
+ readistdzifsteams, stdzstring®) vaid + readyistdzitshre amd, sistdzistringd, stditring®) waid
“m_Projs ar “m_tegEmps \IJ o
Praj regEmp
pname :ostdusting - ename cstdisting

pid sint - sal sint
pid sint

+

Froj(:istdzstring, int)
gethame() :std:stings {quen}
getFid]) int fquen

+

regEmpg:stdzistringd, int, int, inf)
getsal) sint {quend
getama() sistdzstingd {quen}
getFid) sint fquen}

+

P

Fig. 8. A join, the class diagram corresponding to Fig. 7

and projects in which they work. The class diagram in Fig. 8 differs from the
previous on the target side where instead of the class departmentSet the class
project_empSet is introduced. As in Clip no department is created in the target.
When a build node is reached from two or more builders, Clip computes a Carte-
sian product or a join if a condition involving two different variables is present.
The UML translation is based on the definition of the Cartesian Product in OcL
by [1]. The association class project_empSetBuilder starts the iteration over the
elements of the set deptSet. Each iteration maps one object of type dept to a set
of objects project_emp obtained from the join of the Proj and regE'mp objects of
each dept on the attribute pid. The OCL expressions define the join by construct-
ing first a Cartesian Product and then a selection of the elements with the same
attribute pid associating each employee with the projects in which he works. In
this case the association class deptMap creates from each object dept a set of
project_emp. The association class project_empSetBuild using this functionality
maps the set of dept objects to the union of sets of proj_emp objects. We define
the OCL expression for the function deptMap::map as:

context deptMap::map(dep: dept): project_empSet
def: projProdEmp = dep.m_ProjSet->collect(p: Proj | dep.m_regEmpSet
->collect(e: regEmp | Proj_regEmp: Tuple {Proj, regEmpl}))

This is the Cartesian Product of the two sets included in an dept. The result is
a set of tuples composed of a regEmp and a Proj each.

def: projJoinPidEmp = projProdEmp->select(Proj_regEmp |
Proj_regEmp.Proj.pid = Proj_regEmp.regEmp.pid)

The join is obtained by its definition from the Cartesian Product by selecting
those tuples with the same pid.

post: result = projJoinPidEmp->collect(Proj_regEmp |
project_emp(Tuple {pname = Proj_regEmp.Proj.pname, ename =
Proj_regEmp.regEmp.enamel}))

The result of this operation is a set of project_emp objects containing the name
of the project and the name of the employee working in that project. The
OcL definition of the function project_empSetBuilder::build uses the function
deptMap::map.

context project_empSetBuilder::build(dSet: deptSet): project_empSet
post: result = dSet.m_depts->Set()->iterate(r: dept;
peS: project_empSet = {} | peS.pushBackProject_emp(deptMap.map(r)))

This function iterates over the set of dept objects and produces from each of them
a set of project_emp objects and these sets are inserted in the project_empSet,
a union of sets. This ensures that the Clip join and the described UML class
diagram produce the same mapping.

A mapping with grouping and join. Group nodes are used to group source

source target
B Group-by ‘ ; «
1. 0.
‘ dept(i. $p.pname.value project(0.]

dname f O @name : String
o
Ovalue: String %3
) oo || shotrecto

O @pid:int
pname
O value: String Sp2.@id = Sr.@id

&

regEmplo0.."]

-]

O @pid:int

ename
O value: String
sal

O value: String

Fig. 9. A Clip mapping with a join and grouping (adapted from [13, Fig. 7])

data on attributes. Fig. 9 depicts such a construct. The result of a group node is a
sequence of elements selected by the grouping attributes. The number of created
sequences on the target equals the number of distinct values of the grouping
attributes from the source. In Fig. 9 the Projs are grouped by pname. The Projs

aiass system

ProjectSetuider

deptset + projectSetBuilden)
+ pmjectSetBuilder)
+ build(deptSeta) projectS et sonst {quend

T

- m_depts iistdivectersdepts

2 S L projectsat
+ ~doptso
+ gelbaptSeiy) :xstd:vactor<dapt consth {quend - m_projects crstd:ivactorsproject
+ 1ead) void
+ projectst)
. + pmyectSet)
“m_depts 0. + pushBackP eje ctiproje ctZy woid
+ pushBackProfectS ekprojectSel) woid
€13 + woid {quer}
~ dname cetdoctring .
- m_regEmpSet agEmpSet depthtap -m_projects\|f0.7
- m_ProjSet FrojSet
+ depittap) project
+ dept) + ~depthizag
+ depllstd:stinga, regEmpSels, ProjSeif) + mapCdepts) :projectSet [quen) - name matdzsting
+ aeptg - m_employesSet semployesSet
+ getReqEmpSety iregEmpSet consté [quent
+ getProjSet) :ProjSet consta [query] prajectn

mject]
setame(:istd: stiingd) vaid
getlamen :istd: sting consté fauent
gatEmployeeset) :employeasat consté [quan
appendEmployes SetjsmployesSats) vaid
appendEmployes(smployess) woid

- 0.1

Frojset

regEmpSat

ERaar e

- m_Projs cstd:vector<Projs - m_reaEmps mstdivectersrzaEmp [1.7]

+ regEmpsan
+ Projget) fegl “m_emplo eeﬁetwﬂ]
P + ~rgEaaSel) el
+ getProjSett) cstd:vector<Proj const {quent * pSet) 8 e {quen} employeeset
M o + tesd(:stdishieame., ssid: skinge. sidsting€) wold

m_Projs W 0. m_regEmps Q/ T - m_smployess :std:vectsi<employses

- . + employassety
regEmp + ~empiogeeSetd
- phame sadisting ename stdistin N 0 v tauen}
- pid cint e © + pushBackEmployee(employeed) woid
ool + uriteg: stdzofetre amas) woid [queny]

- age it
+ Pl - pid tint .
+ FroiC:std:stiing, inty m_employees\|/0
- + regEmpQ
e 1 + regEmp(iatdting, int, i, ind) amployes
qetFid) dint [quen] o oD Brver——

+ gatzald -int fquen}

+ getMamen) ::shd:istringd fquend employzel

+ getige(:int {[query} ~zmployeel)

gelPidgy int lquen} sethiame(;stessting®) void

astNamen) :iistdistiing const: fquen

S

Fig. 10. A join and grouping, the class diagram corresponding to Fig. 9

and regEmps are joined by pid and finally the employees on the target are created
and added to the project by name independently of the dept in which they work.
The class diagram in Fig. 10 is the corresponding translation for grouping in Clip.
The association class projectSetBuilder starts the iteration over the elements
of the set deptSet. Each iteration using the function deptMap::map maps one
object of type dept to an object of type projectSet. This set is obtained from
the join of the Proj and regEmp objects of each dept on the attribute pid. On
the target each project includes its employee. The function deptMap::map inserts
each project into the projectSet. Each insert groups the project objects by name.
In this case OCL expressions do not give a constructive solution but the OcL
constraints define the possible implementations. The attribute m_projects of the
type projectSet from the target is specified in OCL by the following expression:

context projectSet.m_projects
inv: self->isUnique(p: project | p.name)

This means that the elements of the set, the project objects, are unique by name.
In this way the grouping by project name is achieved. In the UML diagram the
type project has a set of objects of type employee. Because of this structure the
only possible grouping is to attach all the employees to the project in which
they work. If two or more projects have the same name by the uniqueness of
the project name the employees of this projects are again grouped together.
This is valid by the structure of the UML diagram also for projects in different

departments. The OCL expressions give the definition of the join by constructing
first a Cartesian Product and then a selection of the elements with the same
attribute pid associating each employee with the projects in which he works. It
follows the OCL expression for the function deptMap::map:

context deptMap: :map(dep: dept): projectSet

The OcCL expressions defining the Cartesian Product and the join on pid have
already been presented in the previous subsection.

def: result_lhs = projJoinPidEmp->collect(Proj_regEmp |
Tuple {pname = Proj_regEmp.Proj.pname, ename = Proj_regEmp.regEmp.ename})

This OcCL expression creates all the tuples from the source that are to be grouped
on project name in the target by the mapping.

def: result_rhs = projectSet.m_projects
->collect(p | p.m_employeeSet.m_employees
->collect(e | proj_emp: Tuple {p: project, e: employeel}))

This OCL expression creates the Cartesian Product of the tuples from the target.

post: result = projectSet(result_lhs) and
result_lhs->forAll(pe | result_rhs->exists(proj_emp |
proj_emp.pname = pe.pname and proj_emp.ename = pe.ename))

This OCL expression defines the constraint that all tuples from the source must
have a correspondent in the target. All elements from the target are created
only from the source so it is not necessary to show that all elements from the
target are only those that are created by the mapping. Every possible implemen-
tation must fulfill these constraints. The association class deptMap connects the
class dept from the source with class projectSet from the source. The function
deptMap::map transforms a dept to a projectSet. The association class projectSet-
Builder connects the class deptSet from the source with class projectSet from the
target. The function projectSetBuilder::build transforms the source to the tar-
get. The OcCL definition of the function projectSetBuilder::build uses the function
deptMap::map.

context projectSetBuilder::build(dSet: deptSet): projectSet
post: result = dSet.m_depts->Set()->iterate(r: dept;
pS: projectSet = {} | pS.pushBackProjectSet(deptMap.map(r)))

Inverting the nesting hierarchy. Another Clip example, a group node with
hierarchy inverting is presented in Fig. 11. The source data is mapped to the
target and as in the previous example, grouped on attributes, i.e. the mapping
groups the projects by mame. The departments are nested under the grouped
projects, recall that in the source the depts have nested Projs hence the hierarchy
inverting.

The class diagram Fig. 12 translates the grouping with inverting hierarchy
from Clip to UML/OcL. The mapping is started by iterator from the association
class projectSetBuilder on the elements of the set of deptSet.

source target

- Group-by ‘ z -
1f 0.
deptfi.’] $p.pname.value projectl0.’]

O @name : String

Ovalue Sl
—‘:H Proj[o D‘ department[0..*]
O @pid:int —[;O @name : String
pname

O value: String

regEmp[0..*]

-]

O @pid:int
ename
O value: String
sal

O wvalue: String

Fig.11. A join and grouping with hierarchy inverting, the class diagram (adapted
from [13, Fig. 8])

class System)
projectSetBuilder
© L)
dept Set + ~omjectSetBuikder)
+ buildideptSets) projectSet const {quen]
m_depts stdzvectorsdepts projectSet
+ deptet) - m_project nistdivectorprojects
+ ~ddeptSetl
* P depts constf {queng + projectSet)
+ read) woid + pryEctSet)
+ pushBackProjeck(projectd) veid
m_depts o 4 pushBackProjectEetiprojectZetdy void
- + wiite(-stdofstream&) woid fquent}
dept
T
dname std:sting |
m_FrojEet FrojSet 1
: -m_projects 0.x
+ dept)
. _n‘:p«(msm stiingg, FrojSeta) depthtap croject
e
+ getProjSel) :ProjSet consti {quang + depitap() -+ name stdstring
+ ~deptifap() - m_depatamentSet :depatamentSet
+ map(dept) projectSet fquen}
+ project()
+ momject)
+ setName(:std:string@) woid
+ gethame() :std:sting consté {quen}
+ getbepatamentSel) :depaamentSet consti fquent
+ appendDepatamentSetdspatamentSeta) weid
+ appendDepanament(depatamentd) oid
-m_FrojFet 0.1 -m_departamentSet
Projset
PIT———— departament Set
m_Frojs :stdvecterPrajz
m_depataments :istd:vector<dspanaments
+ ProjSet)
+ wPiSet) + depatamentSet)
+ getProjSet) std:vector<Proj» consid {quend + ~depantament Set)
+ read(stdzitsteame, std:string&) woid + =) ostdvestorsdepataments const fquen)
+ pushBaskDepatamentidepartaments) woid
. + wnite(stdziofstream&) avoid fquen}
-m_Frojs 0.
Froj -m_depataments \L 0
pname istd::string S
+ Proj0 . name :stdisting
+ Proj(ustdcisting®)
+ wPD + departamenty
+ gattame() :ustd:istringds fquen} + ~departament])
+ setMame:std:sting2) wvoid
+ petHame() std:string sonst {quen]

Fig. 12. A join and grouping with hierarchy inverting, the class diagram corresponding
to Fig. 11

The function deptMap::map in each iteration maps one object of type dept
to an object of type projectSet.

This set is obtained from the Proj elements of the current dept of the itera-
tion. The current same department is inserted to each project object created by
mapping from a Proj object. This operation actually inverts the hierarchy. Each
inserted project is grouped by name. In this case OCL expressions do not give
a constructive solution but the OCL constraints define the possible implementa-
tions.

The attribute m_projects of the type projectSet from the target is specified
by the following OCL.

context projectSet.m_projects
inv: self->isUnique(p: project | p.name)

This means that the elements of the set, the project objects, are unique by
name. In this way the grouping by project name is achieved.

In the UML diagram the type project has a set of objects of type depart-
ment. Because of this structure the only possible grouping is to attach all the
departments to the project belonging to it. If two ore more projects have the
same name by the uniqueness of the project name the different departments are
again grouped together. This is valid by the structure of the UML diagram also
for projects in different departments.

We present next the OCL expression defining the function deptMap::map.

context deptMap: :map(dep: dept): projectSet
def: result_lhs = dept.m_ProjSet
->collect(Proj | Tuple {pname = Proj.pname, dname = dept.dname})

This expression creates a set of tuples containing the name of the current de-
partment and each of the names of the projects of the current department that
in this iteration are to be inverted.

def: result_rhs = projectSet.m_projects
->collect(p | p.m_departmentSet.m_departments
->collect(d | Tuple {pname = p.name, dname = d.name}))

This OcL expression computes the Cartesian Product of the target.

post: result_lhs->forAll(dp | result_rh
->exists(DP | dp.pname = DP.pname and dp.dname = DP.dname))

The constraint that we impose is that the elements from the source to be inverted
in this iteration are included in the target. The uniqueness of the project name
and the UML structure assure that the target actually inverts the hierarchy. All
the elements from the target are the result of the mapping so no supplementary
element exist in the target to those created by the mapping.

The association class projectSetBuilder connects the class deptSet from the
source with class projectSet from the target. The function projectSetBuilder::build
transforms the source to the target.

The OcCL definition of the function projectSetBuilder::build uses the function
deptMap::map.

context projectSetBuilder::build(dSet: deptSet): projectSet

post: result = dSet.m_depts->Set()->collect(r: dept;

pS: projectSet = {} | pS.pushBackProjectSet (deptMap.map(r)))

The UML solution produces also in this case the same final result as Clip.

A mapping with aggregates. Aggregate functions are presented in the last

source target
dept[1.*© departament[1.."]
aname O @name : String
O value: String O @numProj : int
D coun
—D| Proj[0..]/‘"—, O @aumEmps : int
T o@pidint avg-sal : int

ﬂpname
O value: String
—D| regEmp[0.."]

" —o@pidint

«%name "‘-’\Q
(O value: String
ﬂsa

O value:int

Fig. 13. A mapping with aggregates (adapted from [13, Fig. 9])

Clip mapping, Fig. 13. The class diagram Fig. 14 translates this mapping to
UML. The dept objects from the source are mapped to the target as department
objects. Target aggregate values are calculated for the source nested elements:
Projs and regEmps.

The function deptBuilder::build starts the mapping iterating over the dept-
Set. In each iteration a dept object is mapped from the source to the target
creating a department object. In this way the source deptSet is mapped to the
target departmentSet. The mapping function is depMap::map. This function calls
the functions that create the aggregates having as input sets. In a dept object
there are two sets included: ProjSet and regEmpSet. The two functions pro-
jBuilder::build and Builder::build create the aggregate objects projectProperties
and respectively employeeProperties which are again in the object department
included. We present next the OCL expressions defining the mapping starting
from the function creating aggregates for the regEmpSet.

context Builder::buildNumEmps (rEmpSet: regEmpSet): int
post: result = rEmpSet.m_regEmps->size()

This OcCL expression defines a function taking as input a regEmpSet and return-
ing the size of the set.

class System /

deptBuilder

+ deptBuilder)
+ eddeptBuilder)
+ buildideptSets) depatamentSet const {quend

deptSat departamantSat
- m_depts zstdvectorddapts m_depataments :stazvectorsdepanaments
+ deptety + deparamentse)
- ~dogiSel] + ~dzpartamentset)
+ getDeptSet]) iistd:vectorddepts consté {quend + pushBackDepartamentidepataments wwaid
+ read) wold + wiiteD) veid {quend
—m,devar{amenkw o
“m_depts Ay 0.7 depthtap
o= PR— departsmant
+ deptifzng - m_employeeFrapertties -employeeP rapel
aname stdsting + map(depta) wdepaament sonst {quen] o CLREPEREEE P Ao
m_regEmpSet regEmpSet - m_name :zstd:sting
m_ProjSet ProjSet
+ depatament)
+ dep + eedepartaweat])
+ depistd istiingd, regEmpelt, Projgets) + perties) :empl perties sonsta fquang
+ ~dept) + getPrajectProp projectP rap
+ gelRegEmpSet) regEmpSet consié. fuend + setEmployocePropetieemployeePioperiest) wvoid
+ getProjse) ProjSet consta fqueng + setPrajectPropartissprojectPrapertiss) woid
+ getflame() istd:sting eonsié [quen} + sethlame(:std:zsting&) vaid
+ gethamef) :stdzsting const {uend
m_Projet 0.4 Rl -m_projectPiaperties ¢ 0.1
+ projBuilder)
Froj $et + mpryBuilden) prajectProperties
+ build(ProjEetd) -projectP operties const [que
- m_Projs st vector<Proj> SAREC) R faen] -~ m_numPre) cint
I
+ Projgst) L + projectPropetiesy
- Sty + momjectPmperies)
+ getProjSet)) ::std:vector<Proj» const®: {quenj + urite(rstd:ofetreama) woid fquend
+ aroid + sethumProjind) wvoid
-m_Prajs 0. Builder
Proj + Builder)
. -m_regEmpSat \[/ 0.1 o Ll
- pname cstd:shing o » B fquery}|-m_empl o oA
+ buildAvgSaliregEmpSets) it [quen}
: Froj01 regEmpSet + buildNUmEmps(regEmpSets) int {querd
ol P
v i - m_regEmps sistdivedtorsiegEmp> [1.7]] -
P | - m_avg_sal dint
+ regEmpSat) I - m_numEmps dint
+ ~egEnpSet) I
e B e + employeePrapetios])
+ read(it fstream s, ot st nga, SHzstinga) wold + ~eaployeefmpetios)
+ wnita(std s ofetresma) void fquend
+ setbugSal(int) woid
-m_tegEmps 1. + setNumEmps(ing) void
regEmp
ename :sta:isting
sal int
age sint
+ regEmp0
+ regEmplstdsstingg, int, inty
+ e
+ getdall) iint fquen}
+ getNameQ istd:string® [quent
+ gebhga) dint fquend

Fig. 14. A mapping with aggregates, corresponding to Fig. 13

contest Builder::buildAvgSal (rEmpSet: regEmpSet): int
post: result = rEmpSet.m_regEmps
->collect(r: regEmp | sal)->sum / rEmpSet.m_regEmps->size()

This OcCL expression defines a function using the same input and returning an
average salary.

context Builder::build(rEmpSet: regEmpSet): employeeProperties
post : result = employeeProperties and
employeeProperties.m_avg_sal = buildAvgSal(rEmpSet) and
employeeProperties.m_numEmps = buildNumEmpsl (rEmpSet)

Now we use the previous two results in creating a employeeProperties object
from a regEmpSet.

The following OCL expression describes the creation of an object project-
Properties containing the number of the projects belonging to a dept object.

context projBuilder::build(pSet: ProjSet): projectProperties
post: result = projectProperties and
employeeProperties.m_numProj = pSet->size()

Now we have all the elements for mapping the source to the target creating a
department from a dept.

context depMap::map(de: dept): departament

post: result = departement and

department .m_employeeProperties = Builder.build(de.m_regEmpSet) and
department.m_projectProperties = projBuilder.build(de.m_ProjSet)

The functions Builder.build and projBuilder.build create the desired aggregated
values.

The mapping of sets of dept to sets of department is presented in the following
expression.

context deptBuilder::build(dSet: deptSet): departamentSet
post: result = deptSet.m_depts->Set()->collect(r | deptMap.map(r))

As in previous cases the UML/OCL translation describes the same mapping as
the Clip mapping.

5 Second Order and Target Dependencies

Second Order Dependencies. In [12] the authors consider the schema map-
ping problem defined as translating an instance of the source schema to an in-
stance of the target schema. The primary path is defined as the set of elements
found on the path from the root to an intermediate node or leaf in the tree
structure of the source and target. The mapping is materialized with the use
of correspondences: elements of source and target connected with arrows. The
correspondences are modeled as interpretations, source-to-target referential con-
straints. In this context the nested referential integrity constraint is presented

and defined using the primary path, a large class of referential constraints that
include relational foreign key and XML schema’s key reference. Nested dependen-
cies support the translation of the nested structure of the source and the target.
This source-to-target dependencies are compiled into low level, language inde-
pendent rules. These rules are used to obtain the transformations in concrete
languages like XSLT or XQUERY for XML Schemas or SQL for relational schemas.
For the creation of the new values in the target, that are not specified, one-to-one
Skolem functions are used. In [7] the authors, based on [12], introduce the nested
mappings. The mappings are defined by lines, correspondences connecting the
source elements with target elements. Constraints, describing the mapping can
be generated from these lines by tools like Clio or directly by human experts.
The nested mapping is introduced allowing common subexpressions to be fac-
tored out. Grouping is another feature introduced by the use of nested mappings.
The nested mappings are strictly more expressive as the mappings from [12] but
less expressive as languages used for composition of s-t tgds as presented in [6,
9]. The authors note that for the relational model the nested mappings are a
sub-language of the second-order tgds (SO tgds): every nested mappings can be
rewritten, via Skolemization into a equivalent SO tgd but not vice-versa. In [13]
the authors, based on [12, 7], introduce more complex mappings using second-
order logical formulas expressing grouping and aggregate by means of functions.
Recall the nested tgds of Fig. 7, the grouping, from Clip [13, IV. Language Se-
mantics] expressing the fact that for each join on pid from the source there must
be a employee nested inside of a project of the target. The correlation between
the outer mapping and the inner mapping is achieved through the variable p’, a
project on the target, defined in the outer mapping and used in the inner map-
ping (supplementary the name of the project must be unique). This correlating
element p’ is the grouping element of the mapping. This could be expressed in
first-order logic but the structure of the nested tgds is not preserved. This was
the reason why the special Skolem function was introduced to solve this problem.

Our approach UMAP using UML class diagrams and OCL constraints does
not explicitly use nested mappings [7], a sub-language of SO tgd, as Clip [13]
does. Instead the diagram structure and the constraints define the possible query
implementations that execute the mapping. A translation of UML/OCL to first-
order predicate logic is given in [2]. The UMAP mapping, translated to first-order
logic, could be compared with the nested mappings used by Clip. Clip introduces
a special kind of Skolem function to express the grouping and the aggregates. A
translation of the UML/OCL to nested tgds via a translation to first-order logic
would need the same special Skolem function, showing the equivalence of the
both mappings.

Target dependencies, target egds and tgds. UMAP allows the use of tar-
get egds and target tgds. The definition of an explicit mapping by nested tgds
from [13, IV. Language Semantics| uses two expressions: C7 and Cs. The first is
a source expression. The second has three kinds of target conditions and could
be used as s-t tgds but, by their definition, not as target egds or target tgds.
In our translation, constraints could be defined for each element in the target

schema. An element of the target schema defined using an OCL expression to
be unique is an example of using an target egd. The usage of the target tgd is
possible through an OCL expression on the target. Special measures must be
taken to limit the infinite cascading of tuples created in the target by restricting
the target tgds to weekly acyclic set of tgds [5].

6 Conclusion

In this paper we have introduced UMAP, a new universal layer for schema map-
ping languages. Schema mappings are modeled by standardized UML class dia-
grams and OCL expressions. By restricting the UML artifacts to well-understood
elements (e.g., classes, associations, aggregations, methods, and straightforward
post-conditions and invariants), there is a well-defined semantics. This allows us
to semi-automatically translate UMAP specifications to a broad range of target
languages (like first-order logic, C++, Java, or XML). We have modeled a set
of common schema mapping operations in UMAP, starting with basic source-to-
target dependencies over join and grouping operations to more advanced map-
pings like second-order dependencies or target dependencies. We translated sev-
eral core features of Clip to UMAP (see [4] for a translation of all Clip artifacts).
There is also an implementation available (see http://www.dbai.tuwien.ac.
at/research/project/umap) generating C++ code showing the translation of
typical Clip language elements to our UML-based formalism, both for its core
features and tree-like data structures, proving that our approach works in prac-
tical usage aimed at industrial application. UMAP can be seen as a new mid-
dleware for high-level visual schema mapping languages. Therefore we propose
to use UMAP as a back-end when creating new visual mapping languages. This
allows the designer to use a common basic language under the hood (like a visual
schema mapping language assembler) without having to worry about generation
of bindings for target languages. As future work we plan to implement inter-
faces and semi-automatic compilation to several targets for additional schema
mapping languages and tools.

References

1. David H. Akehurst and Behzad Bordbar. On querying UML data models with
OCL. In UML 2001, volume 2185 of LNCS, pages 91-103. Springer, 2001.

2. Bernhard Beckert, Uwe Keller, and Peter Schmitt. Translating the Object Con-
straint Language into first-order predicate logic. In VERIFY, FLoC, 2002.

3. Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML
class diagrams. Artificial Intelligence, 168(1-2):70-118, 2005.

4. Florin Chertes. DBAI-TR-2012-76. Technical report, DBAI, Institute of Informa-
tion Systems, Vienna University of Technology, 2012.

5. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: Semantics and query answering. In ICDT, pages 207-224. Springer, 2003.

10.
11.
12.

13.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Compos-
ing schema mappings: Second-order dependencies to the rescue. ACM Transactions
on Database Systems, 30(4):994-1055, 2005.

Ariel Fuxman, Mauricio A. Hernandez, Howard Ho, Renee J. Miller, Paolo Papotti,
and Lucian Popa. Nested mappings: schema mapping reloaded. In VLDB 2006,
pages 67-78. ACM, 2006.

Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS 2002,
pages 233-246. ACM, 2002.

Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composition of mappings
given by embedded dependencies. In PODS 2005, pages 172-183. ACM, 2005.
Object Management Group. Unified Modeling Language 2.4.1, 2011. www.omg. org.
Object Management Group. Object Constraint Lang. 2.3.1, 2012. www.omg.org.
Lucian Popa, Yannis Velegrakis, Mauricio A. Herndndez, Renée J. Miller, and
Ronald Fagin. Translating web data. In VLDB 2002, pages 598-609. Morgan
Kaufmann, 2002.

Alessandro Raffio, Daniele Braga, Stefano Ceri, Paolo Papotti, and Mauricio A.
Hernéndez. Clip: a visual language for explicit schema mappings. In ICDE 2008,
pages 30-39. IEEE, 2008.

