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1 Introduction

Argumentation is a vital aspect of intelligent behaviouhloynans. Consider diverse professionals
such as politicians, journalists, clinicians, scientiated administrators, who all need to collate and
analyse information looking for pros and cons for consegasof importance when attempting to
understand problems and make decisions.

There is a range of proposals for logic-based formalisatafrargumentation (for reviews see
[12, 27, 7]). These proposals allow for the representatf@guments for and against some claim,
and for counterargument relationships between arguments.

In a number of key proposals for argumentation, an argunseatpair where the first item in
the pair is a consistent set (or a minimal consistent setpwhdilae that proves the second item
which is a formula (see for example [4, 20, 26, 6, 1, 22, 13jgnek, different underlying logics
provide different definitions for consistency and entaitrend hence give us different options for
defining the notion of an argument.

Since classical logic has many advantages for represeatidgeasoning with knowledge in-
cluding syntax, proof theory and semantics for the inteitanguage incorporating negation, con-
junction, disjunction and implication, it is an interegfiand promising choice for the underlying
logic for argumentation. However, it is computationallattbnging to generate arguments from a
knowledgebase using classical logic. If we consider thélpra as an abduction problem, where
we seek the existence of a minimal subset of a set of formbkteimplies the consequent, then
the problem is in the second level of the polynomial hiergfd®]. Furthermore, given a knowl-
edgebaseé\ and a formulax, it has been shown that ascertaining whether there is atshlideA
such that{®, o) is an argument (i.e® is consistentP entailse, and there is no subset &f that
entailse) is aXf-complete decision problem [25].

Beyond these observations, there remains a range of funtipertant computational complex-
ity questions. So to better understand the use of classigal in argumentation, and in particular
to understand its computational properties, we use quathfoolean formulae (QBFs) to charac-
terize an approach to argumentation that is based on cégsiic. This characterisation can then
be used to obtain computational complexity results in tesmgper bounds.

A further reason to characterize logic-based argumemtatidhe form of QBFs is that we
can then harness implementations of QBF solvers to devetiptgpe implementations for logic-
based argumentation. There are numerous QBF solverslaegitee, e.g, [24] and the references
therein), and the encodations we present in this paper catrdightforwardly handled in them.

2 Preliminaries

2.1 Logical argumentation

In this section we review an existing proposal for logicdmhargumentation [6]. We consider a
classical propositional language. We usej, v, ... to denote formulae and, ®, ¥, ... to de-
note sets of formulae. Deduction in classical proposititogic is denoted by the symbél and
deductive closure byh so thatTh(®) = {a | ® F a}.
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For the following definitions, we first assume a knowledgehaga finite set of formulae)
and use thisA throughout. We further assume that every subseha$ given an enumeration
(aq,...,qn) Of its elements, which we call its canonical enumerationisThally is not a de-
manding constraint: In particular, the constraint is $@iswhenever we impose an arbitrary total
ordering overA. Importantly, the order has no meaning and is not meant t@sept any respec-
tive importance of formulae in\. It is only a convenient way to indicate the order in which we
assume the formulae in any subset/ofare conjoined to make a formula logically equivalent to
that subset.

The paradigm for the approach is a large repository of in&iiom, represented b, from
which arguments can be constructed for and against anpittarms. Apart from information
being understood as declarative statements, there is riorarpstriction on the contents, and the
pieces of information in the repository can be as compleoasiple. Therefore) is not expected
to be consistent. It need not even be the case that evergdorghula inA is consistent.

The framework adopts a very common intuitive notion of aruargnt. Essentially, an argu-
ment is a set of relevant formulae that can be used to cldigsorave some claim, together with
that claim. Each claim is represented by a formula.

Definition 2.1 Anargument is a pair (¢, «) such that: (1) C A; 2) @ t/ L; (3) ¢ F «a; and
(4) there is nod’ C & such thatd’ - «. We say that®, o) is an argument forv. We calla the
claim (or consequent) of the argument af#dhesupport of the argument (we also say thats a
support fora).

Example 2.2 LetA = {a,a — (3,7 — —3,7,6,0 — [, —«a, —y}. Some arguments are:

({a, a0 — B}, 8)
({—at, ~a)
({a — B8}, —a Vv j)
{6 — =)

By monotonicity of classical logic the following equivaltesharacterization easily follows.

Proposition 2.3 A pair (®, «) is an argument iff it satisfies (1)—(3) from Definition 2.1 etwer
with (4’) for each¢ € @, (¢ \ {¢}) I/ a.

Arguments are not independent. In a sense, some encompass (@ossibly up to some form
of equivalence). To clarify this requires a few definitiosSallows.

Definition 2.4 An argument®, «) is more conservativethan an argumentV, 3) iff & C ¥ and
O F a.

Example 2.5 ({a}, a Vv () is more conservative tha{«, « — 5}, 3).

Definition 2.6 An argument(®, «) is strictly more conservative than an argumentV, ;3) iff
& C VU, [+ «a,and eitherd Z & or a t/ 5.



Some arguments directly oppose the support of others, wdmobunts to the notion of an
undercut.

Definition 2.7 Anundercut for an argument{®, «) is an argument¥, —(¢; A ... A ¢,,)) where

{¢17"'7¢n} gq)

Example 2.8 LetA = {o,a — (,v,7 — —a}. Then,({y,v — —a},~(a A (a — [3)))is an
undercut for{({a,a — [}, 5). A less conservative undercut f0fa, « — G}, 5) is ({v,7 —
-, ).

Definition 2.9 (¥, 5) is amaximally conservative undercutfor (®, o) iff (¥, 3) is an undercut
for (&, a) such that no undercuts o®, o) are strictly more conservative thaw, ).

The value of the following definition of canonical undercsittihat we only need to take the
canonical undercuts into account. This means we can judyifignore the potentially very large
number of non-canonical undercuts.

Definition 2.10 An argument{¥, —(¢1 A ... A ¢,,)) is acanonical undercutfor (®, o) iff it is a
maximally conservative undercut fob, o) and (¢, . . ., ¢,,) is the canonical enumeration &f.

The next result is central.

Proposition 2.11 (Theorem 5.4 [6])A pair (¥, ~(¢1 A ... A ¢,)) is a canonical undercut for
(@, «) iff it is an undercut fo(®, o) and (¢, . . ., ¢,,) is the canonical enumeration &f.

In other words, the canonical undercuts {dr, o) are given by all arguments of the form
(U, =(p1 A...Npy)) Where(¢y, ..., ¢,) is the canonical enumeration &f Later we need to refer
to all possible supports of canonical undercuts for an aenimwWe thus introduce the following
concept.

Definition 2.12 For (®, «), we definelndercutSupports((®, ) as the set of its supports:
{W | (¥, 5) is a canonical undercut fof®, a) }.

We shall make use of the notatidmdercutSupports((®, )) later when defining suitable rep-
resentations of argument trees. Using Proposition 2.11camealternatively characterize the set
UndercutSupports((®, ) as follows.

Proposition 2.13 For (®,«), with (¢1,...,¢,) the canonical enumeration of®,
UndercutSupports((®, a)) = {V | (¥, =(¢1 A -+ A ¢y,)) iS an argumerit.

Next we recall the notion of an argument tree following [6]ddhen introduce a more succinct
notion to represent argument trees which is also more deitabour later purposes.

An argument tree describes the various ways an argumentecahdilenged, as well as how
the counter-arguments to the initial argument can therasdde challenged, and so on recursively.
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Definition 2.14 Anannotated treeis a tree where each node is a paib, 3). Anargument tree
for a is an annotated tree, such that

1. each node is an argument with the root being an argument;for
2. for no nodg®, 3) with ancestor node&by, 3), ..., (®,, 5,) isP® a subset o, U- - - UD,,;
3. the children nodes of a nodé consist of some canonical undercuts férthat obey 2.

A complete argument treeis as just defined with “some” replaced by “all” in item 3 abave

The definition of an argument tree ensures that each arguomeatbranch has to introduce
at least one formula in its support that has not already bsed by ancestor arguments. This
is meant to avoid making explicit undercuts that simply e¢p®/er and over the same reasoning
pattern except for switching the role of some formulae (astitated in Example 2.16 below).

As a notational convenience, in examples of argument ttee$ tsymbol is used to denote
the consequent of an argument when that argument is a cahandercut (no ambiguity arises as
proven in [6]).

Example 2.15GivenA = {a,a — 5,v,7 — —«,—y V —a}, we have the following argument
tree.

{o,a — B}, 6)
/ AN
{77 = —a}, ~(a A (= 5))) {7,y V mad, =(aA(a = §)))

Note the two undercuts are equivalent. They do count as tgunaents because they are based on
two different items of the database (even though these ttamgut to be logically equivalent).

Example 2.16 LetA = {a, a0 — 3,7 — —a, v}

{a, ? B},5)
{r.v HTﬁoz}, <)
<{Oé,’y — —|Oz}, <>>

This is not an argument tree because the undercut to the aantisractually making exactly the
same point (thatv and~ are incompatible) as the undercut itself does, just by usiogus tollens
instead of modus ponens.

Example 2.17 GivenA = {«, 5, — v, 3 — 6, ~a V =3}, consider the following tree.

({a, B, = 7,8 = 0}, v A )
/ AN
<{Oé,_|Oé\/—|ﬂ},—|ﬂ> <{ﬂ,"0&\/"6},_‘04>



This is not an argument tree because the two children nodesa@rmaximally conservative under-
cuts. The first undercut is essentially the same argumeriteasdcond undercut in a rearranged
form (relying once and 5 being incompatible, assume one and then conclude that liee dbesn’t
hold). If we replace these by the maximally conservativeetmd ({ -« vV =3}, <), we obtain an
argument tree.

Notably, there is a finite number of argument trees with the# b®ing an argument with the
claim « that can be formed from\, and each of these trees has finite branching and a finite depth
(the finite tree property).

For our purposes in this paper, we require a more formal septation of argument trees. It
makes use of the fact that all consequences in the nodeg{dakeeroot) of an argument tree are
determined by their direct ancestor (as already mentiobeseawhen introducing>). To this
end, a node is now a set of formulas rather than an argumehg parent function determines the
structure of the tree.

Definition 2.18 A parent function p (overk > 1) is a partial function from{1..k} to {1..k}, such
thatp(y) is undefined foy = 1 butp(j) is defined angh(j) < 7, foranyl < j < k.

pis a parent functiorior a sequenced = (¢4, ..., ;) of subsets oA if p is a parent function
overk and is such thap(i) = p(j) implies®; # ®;, foranyl < j <i < k.

Atuple form is a triple («, A, p), where« is a formula,A is a sequence of subsets®f and
p is a parent function forA.

Given a tuple forma, (¢4, ..., Px), p), we define, for each < i < k, anassociated pair
A(7), asfollowsA(1) = (@, a) and, fori > 1, A(i) = (D, = (P1 A -+ - A ¢y,)), Where(ey, . .., dn)
is the canonical enumeration @, ;.

Tuple forms are an alternative way to denote annotated thetestively, A collects all supports
of the tree’s nodesy is the claim of the root node, and the parent functidmks each node to
its parent node, and thus determines the structure of tee his is feasible, sinceis defined
for each node except the root and links to a previous element the condition thap(i) = p(j)
implies®; # @, for ¢ # j just avoids duplicate children nodes.

The concept of tuple forms is best illustrated by examples.

Example 2.19 First, consider the tree from Example 2.15. That annotatee tan be represented
in tuple form(s3, (1, 5, ®3), p) whered, = {a,a — [}, Py = {v,7 — —a}, P3={y,~y V
-« }, andp is defined ap(2) = p(3) = 1. An alternative way to represent the same annotated tree
would be to exchange the sets for and ¢;.

Conversely, given the tuple for(, (¢4, ®,, ®3), p), we can derive from it an annotated tree
as follows: The nodes are given 1), A(2), A(3), and we get by definition gfthat A(2) and
A(3) are the children of the root nodé(1).

Example 2.20 As a second example, consider Example 2.16. The only wahievaa tuple form
for that tree is(j3, (P1, P2, P3), p) Whered; = {a, a0 — [}, Py ={v,v — —a}, &3 ={a,y —
—a}, andp is defined a®(2) = 1, p(3) = 2.



We now formally describe these relations.

Definition 2.21 We define a mappin@ree Form from tuple forms to graphs as follows: For each
t = {a,(Pq,...,Px),p), the nodes oflreeForm(t) are given by the setA(i) | 1 <i < k}; and
apair (A(i), A(j)) is an edge oflreeForm(t) iff p(j) =4, for1 < j < k.

Lemma 2.22 For any tuple formt, TreeForm(t) is an annotated tree.

Proof. TreeForm(t) is a tree because it is a graph which is connected (ignoriegtiton of edges)
and has exactly one edge less than it has vertices:

By Definition 2.21,(A(i), A(j)) is an edge iffp(j) = ¢ (for 1 < j < k). l.e., (A(p(4)), A(4))
for 7 = 1..k exhausts all edges. Sinpés a parent function7reeForm(t) hask — 1 edges. There
remains to show thafreeForm(t) is connected (when directions of edges are ignored). This
easily follows from the fact that any node ifree Form(t) is connected toA(1) (the latter is true
because it < j < k, then there exista such thap™(j) = 1 asp is a parent function). In short,
TreeForm(t) is a tree. Itis an annotated tree because Definition 2.2altgishows that all nodes
in TreeForm(t) are pairsA(i) fori = 1..k. O

In view of the above lemma, we call, for a given tuple farnTree Form(t) thetree associated
to t. As well, we say that represents treeTreeForm(t).

We now characterize argument trees and complete argureestiia tuple forms. This resultis
valuable later when characterizing argument trees via QBesneed one more technical notation.

Definition 2.23 Given a tuple forma, (@4, ..., ®.), p), we define, for each < i < k, p*(i) as
the set of indices ab,’s ancestors, i.e.,

p*(i) = {p"(@) | there existsn >n > 1 such thap™(i) = 1}.
Lemma 2.24 A tuple form{a, (4, ..., D), p) represents

e an argument tree iff

(1) (@4, «) is an argument,
(2) foreachl <i <k, ®; € U, 5, and
(3) foreachl < i <k, ®; € UndercutSupports(A(p(i))) hold.

e a complete argument tree iff, (1-3) holds together with

(4) foreachl < i < k and for eachV € UndercutSupports(A(i)), there exists an index
j € {1..k}, such thatd;, = ¥ andp(j) = 1.



Proof. The first statement in Lemma 2.24 means that Form(t) is an argument tree iff (1)—(3)
hold together. Let us first assume tHBteForm(t) is an argument tree. Then, (1) and (2) are
easily verified. By item 3 in Definition 2.14, the children ohade N are canonical undercuts for
N. So, if N is (®, 3), any child of NV is a canonical undercut(i) = (®;, = (1 A -+ A ¢,)) Of

N = A(p(i)). Then, Definition 2.12 directly yield®; € UndercutSupports(A(p(i))). Thatis, (3)
holds as well.

As to the other direction, let us assume that (1)-(3) hold(Byand item 4 in Definition 2.18,
Definition 2.12 means that (i) is an argument fot < i < k. Due to (1), it follows that item 1 in
Definition 2.14 is verified. It is easy to verify that (2) imgdi item 2 in Definition 2.14. Lastly, (3)
and item 4 in Definition 2.18 entail (cf Definition 2.12) thatfi < i < k, eachA(i) is a canonical
undercut ofA(p(4)). l.e., item 3 in Definition 2.14 holds.

Let us assume (1)-(4). Let us further assume thatForm(t) is not a complete argument
tree. In view of Definition 2.14, this can only happen due toodewN = A(p(i)) lacking at
least one canonical undercut as a chilétee Form(t) is an argument tree, as proved above). By
Definition 2.12, there then exists in UndercutSupports(A(j)), for somej, satisfyingl = &,
for no: such thap(i) = j. This contradicts (4). So, the if direction is proved. Probthe only if
direction is easy and is omitted. O

Example 2.25 Consider again the tuple form for the tree in Example 2.16giagn in Exam-
ple 2.20. We have*(3) = {1,2} and thus{J, .3y ®; = ®1 U ®2 = {a,7,7 — —a}. Since
®;3 = {o,y — —a} is a subset of that set, Condition (2) in Lemma 2.24 is vidlatEhus, we
have that the tuple form does not represent an argument tree.

Lemma 2.26 Each argument tree is represented by a tuple form.

Proof. Consider an argument trdéwith nodesNy, ..., N, where nodes are of the forri;, =
(®;, o), for eachl < i < k, andV; is the root of . Considertr = (o, (P4, ..., Px), p) where
pis a partial function{1..k} to {1..k} satisfying, for eacl < j < k, p(j) = ¢ iff NV, is a children
node of N; in T. SinceT is an argument tree is in fact a parent function over. Thustr is
a tuple form and one can show th&tee Form(tr) = T, which holds by the observation that the
pairs associated tg- satisfy A(i) = N;, for eachl <i < k. O

2.2 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinarypsitional formulas by the admission
of quantifications over propositional variables. In parie, the language of QBFs contains, for
any atomp, unary operators of the forivip anddp, calleduniversaland existential quantifiers
respectively. However, the quantifiers do not range overesarbitrary domain, but over truth
assignments. Thus, a QBF of foivp Jq F' is satisfiable iff, for all truth assignments pfthere is
a truth assignment of such thatF’ is satisfiable; see also Example 2.27 below.

An occurrence of a propositional varialjjan a QBF F' is free iff it does not appear in the
scope of a quantifieQp (Q € {V,3}), otherwise the occurrence pfis bound If F' contains no
free variable occurrences, théhis closed otherwiseF' is open Furthermore, we writé’[p/¢] to
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denote the result of uniformly substituting each free oee of the variablgin F by a¢. For a
setP = {pi,...,p,} of propositional variables, we I&tP F’' stand for the formulap,¥p, - - - Vp,,
and3P F for the formuladp,dp - - - Ip,..

By aninterpretation 7, we mean a set of atoms. Informally, an atpis true under iff p € I.
In general, the truth value; (F'), of a QBF F' under an interpretatioh is recursively defined as
follows:

1. if F =T, theny,(F) =1,
. If ' = pis an atom, thew,;(F) = 1if p € I, andv,(F') = 0 otherwise;

L IfF =G, thenl/[(F) =1- V[(G),

2
3
4. if F = (Fy A Fy), thenuvy(F) = min({v;(F1),vi(F2)});
5. if F =VpG, thenv(F) = v;(Glp/T] A Glp/L));

6

fF=3pG, thenv,(F) = v (G[p/T] vV G[p/L]).

The truth conditions forl, Vv, —, and« follow from the above in the usual way. We say tliat
is true under! iff v;(F) = 1, otherwiseF’ is false under!. If v;(F) = 1, then! is amodelof F.

If F" has some model, thefi is said to besatisfiable If F' is true under any interpretation, thénh

is valid. Observe that a closed QBF is either valid or unsatisfialdeabse closed QBFs are either
true under each interpretation or false under each interfjva. Hence, for closed QBFs, there
is no need to refer to particular interpretations. Therefotosed QBFs are simply either true or
false. Two QBFs artogically equivaleniff they possess the same models.

Example 2.27 Consider the QBH} = Vq(p < ¢). In this QBF, the propositional variablg if
free, whileg is bound. To evaluate the QBF, we thus consider two intesicets: 7; = () settingp
to false; andl, = {p} settingp to true.

In general, given an interpretatioh, we can evaluate a QBF with respectfon two ways:
(i) first evaluate the free variables according t@nd then apply the semantics for the now closed
QBF; (ii) first apply the semantics for quantifiers and thealaate the now quantifier-free formula
using/.

So, in our example (i) is as follows: Fdi, we getvq(L < q), i.e.,Vq(—q); and for I, we
getVq(T < q), i.e.,VYq(q). Both closed QBFs are false, thus neitlemor I, is a model ofF;.
Following attempt (ii), we first treat the universal quardition for¢ according to the semantics
and get(p < T) A (p < L) which is equivalenttp A —p. Clearly, neitherl, nor I, is a model
of this propositional formula. Hence, neithérnor I, is a model ofF;. Observe that we thus can
also state that the closed QBF

IpVq(p < q)
is false.

Now consider the QBF; = Jq(p < ¢). As before, interpretations and I, are of interest.
According to (ii),F, reduces tdp < T) V (p < L) which is equivalent tp Vv —p. Now both,l;
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and I, are models of that formula and thus Bf. This leads us to the further observation that the
closed QBF

Vp3q(p < q)
is true.

QBFs allow us to talk about semantical concepts in propmsadilogic. For instance, a propo-
sitional formulaF' over propositional variablels is satisfiable iff the closed QBFV (F) is true.
Likewise, I is valid iff the closed QBF/V (F) is true. Consequently, given a knowledge-base
and a formula, both over, A F o holds iff the QBFYV (A;co 0 — «) is true.,

Example 2.28 ConsiderA = {p,p — ¢} and leta = q. We havé/ = {p, ¢} and thus consider
the closed QBF

Yp¥a((p A (p — @) — q).
Observe that the inner part of that QBF, i.e., the propositicformula(p A (p — ¢)) — ¢ s
valid, and thus true under all assignments. Hence, the a8 is true.

In the same way as the satisfiability problem of classicappsitional logic is the “prototyp-
ical” problem of NP, i.e., being arNP-complete problem, the satisfiability problem of QBFs in
prenex formare the “prototypical” problems of thieth level of the polynomial hierarchy.

Proposition 2.29 ([30]) Given a propositional formula with its atoms partitioned inte > 1
setsP, ..., P, deciding whetheQ, P,Q2P;, ... Q;P;¢ is true is (i) XF-complete, ifQ, = 3; (ii)
I1’-complete, iQ, = V.

In fact, the hardness results in above proposition hold fanlthose QBFs where the quantifiers
intheprefixQ, P Q2P . . . Q; F; arealternating i.e.,Q; # Q;1; holds, for eachl < j < . We call
such QBFs alséQ;, i)-QBFs.

The complexity landscape can be extended to arbitrary d¢IQd#Fs if the maximal number
of quantifier alternations along a path in the QBF’s formudgetis taken into account. In turn, an
arbitrary QBF can be transformed into an equivalent QBF enpk form. This transformation is
not deterministic and it is crucial for the performance off®lvers requiring the input formula
in this normal form (for details, see [17, 18]).

Finally, we highlight the used reduction approach. Givereaiglon problemD, we aim at
finding a translation schenig, into closed QBFs, such that

1. 7p(-) is faithful, i.e., 7p (K) is true iff K is a yes-instance db;

2. for each instanc&’, 7(K) is computable in polynomial time with respect to the sizé(of
and

3. determining the truth of the QBFs resulting fréfp(-) is not computationally harder (by
means of Proposition 2.29) than the computational comiylexiD.

In addition, if we are interested in a search problgme aim at establishing a certain one-to-
one correspondence between the models of the QBF encodidgb@solutions t¢. Indeed the
7p(+) then has to yield open QBFs instead of closed QBFs. Given ttels of the QB (K),
the computation of the solutions &f has to be feasible in polynomial time.
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2.3 Basic Concept of Encodings

We now sketch our basic ideas for capturing logic-basednaegiation in QBFs. In the following,
we assume a knowledgebaido be given over a set of atoms . Moreover,«, § always refer to
formulas, which are, without loss of generalization, assdito be given over atoms froir. In
general, for a seb of formulas, the set; contains all atoms occurring ib.

Given a finite knowledgebasé&, we assign to each element &f several new atoms via a
generator function. The aim of this function to provide ndanas, such that interpretations over
those atoms are used to represent subsefts dhe formal definition is as follows:

Definition 2.30 A generator function g maps each € A to a new propositional atom(d) ¢ Va,
such thaty(d;) = ¢g(d2) impliesd; = d,, for all 41, 5, € A. With some abuse of notation we write,
for any subse® C A, g(®) to denote the s€ly(d) | 6 € ®}. Moreover, for two different generator
functionsyy, g2, we ensure; (A) N go(A) = 0, i.e., each generator function provides its own fresh
atoms.

Interpretations (usually given over arbitrary atoms) am&dd to subsets of\ via generator
functions as follows.

Definition 2.31 Let I be an interpretationg be a generator function, anél C A. We say thaf
represents® via g iff I N g(A) = g(®). Moreover, for a sequencéd = (®4,. .., ®;) of subsets of
A and a corresponding sequenge= (¢, . . ., g) of different generator functions, we say that an
interpretation/ represents.A via G iff 1 N g;(A) = g:(®;), holds for alll <i < k.

A word of caution is in order here: Whehnrepresent® via someg, I may, but need not, be a
model of®. The forthcoming Definition 2.32 and Lemma 2.33 provide thesing link.

Definition 2.32 For I' C A, a formulaa, and a generator function, define

[=ga = VVFU{a}((/\(Q@) — 0)) — a).

oerl

Lemma 2.33 Let A be a knowledge base, ardidbe an interpretation. Fof® C A, and® C T,
such that/ representsp via generator functiory, then, for alla, we have that]’ =, « is true
under! iff ® - «.

Proof. We have thatd - « iff each model over atomBy ;,, of ® is also a model ofv. By the
semantics of QBFs, it is easily verified that the latter hafidbe closed QBF

VV@U{Q} ((/\ 5) — Oz) (l)
oed

is true. (Recall that a closed QBF is either true under angrimetation/ or false under any
interpretation/). We next increase the set of quantified variables in (1) fi&my . t0 Vrugay,
which yields

Wiug ((\ 6) — ). )

oed
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This QBF is also closed sinck C I and it holds that (2) is true iff (1) is true, since the added
guantified variables do not have any influence here.

Next, we replace eachby the equivalent formuld — §, and add trivially true conjuncts of
the formL — +, yielding*

VVFU{Q}[<( /\(T — 6)) A ( /\ (L — 7))) — oz}. 3)

6cd ~el'\®

So far, this shows thab + « iff the closed QBF (3) is true. Now, let be a generator function,
and consider any interpretatidrwhich represent$ via g. Hence, for each € ¢, ¢(¢) € I, and
for eachy € T'\ @, g(v) ¢ I holds. Recall thay(A) N Va = 0, and thus by our assumptions
g(A) N Viugay = 0. We therefore can rewrite (3) to

Weoga | (AW = 0) A (A (9) = 7)) = al. (4)

ocd ~el'\®

Observe that the atomg-) are free in (4) and thus are subject to interpretations. dt) fay the
definition of a representation (cf Definition 2.31), it is g&s see that (4) is true under afyvhich
represent® via g iff (3) is true. To conclude the proof, observe (4) is equavdltol’ =, o. O

Example 2.34Let A = {p,p — ¢}, o = ¢, and let us consideg(A) = {g,, 9,—,}. Hence, the
generator function provides for eadhe A a new variable of the form(d) = gs. Then,A =, a
is given by

vpva| (95 = B) A (Gpq = (0 = 0)) — a. )

Note that, for eacld C A, we thus have interpretations representibgia g. Sinceg(A) are the
only free variables i\ =, « it is thus sufficient to investigate the following four ingetations
for being models oA = a

Il == (Z)
L, = {gp}
I; = {gp—w}}

I4 = {gpv gp—>q}'

Let us now evaluate (5) under these four interpretation. Wl €lo so by first evaluating the
free variables in (5) and then inspect the remaining QBF, f@lowing method (ii) as sketched in
Example 2.27. We start with. Then (5) reduces to closed QBF

vaq[((L —p)AN(L—(p— C.I))) — q]-
which is equivalent to
VpVq [q]

1This can be done since the replacement theorem holds for QBFs

12



This QBF is obviously false, and hendejs not a model of (5).
For I; one of conjuncts in the antecedent survives. We get

vaq[((T —=p AL —=(p— Q))) — q]-

which is equivalent to
VpVq [p — q]

Still, this QBF is false, and hence, al$ois not a model of (5).
For I3, we get

vaq[((L —p) AT = (p — Q))) — q]-
which is equivalent to
Vqu[(p — q) — q]-

Again, this QBF is false, and hence, alsas not a model of (5).
Finally, evaluating (5) under, yields

Wpv | (T = p) A (T = (p = ))) — .

which is equivalent to
Vqu[(p A(p — Q)> — q]-

This QBF is true since the inner pafp A (p — q)) — ¢ is indeed a valid formula of proposi-

tional logic. Therefore/, is a model of (5).
So having/, as the only model, we conclude that the set it representg wamely{p, p — ¢},
is the only subseb of A, for which® - « holds.

QBFs abbreviated by =, o will be used as subformulae in various more complex QBF
formulae. In a sense, they are useful building blocks thatbsaused repeatedly. We will refer to
a schema liké" =, o as a module.

3 Characterizations

In what follows, we will employ the basic encoding =, « to characterize various problems
for logic-based argumentation. We start by characterianggiments and undercuts via models of
certain QBFs. Then, we suitably combine the latter in suclag tvat the resulting formulas will
allow us to reason about argument trees. We will first comsacggument trees of a fixed structure
(i.e., where the parent function is given when constructiregencodings) and then also provide
encodings, where the parent function is characterized &QBF itself.

13



3.1 Arguments and Undercuts

Definition 3.1 For a knowledge bas4, a formulaa, and a generator function, define

arg(9,8,0) = 2(A=y 1) A (A=ya) A A (906) = = (A {8}) =, 0)).

0EA

Note that the three main parts of the encoding check prasef®), (3), and respectively (4')
from Proposition 2.3.

Theorem 3.2 For a knowledge basd, a formulac, an interpretation/, and® C A, such that
I representsd via generator functiory, we have thatrg(g, A, «) is true under! iff (¢, «) is an
argument.

Proof. Using Lemma 2.33, we immediately conclude that the first tamjuncts ofarg(g, A, @)
are true in/ iff conditions (2) and (3) from Proposition 2.3 hold. So,henly remains to take
care of the third conjunct inrg(g, A, «), i.e.:

A (90) = = (A \ {8} =4 0)).

d€A

However, all of the following five statements are equivalent

G TN (90) = = ((A\{5]) =, 0))
€A

(i) Ik N-(A\{}) =)
0ed

(i) Tl -((A\{0}) =, a)foralléd e

) TE-Wawow(( A (90) = o) = a)forallse e
o€(A\{d})

() TE-~YWagenue (A@\{5}) — o) foralls e @

where the first and last steps are correct becauspresent® via g.

Since(®\ {6}) C (A\{d}), all propositional symbols i\ (®\ {6}) — « are quantified upon
throughvVa\ (syu{ay - HeNce(v) holds iff A(® \ {0}) — «isinvalid in propositional logic, or,
equivalently, iff® \ {0} t# «. In other words, condition (4’) from Proposition 2.3 is séigd iff (v)
holds, i.e., iff(i) holds. O

We now consider the following example in order to compardtinetioning of the third condi-
tion of Definition 3.1 with a simpler alternative that, whifdausible, does not behave as required.
In fact, consider one replaces

A (960) = =((A\{5) =4 0)) inarg(g, A0 by =((A\{5}) =, ).

d€A

We observe the following problem.

14



Example 3.3 Let A = {p, ¢}, leta bep, and letg(A) = {g,, g9,}. So the original version of the
third condition in Definition 3.1 gives the following

(9p — =VpYq((9, — q) — p)) A (94 — ~VDYq((9p — p) — D))

We evaluate this with the following interpretations gejtthe answers we expect for the QBF in
each case.

L =0 therefore the QBF is true
Iy ={g,} therefore the QBF is true
I3 = {94} therefore the QBF is true
I, = {g,,9,} therefore the QBF is false

Now consider the alternative (incorrect) version of themi&tin which gives the following.

(=VpVq((9 — a) — p)) A (=VpVa((g, — p) — D))

We evaluate this with the following interpretations whiblws that we fail to get answer we expect
for the QBF with/s,.

L=0 therefore the QBF is true
I ={g,} therefore the QBF is false
I3 = {94} therefore the QBF is true
I, = {g,,9,} therefore the QBF is false

With the encoding from Definition 3.1 at hand, we can decidesalmer of typical decision
problems, e.g., question whether giv@n «), is (®, «) an argument? A more general variant of
this question is as follows: GiveA and disjoint subsetA™ and A~ of A, does there exist an
argument®, ), such than\™ C ® and® N A~ = ()?

Definition 3.4 Letg be a generator functionanfi™, A~ C A. Then, we define as an abbreviation

fir(g, AT, A7) = N\ g(0) A N\ —g(6).
seAt 0EA~
Corollary 3.5 GivenA, two disjoint setsA™ and A~, a generator functiory, and a formulax,
there exists an argumef®, o) such thatA™ C ® and® N A~ = () iff

39(8) (fix(g, A%, A7) A arglg, A.a)) (6)
is true.

Obviously, by setting\* = ® andA~ = A\ ® in (6), we can answer the question giv@n «),
is (®,a) an argument? In this setting, we shall also wifiitg g, ) instead offiz(g, A*, A™).
Another question is whether a certain elemémt A is part of a support fot.. For this, we can
setA*T = {6} andA~ = () in (6). Finally, if we drop thefiz(g, AT, A™) conjunct, i.e., we set
AT = A~ = () in (6), then our encoding is true iff there is a sub®eif A such that®, «) is an
argument.

Next, we show how to use two different generator functignand g, to characterize subsets
of A simultaneously; in fact, this module allows us to deriveshpports of undercuts.

15



Definition 3.6 For a knowledge basA and generator functiong,, ¢», define

suc(gy, g2, A) = arg(gl,A,—' /\(92(5) — 5))

0EA

Theorem 3.7 For a knowledge basé\, an interpretation/, and ®,, ®, C A, such that/ rep-
resents(®,, ®,) via generator functionggy, g»), we have thakuc(gi, g2, A) is true under[ iff
(P1, (1 A -++ A ¢p) IS an argument, wherépy, . .., ¢,,) is the canonical enumeration é%.

Proof. Sincel represent®; via gs, it follows that, in7, g2(6) — ¢ is equivalent withy whenever
d € &, and is equivalent witir wheneven € A \ ®,. So, the next two statements are equivalent:

(4) I arg(g1, A, = /\(92(5) — 0))

(i) I arg(g1, A, - /\ Dy)

Since! represent®, via g;, Theorem 3.2 yields thdt:) holds iff (&;, = A ®,) is an argument.
Therefore(i), which means thatuc(g;, g2, A) is true in/, holds iff (&, = A ®,) is an argument.
O

Corollary 3.8 For a knowledge bas4, a formulac, an interpretation/, and®, &, C A, such
that 7 representg®,, ®,) via (g1, g2), we have that

arg(ge, A, ) N suc(gr, g2, A)

is true underl iff (®,, o) is an argument and, € UndercutSupports((Ps, a)).

3.2 Argument Trees with Fixed Structure

We now show how to characterize trees via their tuple formgiQBFs. We start with encodings
where the tree structure is fixed via a given parent functiom,the nodes of the tuple form can
be arbitrarily characterized by assignments to the atoams fyenerator functions. In other words,
given a parent functiop overk and a formulay, we characterize all sequencds= (®,, ..., Oy),

such that(«, A, p) is a tuple form. We then refine these encodings to obtain al sequences

A, such that the tuple fornio, A, p) represents a (complete) argument tree. Note that in the
forthcoming encodings, we also assume fifatomes together witph as an input. The aim of the
forthcoming module is to ensure thatorrectly applies to the sequenge in such a way thap
does not lead to duplicate children notes (as required imidiefn 2.18).

Definition 3.9 For a knowledge basd, a sequence of generator functiofis= (¢1, . . ., gx), and
a parent functiorp overk, we define
distinct(G, A,p) = /\ —|< /\ gi(0) < gj(5)>

1,5:p(8)=p(7);i#] deA
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Lemma 3.10 For a knowledge basd, a parent functiorp overk, and an interpretatior! repre-
sentingA = (®4,...,P,) viag = (g1, ..., gx), We have thatlistinct(G, A, p) is true underI iff
p is a parent function forA.

Proof. (only if direction) If distinct(G, A, p) is true inI then for all two distinct and; (each in
the rangel..k) wherep(i) = p(j), there must exist’ € A such thaty;(¢’) < g;(¢’) is false in
I. So,I |= gi(6") N —gj(0") or I |= —gi(6") A g;(6"). The cases are symmetric, so it is enough
to consider the former! = ¢;(6') A —g;(d'). Sinceg;(¢') andg;(d’) are atoms, it then follows
thatg;(¢') € I andg;(8’) ¢ I. Therefore,g;(¢') & I N g;(A) whereasy;(6') € I N g (A) (as
g:(0") € g;(A) due tod’ € A). However,I representsd = (®q,..., D) viaG = (g1,..., )
meaning thaf Ng;(A) is g;(®;) andI Ng;(A) is g;(P;) (Definition 2.31). Whence;(¢') € g:(®;)
andg;(¢') & g;(®;). l.e.,gi(¢") € {g:(9) | 0 € ®;} andg;(d') & {g;(d) | 6 € @;} (cf Definition
2.30). As an immediate consequenéeg ®;. On the other handy;(0’) € {g:(0) | § € ®;}
implies¢’ € ®; becausey; is injective according to Definition 2.30. Now, ¢ ®; together with
§ € @, yields®; # ;.

(if direction) We must show thatistinct(G, A, p) is true inI. In fact, we show that, for any two
distincti andj (each in the range..k) such thatp(i) = p(j), theng;(¢") < g¢;(¢’) is false in/
for somed’ € A. To start with,®; # ®; because is a parent function ford = (®4,..., $y).
Trivially, there then existd’ € A such that eithed’ € ®; andd’ ¢ ¢, or§’ ¢ &, andd’ € ;.
The cases are symmetric, so it is enough to consider the forfremd’ ¢ ¢;, we easily get
g;(0") & {g;(0) | 6 € ®;}, which, by Definition 2.30, meang (') ¢ g;(®;). That is,g;(d') ¢
INg;(A) becausd representsd = (®4,...,P;) viaG = (g1, ..., gx) (cf Definition 2.31). In
view of g;(¢’) € g¢;(A) (due tod’ € A), it then follows thatg;(6’) ¢ I. On the other hand,
§ € ®;. S0,¢:(¢") € {g:(9) | 6 € D;} = g:i(P;). Then,g;(8') € I N g;(A) becausd represents
A= (Py,....,9)viaG = (g1,...,gx) (cf Definition 2.31). Sog;(¢’) € I. Combined with
g;(0") & I as proven above, this yields~ g;(8') < g;(d'). O

Hence, given a parent functiop, we now know how to characterize sequencés =
(P4, ...,Px) via QBFs, such thatp is a parent function fotd. Thus, we can already obtain
all tuple forms(«, A, p), for a givenp. Next, we add further conditions to get only thodesuch
that(«a, A, p) represents also an argument tree.

Definition 3.11 For a knowledge bas@\, a formulac, a sequence of generator functiois=
(q1,---,9x), and a parent functiop over k, we define

dTgtT@@(g,OZ,A,p) = arg(gl,A,oz) N
k

/\ (suc(gi,gp(i), A)) A

AV () A A ~9:0):
i=2 6€A jep*(i)
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Theorem 3.12 For a knowledge basA, an interpretation/, and a tuple form«, A, p), such that
I represents4 via generator functiong we have that the QBF

distinct(G, A, p) A argtree(G, a, A, p)
is true underl iff (o, A, p) represents an argument tree.

Proof. By Lemma 3.10 and the fact that, A, p) is a tuple form (see item 3 in Definition 2.18),
distinct(G, A, p) is true undetl. So, we need only focus amnrgtree(G, o, A, p).

Lemma 2.24 states théat, A, p) represent an argument tree iff (ip,, o) is an argument, and (i)
®; € UndercutSupports(A(p(i))) for 1 < i < k, and (jii) ®; @,y U Ppoiy U -+ - U Py for

1 < i < k. We show that each of (i)-(iii) holds iff the correspondirapgunct inargtree(G, a, A, p)

is true under/. By Theorem 3.2, (i) holds iffarg(g1, A, «), namely the first conjunct in
argtree(G, o, A, p), is true unded. Let us turn to (ii). In fact®; € UndercutSupports(A(p(i)))
means that®;, - A\ ®,;)) is an undercut of®,;,...). By Theorem 3.7(®;,~ A\ ®,;)) is an
argument iffsuc(g;, gp), A), namely the second conjunct tn’gtree(g a, A, p), is true under].

Let us turn to (iii). Tr|V|aIIy,<I> Z Dpi) U D U @pn(sy=1 Mmeans that there exists € ®;
suchthad’ & ®,;) U, - UDpn(i)=1. Smce] represents4 viag, for allj = 1..k, Definition
2.31tells us thag](é’) is true unded |ff 0 € @;. Then,®; @,y U Dy U - - - U Dy iff for

somed’, gl(a’) is true under/ while g,;)(6'), gp2(l)(6 )y ,gpn(z)_ 1(9") are aII false undeI. So,
(b Z q) U q) 2(2) . U ép"(i)ZI |ﬁ

\V (s A N ﬂgjw))

seA jep*(i)
is true under. O

Our next definition captures the condition that for a segaearigenerator functiong, and for
each argument that can be represented via a generatordiupgctn G, if there is an undercut for
it that can be represented by a generator fungjidheng is also ingG.

Definition 3.13 For a knowledge basé\, a parent functiorp over k, a sequence of generator
functionsG = (g1, .. ., gx), and a further generator functiop, we define

complete(G, A, p) /\Vg <5uc g, 9i, A \/ /\ — g;(6 )

Jip(d)=i €A

Theorem 3.14 For a knowledge basA, an interpretation/, and a tuple form«, A, p), such that
I representsA via generator function§ we have that the QBF

distinct(G, A, p) A argtree(G, o, A, p) A complete(G, A, p)

is true underl iff (o, A, p) represents a complete argument tree.
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Proof. By Theorem 3.7 suc(g, g;, A) is true under iff (U, = A ®;) is an argument¥ is taken
to denote the set thatrepresents undef), or, equivalently (W, ...) is an undercut of®;, . . .).
Sincel representsA via G, Definition 2.31 means that (o) is true undet iff 6 € ®;. Therefore,
g(0) < g;(0) is true under! iff ¥ = ®;. So, complete(G, A, p) is true under! iff for each
1 <i < kand for eachl € UndercutSupports(A(i)), there exists an index € {1..k} such that
®; = ¥ andp(j) = i. Then, apply Lemma 2.24 and Theorem 3.12. O

As already shown for single arguments, we can use novitlie, ®) module to encode further
decision problems. In our first example (given in Corollarys, we can ensure that the argument
tree has a particular argument as the root of the tree.

Corollary 3.15 For a knowledge basA, U C A, an interpretation/, and a tuple forma, A, p),
such thatl represents4 via generator function§ we have that the QBF

fix(g1, V) A distinct(G, A, p) N\ argtree(G, a, A, p)
is true underl iff («, A, p) represents an argument tree with radt, «).

As a further example, we can check whether a given tuple féamA,p) with A =
(®q,...,Dx) via QBFs, represents an argument tree. To this eng(et) = Ule gi(A).

Corollary 3.16 A tuple form{(c, (®4,...,®x), p) represent an argument tree iff the closed QBF

k
EIQ(A)(/\ﬁx(gi,(bi) A distinct(G, A, p) A argtree(Q,a,A,p)).
i=1

is true.

Likewise, we can apply these two corollaries to completeiargnt trees by adding the conjunct
complete(G, A, p) accordingly.

3.3 Argument Trees with Arbitrary Structure

Compared to the previous characterization, we now shalbnkyt compute the sequencéfor a
tuple form(«, A, p) with givenp, but also possible parent functiopwvia the encodings. Hence,
we first have to represent functiopgs well as its closurg*. Given a parent functiop overk, we
use further new atoms;, = {p;; | 1 <j <i < k}andP; = {p;; | 1 < j <i < k}. Intuitively,

if an atomp; ; is true undet, then! is used to characterize a parent functiowith p(i) = j. To
show how this can be done, we first need a weaker notion thareatdfanction. We sometimes
also regard a parent function oveas a binary relation ovdfl, . . ., k} satisfying the restrictions
in the following definition.

Definition 3.17 For k = 1, letp = (), and fork > 1, letp C {2..k} x {1..k} be a relation where
(1,7) € pimpliesj < 1.

We say that an interpretatioh representsp via P iff, forall 1 < j < i < k, p;; € I iff
(i,7) € p.
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The forthcoming propositional encoding has those intégpiens as its models which represent
relations (according to Definition 3.17) satisfying the uegment for being a parent functions
(according to Definition 2.18).

Definition 3.18 For anyk > 1, define

k i—1 k i—1
p'r’epafr’ent Pk: /\ \/pzy A /\ /\ (pzj - /\ _‘pzl)
=2 j=1 1=3 j=2

Example 3.19 Considerk = 4. There are six possible trees (i.e., realizations of a parelation
p according to Definition 2.18) that can be formed framodes. These can be represented by the
following six options:

Option1 p(4) =3,p(3) =2,p(2) =1
Option2 p(4) =3,p(3) =1,p(2) =1
Option3 p(4) =1,p(3) =2,p(2) =1
Option 4 p(4) =2,p(3) =1,p(2) =1
Option5 p(4) =2,p(3) =2,p(2) =1
Option 6 p(4) =1,p(3) =1,p(2) =1

By Definition 3.18, formulareparent(P;) is as follows

P21 A (P32 V p31) A (Pa3V pasVpan)
A(ps2 — “p31) A (Pa2 — —Pa1) A (Pa3 — —Pa1 A “Pas2)

Note that(ps 3 — —ps1 A —pa2) implies(pss — —pa1) and(pss — —pa2). Hence, by contrapo-
sition, we getp,; — —ps3) and(ps2 — —pa3), and thereby get the constraints we require on the
relation p to form a parent function.

Lemma 3.20 Letp C {2..k} x {1..k} be a relation wherdi, j) € p impliesj < i, and be
an interpretation, such that represent® via atomspP;. Then, the formulareparent(Py) is true
under! iff p is a parent function ovek.

Proof. Sincep is such thati, j) € p impliesj < i, the lemma holds ifpreparent(P;.) expresses
thatp is a function. In view of Definition 3.17, that eveiyn {2..k} has an image by is expressed

by

k i—1

I'EAV P

i=2 j=1

Thati in {2..k} only has one image by can be expressed as follows:(if j) € p then for all
I # 7, (i,1) € p. Since(i, 1) € pimpliesi < i, this test is only necessary foin {3..k} (observe
that (2, 1) always is inp for £ > 1 and there is no other possibility). Moreover, since the itest
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checked for allj such thati, j) € p holds, it is enough to focus d, [) ¢ p for all [ < j. Finally,
it is sufficient thatj ranges fron2 to 7 — 1. In view of Definition 3.17, this amounts to

I):/k\ (pzj_>/\_‘pzl)

i—1
=2
O

Next, we show how to suitably characterize the closuirécf Definition 2.23) of a parent
functionp.

Definition 3.21 For anyk > 1, define

k i—1

closure(Py, PY) /\ /\ (p” (pij V \/ Dig N\ pz;)))

1=2j=1 l=j+1

Lemma 3.22 Letp be a parent function overandq C {2..k} x {1..k} arelation wherg(i, j) € ¢
impliesj < i. Moreover, let/ be an interpretation representingvia P, andq via P;. Then, the
formulaclosure( Py, Py) is true under! iff p*(i) = {j | q(¢, )} fori = 2..k.

Proof. By Definition 3.17,closure( Py, Pf) is, underl, equivalent, for, = 2.k andj = 1..i — 1,
to

g(i,7) & {p(?’j)’or . . i—1)

p(i,1) andq(l, j) forsomel € {j +1,...,

which, by virtue ofp being a parent function angl being such thati, j) € ¢ implies; < 1,
amounts to

. p(i, j), or
q(i,5) & {p(z’,l) andq(l, j) for somel € {1, ...k}

which is known to characterize the transitive closure @aken as a relation) provided thahas
a finite domain and is acyclic but both points are obvious.here O

Example 3.23 Considerk = 4 as in Example 3.19. One possible parent function w@s = 3,
p(3) = 2, p(2) = 1. We use atom®; = {p21, P31, P11, P32, Pa2, Pas}y and likewiseP;. Any
interpretation/ which assigns true tps 1, ps 2, pa 3, and false ts 1, ps,1, andp, » represents the
above parent functiop via P,. Let us now evaluatelosure( Py, P;) under such. In fact, we then
expect that only thosé are models otlosure( Py, P;) which assign true to all atoms if;. By
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definition,/ then representg* (according to Definition 2.23) vi&;. Observe that we have
closure(Py, Py) = (p;l <—>p2,1> A (7)
Py (s V (ps2 A p3))) A (®)
Pho = Psz) A (©)
Pix = (Pa1 V (a2 A Pog) V (Pag A p:‘;,l))) A (10)
Piz = (P12 V (paz A p§,2))) A (11)
Pia © Pas)- (12)

Recall that we considel assigning true t@. 1, ps 2, p4,3; conjuncts (7), (9), and (12) thus require
that p; ;, p3 ., pi 5 are also assigned to true by a modebf closure( Py, Py). Now we havey
andps in I. Thus by line (8) als@z , is true inI. Similarly for line (10), we already know that
p3, andp, 3 are true in/, and we can conclude that algg , is true in/. Finally, (11) forces also
p1 to be true inl as well, since we already have seen that for a méd#sop, 3 andp; , are true
inl.

T N/ N N - NN

We are now ready to relate interpretations to parent funstio combination with sequences
A = (Pq,...,P;). Forthis, we have to guarantee that models represent pargttons (this is
done with the already introduced conjumetparent(FPy)) and that the represented parent function
correctly relates to a represented sequed@oiding duplicate children (in a way that is similar
to what we did in Definition 3.9 for the modul&stinct(G, A, p). The latter task is realized via the
second conjunct in the forthcoming definition.

Definition 3.24 For a knowledge bas4, and a sequence of generator functiehs- (g, . .., gx),
define

parent(G, A, Py) = preparent(Py) A /\ /_\ /_\ <(pi7l Apji) — = /\ (g:(0) < gj(é))> )

i=3j=21=1 seA

Lemma 3.25 For a knowledge basé, and an interpretation/ representingd = (®4,..., &)
via G, and a relationp via P, we have thaparent(G, A, Py) is true under! iff p is a parent
function for A.

Proof. We already know from Lemma 3.20 thateparent (Py,) is true under iff p (represented by
I) is a parent function (ovek). We thus need to show that the remaining paniotnt(G, A, Py)
is true undet iff pis a parent function farl = (@4, ..., @), thatis,p(i) = p(j) implies®; # @,
foranyl < j < i < k (in fact, it is sufficient to us€ < j < i < k, since the root has obviously
no parent node). Since also representst (viaG = (g1, ..., 9%)), we haved; # &; iff there
exists som& < A such thaty;(6) < g;(9) is false inl. This holds iff= A ;.1 (9:(0) < g;(6))
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is true under/. Since we perform this test for each pair of childeéf), A(j) of each noded(l)
in the annotated tree (represented/hythe claim follows by the same arguments as used to show
Lemma 3.10. O

Definition 3.26 For a knowledge basé\, a formula«, and a sequence of generator functions
G ={91,...,9xr), we define

,_.

argtree(G, o, A, Py, PY) = arg(g1, A, a) A
j=

/\ <p”- — suc gl,gj,A)>

AA
AV (56 » A G, = -16))

2

Theorem 3.27 For a knowledge basé\, a formulac«, and an interpretation/, representing a
sequenced = (dq, ..., ®;) via g, and a relationp via P, we have that the QBF

T(G, A, Py) = parent(G, A, Py) A HP,;k(closure(Pk,P,j) A argtree(g,a,A,Pk,P§)>
is true underl iff (o, A, p) represents an argument tree.

Proof. We only give a sketch here, since we already know the follgvpiroperties:
e By Lemma 3.25/ represent a parent function feriff parent(G, A, P;) is true under;

e By Lemma 3.22, given an interpretatidirepresenting a parent functign(over k) via Py,
I represents the transitive closurepofia Py iff closure( Py, Py) is true undet;

e Formulaargtree(G, o, A, Py, Py) follows the same structure from Definition 3.11 but in-
stead of using the functions p* explicitly, we represent them (see Definition 3.26) by the
respective set®, and P} of variables. Using this observation and by suitably conmgn
the techniques foP, and P (as done in the proofs above) with the structure of the proof
of Theorem 3.12, one can show the following relation: Giveny, and an interpretatioh
representing4 via G, a parent function for A via P, and the transitive closure of i.e.

p*, via P}, we have thato, A, p) represents an argument treedfijtree(G, a, A, Py, PY) is
true under!.

From the latter observation and the semantics of the etiateuantifier, the claim holds. Note
that we useddP; just to “hide” the variables representing the transitivesdre of the parent
function from the user, since it is not an explicit part of tleguested problem, but rather an
internal detail which is fully determined hy O
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Definition 3.28 For a knowledge bas4, a sequence of generator functiahs= (g1, . . ., gx), and
a further generator functiog, we define

complete(G, A, Py) /\Vg <suc 9,9i,A) — \/ Dij A /\ — g;(0 ))

Jj=1 ISTAN

Theorem 3.29 For a knowledge basé\, a formulac«, and an interpretation/, representing a
sequenced = (94, ..., D) viag, and a relationp over P, we have that the QBF

CAT(G,A, P,) = parent(G,A, Py) A
HP,;k(closure(Pk,Pg) A argtree(G, a, A, Py, Py) A complete(g,A,Pk)>
is true underl iff (o, A, p) represents a complete argument tree.

The proof of Theorem 3.29 is similar to the proof for Theored¥3®xcept that at the end, Theorem
3.27 instead of Theorem 3.12 is required.

Again, we now can decide different decision problems by gisibove concepts plus fixing
some of the concepts. An interesting question is as follo@sen o and A, does there exist
an argument tree (a complete argument tree) using 4t other words, can we find a parent
functionp, such that«, A, p) represents an argument tree (a complete argument tree)?

Corollary 3.30 GivenA = ¢4,...,d, and a formulax, there exists a parent functign such that
(a, A, p) represents

1. an argument tree iff the closed QBF

3P,3G(A (/\ﬁx 9 @) A AT(G,A, Py))

is true.

2. a complete argument tree iff the closed QBF

IP,3G(A (/\ﬁx (g, ®) A CAT(G, A Pk)>

is true.

4 Discussion

There is increasing interest in formalizations for argutagan, and in particular computational
models of argument (see for example [3, 12, 27, 15, 5, 7])himpaper, we have addressed this
issue in the context of argumentation with classical logidtee underlying logic by providing
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encodation in terms of quantified Boolean formulas. Thisraggh is beneficial with respect to
several aspects.

First, it offers the possibility of implementing decisioropedures for argumentation based on
classical logic using existing QBF solvers.

Second, it allows to obtain novel complexity results foreneisting decision problems asso-
ciated with logic-based argumentation. Indeed, while fisteact argumentation, there has been
a comprehensive analysis of computational complexity aiesof the key decision problems (in
particular [14]), there are only a few published resultsaayning computational complexity of
logic-based argumentation. In [25], for instance, it iswhdhat given a knowledgebage and
a formulac, ascertaining whether there istaC A such that(®, o) is an argument (i.e® is a
minimal consistent set of premises entailingis a >5-complete decision problem. Our results
can be employed to obtain similar results for more involvedision problems. In fact, since all
encodings are constructible in polynomial time with respethe size of the problem description,
inspecting the quantifier structure of the encodings andyappProposition 2.29 immediately
yields upper complexity bounds for the encoded problems.irfstance, this shows that several
decision problems formulated for argumentation trees netoaated inX5. Since the evaluation
of a single argument is already hard for this clas,completeness for those decision problems
over argumentation trees is expected. However, if com@egamentation trees are taken into
account, our encodings indicate that this leads to an isorgaomplexity, having such problems
located inz%. Establishing exact complexity results for numerous decigroblems in logic-based
argumentation is indeed part of our ongoing work.

Finally, our results are useful for comparing different eygches to argumentation. In fact,
there is increasing interest in algorithms and implemeéatfor argumentation systems includ-
ing for abstract argumentation systems [10, 2, 11, 28], ésueption-based argumentation sys-
tems [23, 13, 21], for logic-based argumentation systersedban defeasible logic [22, 9, 29, 8],
and for logic-based argumentation systems based on @dhssiic [16]. Undertaking empirical
evaluations that compare these algorithms is difficult bseaof the diverse approaches taken in
implementing them. So undertaking evaluations via endodatas QBFs offers the opportunity
for a level playing field for comparisons that draw out thesgths and weaknesses of each of the
algorithms and their underlying reasoning mechanisms.
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