
T ECHNICAL

R E P O R T

Institut für Informationssysteme

Abteilung Datenbanken und

Artificial Intelligence

Technische Universität Wien

Favoritenstr. 9

A-1040 Vienna, Austria

Tel: +43-1-58801-18403

Fax: +43-1-58801-18492

sekret@dbai.tuwien.ac.at

www.dbai.tuwien.ac.at

INSTITUT FÜR INFORMATIONSSYSTEME

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Encoding Deductive Argumentation in
Quantified Boolean Formulae

DBAI-TR-2008-60

Philippe Besnard Anthony Hunter Stefan Woltran

DBAI T ECHNICAL REPORT

2008



DBAI T ECHNICAL REPORT

DBAI T ECHNICAL REPORT DBAI-TR-2008-60, 2008

Encoding Deductive Argumentation in Quantified
Boolean Formulae

Philippe Besnard1 Anthony Hunter 2 Stefan Woltran3

Abstract. There are a number of frameworks for modelling argumentation in logic. They
incorporate a formal representation of individual arguments and techniques for comparing
conflicting arguments. A common assumption for logic-basedargumentation is that an ar-
gument is a pair〈Φ, α〉 whereΦ is minimal subset of the knowledgebase such thatΦ is
consistent andΦ entails the claimα. Different logics provide different definitions for con-
sistency and entailment and hence give us different optionsfor argumentation. Classical
propositional logic is an appealing option for argumentation but the computational viabil-
ity of generating an argument is an issue. To better explore this issue, we use quantified
Boolean formulae to characterize an approach to argumentation based on classical logic.

1IRIT-CNRS, Universitè Paul Sabatier, 118 rte de Narbonne,31062 Toulouse, France
2Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
3Institute for Information Systems 184/2, Technische Universität Wien, Favoritenstrasse 9-11, 1040 Vi-

enna, Austria.

Copyright c© 2008 by the authors



1 Introduction

Argumentation is a vital aspect of intelligent behaviour byhumans. Consider diverse professionals
such as politicians, journalists, clinicians, scientists, and administrators, who all need to collate and
analyse information looking for pros and cons for consequences of importance when attempting to
understand problems and make decisions.

There is a range of proposals for logic-based formalisations of argumentation (for reviews see
[12, 27, 7]). These proposals allow for the representation of arguments for and against some claim,
and for counterargument relationships between arguments.

In a number of key proposals for argumentation, an argument is a pair where the first item in
the pair is a consistent set (or a minimal consistent set) of formulae that proves the second item
which is a formula (see for example [4, 20, 26, 6, 1, 22, 13]). Hence, different underlying logics
provide different definitions for consistency and entailment and hence give us different options for
defining the notion of an argument.

Since classical logic has many advantages for representingand reasoning with knowledge in-
cluding syntax, proof theory and semantics for the intuitive language incorporating negation, con-
junction, disjunction and implication, it is an interesting and promising choice for the underlying
logic for argumentation. However, it is computationally challenging to generate arguments from a
knowledgebase using classical logic. If we consider the problem as an abduction problem, where
we seek the existence of a minimal subset of a set of formulae that implies the consequent, then
the problem is in the second level of the polynomial hierarchy [19]. Furthermore, given a knowl-
edgebase∆ and a formulaα, it has been shown that ascertaining whether there is a subset Φ of ∆
such that〈Φ, α〉 is an argument (i.e.Φ is consistent,Φ entailsα, and there is no subset ofΦ that
entailsα) is aΣp

2-complete decision problem [25].
Beyond these observations, there remains a range of furtherimportant computational complex-

ity questions. So to better understand the use of classical logic in argumentation, and in particular
to understand its computational properties, we use quantified Boolean formulae (QBFs) to charac-
terize an approach to argumentation that is based on classical logic. This characterisation can then
be used to obtain computational complexity results in termsof upper bounds.

A further reason to characterize logic-based argumentation in the form of QBFs is that we
can then harness implementations of QBF solvers to develop prototype implementations for logic-
based argumentation. There are numerous QBF solvers available (see, e.g, [24] and the references
therein), and the encodations we present in this paper can bestraightforwardly handled in them.

2 Preliminaries

2.1 Logical argumentation

In this section we review an existing proposal for logic-based argumentation [6]. We consider a
classical propositional language. We useα, β, γ, . . . to denote formulae and∆, Φ, Ψ, . . . to de-
note sets of formulae. Deduction in classical propositional logic is denoted by the symbol⊢ and
deductive closure byTh so thatTh(Φ) = {α | Φ ⊢ α}.

2



For the following definitions, we first assume a knowledgebase ∆ (a finite set of formulae)
and use this∆ throughout. We further assume that every subset of∆ is given an enumeration
〈α1, . . . , αn〉 of its elements, which we call its canonical enumeration. This really is not a de-
manding constraint: In particular, the constraint is satisfied whenever we impose an arbitrary total
ordering over∆. Importantly, the order has no meaning and is not meant to represent any respec-
tive importance of formulae in∆. It is only a convenient way to indicate the order in which we
assume the formulae in any subset of∆ are conjoined to make a formula logically equivalent to
that subset.

The paradigm for the approach is a large repository of information, represented by∆, from
which arguments can be constructed for and against arbitrary claims. Apart from information
being understood as declarative statements, there is no a priori restriction on the contents, and the
pieces of information in the repository can be as complex as possible. Therefore,∆ is not expected
to be consistent. It need not even be the case that every single formula in∆ is consistent.

The framework adopts a very common intuitive notion of an argument. Essentially, an argu-
ment is a set of relevant formulae that can be used to classically prove some claim, together with
that claim. Each claim is represented by a formula.

Definition 2.1 An argument is a pair 〈Φ, α〉 such that: (1)Φ ⊆ ∆; (2) Φ 6⊢ ⊥; (3) Φ ⊢ α; and
(4) there is noΦ′ ⊂ Φ such thatΦ′ ⊢ α. We say that〈Φ, α〉 is an argument forα. We callα the
claim (or consequent) of the argument andΦ thesupport of the argument (we also say thatΦ is a
support forα).

Example 2.2 Let∆ = {α, α → β, γ → ¬β, γ, δ, δ → β,¬α,¬γ}. Some arguments are:

〈{α, α → β}, β〉
〈{¬α},¬α〉

〈{α → β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

By monotonicity of classical logic the following equivalent characterization easily follows.

Proposition 2.3 A pair 〈Φ, α〉 is an argument iff it satisfies (1)–(3) from Definition 2.1 together
with (4’) for eachφ ∈ Φ, (Φ \ {φ}) 6⊢ α.

Arguments are not independent. In a sense, some encompass others (possibly up to some form
of equivalence). To clarify this requires a few definitions as follows.

Definition 2.4 An argument〈Φ, α〉 is more conservativethan an argument〈Ψ, β〉 iff Φ ⊆ Ψ and
β ⊢ α.

Example 2.5 〈{α}, α ∨ β〉 is more conservative than〈{α, α → β}, β〉.

Definition 2.6 An argument〈Φ, α〉 is strictly more conservative than an argument〈Ψ, β〉 iff
Φ ⊆ Ψ, β ⊢ α, and eitherΨ 6⊆ Φ or α 6⊢ β.

3



Some arguments directly oppose the support of others, whichamounts to the notion of an
undercut.

Definition 2.7 An undercut for an argument〈Φ, α〉 is an argument〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where
{φ1, . . . , φn} ⊆ Φ.

Example 2.8 Let ∆ = {α, α → β, γ, γ → ¬α}. Then,〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an
undercut for〈{α, α → β}, β〉. A less conservative undercut for〈{α, α → β}, β〉 is 〈{γ, γ →
¬α},¬α〉.

Definition 2.9 〈Ψ, β〉 is a maximally conservative undercutfor 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut
for 〈Φ, α〉 such that no undercuts of〈Φ, α〉 are strictly more conservative than〈Ψ, β〉.

The value of the following definition of canonical undercut is that we only need to take the
canonical undercuts into account. This means we can justifiably ignore the potentially very large
number of non-canonical undercuts.

Definition 2.10 An argument〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 is a canonical undercut for 〈Φ, α〉 iff it is a
maximally conservative undercut for〈Φ, α〉 and〈φ1, . . . , φn〉 is the canonical enumeration ofΦ.

The next result is central.

Proposition 2.11 (Theorem 5.4 [6])A pair 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 is a canonical undercut for
〈Φ, α〉 iff it is an undercut for〈Φ, α〉 and〈φ1, . . . , φn〉 is the canonical enumeration ofΦ.

In other words, the canonical undercuts for〈Φ, α〉 are given by all arguments of the form
〈Ψ,¬(φ1∧ . . .∧φn)〉 where〈φ1, . . . , φn〉 is the canonical enumeration ofΦ. Later we need to refer
to all possible supports of canonical undercuts for an argument. We thus introduce the following
concept.

Definition 2.12 For 〈Φ, α〉, we defineUndercutSupports(〈Φ, α〉) as the set of its supports:

{Ψ | 〈Ψ, β〉 is a canonical undercut for〈Φ, α〉}.

We shall make use of the notationUndercutSupports(〈Φ, α〉) later when defining suitable rep-
resentations of argument trees. Using Proposition 2.11, wecan alternatively characterize the set
UndercutSupports(〈Φ, α〉) as follows.

Proposition 2.13 For 〈Φ, α〉, with 〈φ1, . . . , φn〉 the canonical enumeration ofΦ,
UndercutSupports(〈Φ, α〉) = {Ψ | 〈Ψ,¬(φ1 ∧ · · · ∧ φn)〉 is an argument}.

Next we recall the notion of an argument tree following [6], and then introduce a more succinct
notion to represent argument trees which is also more suitable for our later purposes.

An argument tree describes the various ways an argument can be challenged, as well as how
the counter-arguments to the initial argument can themselves be challenged, and so on recursively.

4



Definition 2.14 An annotated treeis a tree where each node is a pair〈Φ, β〉. Anargument tree
for α is an annotated tree, such that

1. each node is an argument with the root being an argument forα;

2. for no node〈Φ, β〉 with ancestor nodes〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset ofΦ1∪· · ·∪Φn;

3. the children nodes of a nodeN consist of some canonical undercuts forN that obey 2.

A complete argument treeis as just defined with “some” replaced by “all” in item 3 above.

The definition of an argument tree ensures that each argumenton a branch has to introduce
at least one formula in its support that has not already been used by ancestor arguments. This
is meant to avoid making explicit undercuts that simply repeat over and over the same reasoning
pattern except for switching the role of some formulae (as illustrated in Example 2.16 below).

As a notational convenience, in examples of argument trees the 3 symbol is used to denote
the consequent of an argument when that argument is a canonical undercut (no ambiguity arises as
proven in [6]).

Example 2.15 Given∆ = {α, α → β, γ, γ → ¬α,¬γ ∨ ¬α}, we have the following argument
tree.

〈{α, α → β}, β〉
ր տ

〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 〈{γ,¬γ ∨ ¬α},¬(α ∧ (α → β))〉

Note the two undercuts are equivalent. They do count as two arguments because they are based on
two different items of the database (even though these itemsturn out to be logically equivalent).

Example 2.16 Let ∆ = {α, α → β, γ → ¬α, γ}.

〈{α, α → β}, β〉
↑

〈{γ, γ → ¬α}, 3〉
↑

〈{α, γ → ¬α}, 3〉

This is not an argument tree because the undercut to the undercut is actually making exactly the
same point (thatα andγ are incompatible) as the undercut itself does, just by usingmodus tollens
instead of modus ponens.

Example 2.17 Given∆ = {α, β, α → γ, β → δ,¬α ∨ ¬β}, consider the following tree.

〈{α, β, α → γ, β → δ}, γ ∧ δ〉
ր տ

〈{α,¬α ∨ ¬β},¬β〉 〈{β,¬α ∨ ¬β},¬α〉

5



This is not an argument tree because the two children nodes are not maximally conservative under-
cuts. The first undercut is essentially the same argument as the second undercut in a rearranged
form (relying onα andβ being incompatible, assume one and then conclude that the other doesn’t
hold). If we replace these by the maximally conservative undercut〈{¬α ∨ ¬β}, 3〉, we obtain an
argument tree.

Notably, there is a finite number of argument trees with the root being an argument with the
claimα that can be formed from∆, and each of these trees has finite branching and a finite depth
(the finite tree property).

For our purposes in this paper, we require a more formal representation of argument trees. It
makes use of the fact that all consequences in the nodes (except the root) of an argument tree are
determined by their direct ancestor (as already mentioned above when introducing3). To this
end, a node is now a set of formulas rather than an argument, and a parent function determines the
structure of the tree.

Definition 2.18 A parent function p (overk ≥ 1) is a partial function from{1..k} to {1..k}, such
thatp(j) is undefined forj = 1 butp(j) is defined andp(j) < j, for any1 < j ≤ k.

p is a parent functionfor a sequenceA = 〈Φ1, . . . , Φk〉 of subsets of∆ if p is a parent function
overk and is such thatp(i) = p(j) impliesΦi 6= Φj , for any1 < j < i ≤ k.

A tuple form is a triple 〈α,A, p〉, whereα is a formula,A is a sequence of subsets of∆, and
p is a parent function forA.

Given a tuple form〈α, 〈Φ1, . . . , Φk〉, p〉, we define, for each1 ≤ i ≤ k, an associated pair,
A(i), as followsA(1) = 〈Φ1, α〉 and, fori > 1, A(i) = 〈Φi,¬(φ1 ∧ · · · ∧ φn)〉, where〈φ1, . . . , φn〉
is the canonical enumeration ofΦp(i).

Tuple forms are an alternative way to denote annotated trees. Intuitively,A collects all supports
of the tree’s nodes,α is the claim of the root node, and the parent functionp links each node to
its parent node, and thus determines the structure of the tree. This is feasible, sincep is defined
for each node except the root and links to a previous element in A; the condition thatp(i) = p(j)
impliesΦi 6= Φj , for i 6= j just avoids duplicate children nodes.

The concept of tuple forms is best illustrated by examples.

Example 2.19 First, consider the tree from Example 2.15. That annotated tree can be represented
in tuple form〈β, 〈Φ1, Φ2, Φ3〉, p〉 whereΦ1 = {α, α → β}, Φ2 = {γ, γ → ¬α}, Φ3 = {γ,¬γ ∨
¬α}, andp is defined asp(2) = p(3) = 1. An alternative way to represent the same annotated tree
would be to exchange the sets forΦ2 andΦ3.

Conversely, given the tuple form〈β, 〈Φ1, Φ2, Φ3〉, p〉, we can derive from it an annotated tree
as follows: The nodes are given byA(1), A(2), A(3), and we get by definition ofp thatA(2) and
A(3) are the children of the root nodeA(1).

Example 2.20 As a second example, consider Example 2.16. The only way to achieve a tuple form
for that tree is〈β, 〈Φ1, Φ2, Φ3〉, p〉 whereΦ1 = {α, α → β}, Φ2 = {γ, γ → ¬α}, Φ3 = {α, γ →
¬α}, andp is defined asp(2) = 1, p(3) = 2.

6



We now formally describe these relations.

Definition 2.21 We define a mappingTreeForm from tuple forms to graphs as follows: For each
t = 〈α, 〈Φ1, . . . , Φk〉, p〉, the nodes ofTreeForm(t) are given by the set{A(i) | 1 ≤ i ≤ k}; and
a pair (A(i), A(j)) is an edge ofTreeForm(t) iff p(j) = i, for 1 < j ≤ k.

Lemma 2.22 For any tuple formt, TreeForm(t) is an annotated tree.

Proof. TreeForm(t) is a tree because it is a graph which is connected (ignoring direction of edges)
and has exactly one edge less than it has vertices:

By Definition 2.21,(A(i), A(j)) is an edge iffp(j) = i (for 1 < j ≤ k). I.e.,(A(p(j)), A(j))
for j = 1..k exhausts all edges. Sincep is a parent function,TreeForm(t) hask − 1 edges. There
remains to show thatTreeForm(t) is connected (when directions of edges are ignored). This
easily follows from the fact that any node inTreeForm(t) is connected toA(1) (the latter is true
because if1 < j ≤ k, then there existsn such thatpn(j) = 1 asp is a parent function). In short,
TreeForm(t) is a tree. It is an annotated tree because Definition 2.21 trivially shows that all nodes
in TreeForm(t) are pairsA(i) for i = 1..k. 2

In view of the above lemma, we call, for a given tuple formt, TreeForm(t) thetree associated
to t. As well, we say thatt represents treeTreeForm(t).

We now characterize argument trees and complete argument trees via tuple forms. This result is
valuable later when characterizing argument trees via QBFs. We need one more technical notation.

Definition 2.23 Given a tuple form〈α, 〈Φ1, . . . , Φk〉, p〉, we define, for each1 ≤ i ≤ k, p∗(i) as
the set of indices ofΦi’s ancestors, i.e.,

p∗(i) = {pn(i) | there existsm ≥ n ≥ 1 such thatpm(i) = 1}.

Lemma 2.24 A tuple form〈α, 〈Φ1, . . . , Φk〉, p〉 represents

• an argument tree iff

(1) 〈Φ1, α〉 is an argument,

(2) for each1 < i ≤ k, Φi 6⊆
⋃

j∈p∗(i) Φj , and

(3) for each1 < i ≤ k, Φi ∈ UndercutSupports(A(p(i))) hold.

• a complete argument tree iff, (1–3) holds together with

(4) for each1 ≤ i ≤ k and for eachΨ ∈ UndercutSupports(A(i)), there exists an index
j ∈ {1..k}, such thatΦj = Ψ andp(j) = i.

7



Proof. The first statement in Lemma 2.24 means thatTreeForm(t) is an argument tree iff (1)–(3)
hold together. Let us first assume thatTreeForm(t) is an argument tree. Then, (1) and (2) are
easily verified. By item 3 in Definition 2.14, the children of anodeN are canonical undercuts for
N . So, if N is 〈Φ, β〉, any child ofN is a canonical undercutA(i) = 〈Φi,¬(φ1 ∧ · · · ∧ φn)〉 of
N = A(p(i)). Then, Definition 2.12 directly yieldsΦi ∈ UndercutSupports(A(p(i))). That is, (3)
holds as well.

As to the other direction, let us assume that (1)-(3) hold. By(3) and item 4 in Definition 2.18,
Definition 2.12 means thatA(i) is an argument for1 < i ≤ k. Due to (1), it follows that item 1 in
Definition 2.14 is verified. It is easy to verify that (2) implies item 2 in Definition 2.14. Lastly, (3)
and item 4 in Definition 2.18 entail (cf Definition 2.12) that for 1 < i ≤ k, eachA(i) is a canonical
undercut ofA(p(i)). I.e., item 3 in Definition 2.14 holds.

Let us assume (1)-(4). Let us further assume thatTreeForm(t) is not a complete argument
tree. In view of Definition 2.14, this can only happen due to a nodeN = A(p(i)) lacking at
least one canonical undercut as a child (TreeForm(t) is an argument tree, as proved above). By
Definition 2.12, there then existsΨ in UndercutSupports(A(j)), for somej, satisfyingΨ = Φi

for no i such thatp(i) = j. This contradicts (4). So, the if direction is proved. Proofof the only if
direction is easy and is omitted. 2

Example 2.25 Consider again the tuple form for the tree in Example 2.16, asgiven in Exam-
ple 2.20. We havep∗(3) = {1, 2} and thus

⋃

j∈p∗(3) Φj = Φ1 ∪ Φ2 = {α, γ, γ → ¬α}. Since
Φ3 = {α, γ → ¬α} is a subset of that set, Condition (2) in Lemma 2.24 is violated. Thus, we
have that the tuple form does not represent an argument tree.

Lemma 2.26 Each argument tree is represented by a tuple form.

Proof. Consider an argument treeT with nodesN1, . . . , Nk, where nodes are of the formNi =
(Φi, αi), for each1 ≤ i ≤ k, andN1 is the root ofT . ConsidertT = 〈α1, 〈Φ1, . . . , Φk〉, p〉 where
p is a partial function{1..k} to {1..k} satisfying, for each1 ≤ j < k, p(j) = i iff Nj is a children
node ofNi in T . SinceT is an argument tree,p is in fact a parent function overk. ThustT is
a tuple form and one can show thatTreeForm(tT ) = T , which holds by the observation that the
pairs associated totT satisfyA(i) = Ni, for each1 ≤ i ≤ k. 2

2.2 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinary propositional formulas by the admission
of quantifications over propositional variables. In particular, the language of QBFs contains, for
any atomp, unary operators of the form∀p and∃p, calleduniversalandexistential quantifiers,
respectively. However, the quantifiers do not range over some arbitrary domain, but over truth
assignments. Thus, a QBF of form∀p ∃q F is satisfiable iff, for all truth assignments ofp, there is
a truth assignment ofq such thatF is satisfiable; see also Example 2.27 below.

An occurrence of a propositional variablep in a QBFF is free iff it does not appear in the
scope of a quantifierQp (Q ∈ {∀, ∃}), otherwise the occurrence ofp is bound. If F contains no
free variable occurrences, thenF is closed, otherwiseF is open. Furthermore, we writeF [p/φ] to

8



denote the result of uniformly substituting each free occurrence of the variablep in F by aφ. For a
setP = {p1, . . . , pn} of propositional variables, we let∀P F stand for the formula∀p1∀p2 · · · ∀pn,
and∃P F for the formula∃p1∃p2 · · · ∃pn.

By aninterpretation, I, we mean a set of atoms. Informally, an atomp is true underI iff p ∈ I.
In general, the truth value,νI(F ), of a QBFF under an interpretationI is recursively defined as
follows:

1. if F = ⊤, thenνI(F ) = 1;

2. if F = p is an atom, thenνI(F ) = 1 if p ∈ I, andνI(F ) = 0 otherwise;

3. if F = ¬G, thenνI(F ) = 1 − νI(G);

4. if F = (F1 ∧ F2), thenνI(F ) = min({νI(F1), νI(F2)});

5. if F = ∀p G, thenνI(F ) = νI(G[p/⊤] ∧ G[p/⊥]);

6. if F = ∃p G, thenνI(F ) = νI(G[p/⊤] ∨ G[p/⊥]).

The truth conditions for⊥, ∨, →, and↔ follow from the above in the usual way. We say thatF
is true underI iff νI(F ) = 1, otherwiseF is false underI. If νI(F ) = 1, thenI is amodelof F .
If F has some model, thenF is said to besatisfiable. If F is true under any interpretation, thenF
is valid. Observe that a closed QBF is either valid or unsatisfiable, because closed QBFs are either
true under each interpretation or false under each interpretation. Hence, for closed QBFs, there
is no need to refer to particular interpretations. Therefore, closed QBFs are simply either true or
false. Two QBFs arelogically equivalentiff they possess the same models.

Example 2.27 Consider the QBFF1 = ∀q(p ↔ q). In this QBF, the propositional variablep if
free, whileq is bound. To evaluate the QBF, we thus consider two interpretations:I1 = ∅ settingp
to false; andI2 = {p} settingp to true.

In general, given an interpretationI, we can evaluate a QBF with respect toI in two ways:
(i) first evaluate the free variables according toI and then apply the semantics for the now closed
QBF; (ii) first apply the semantics for quantifiers and then evaluate the now quantifier-free formula
usingI.

So, in our example (i) is as follows: ForI1, we get∀q(⊥ ↔ q), i.e.,∀q(¬q); and for I2, we
get∀q(⊤ ↔ q), i.e.,∀q(q). Both closed QBFs are false, thus neitherI1 nor I2 is a model ofF1.
Following attempt (ii), we first treat the universal quantification forq according to the semantics
and get(p ↔ ⊤) ∧ (p ↔ ⊥) which is equivalent top ∧ ¬p. Clearly, neitherI1 nor I2 is a model
of this propositional formula. Hence, neitherI1 nor I2 is a model ofF1. Observe that we thus can
also state that the closed QBF

∃p∀q(p ↔ q)

is false.
Now consider the QBFF2 = ∃q(p ↔ q). As before, interpretationsI1 andI2 are of interest.

According to (ii),F2 reduces to(p ↔ ⊤) ∨ (p ↔ ⊥) which is equivalent top ∨ ¬p. Now both,I1

9



andI2 are models of that formula and thus ofF2. This leads us to the further observation that the
closed QBF

∀p∃q(p ↔ q)

is true.

QBFs allow us to talk about semantical concepts in propositional logic. For instance, a propo-
sitional formulaF over propositional variablesV is satisfiable iff the closed QBF∃V (F ) is true.
Likewise,F is valid iff the closed QBF∀V (F ) is true. Consequently, given a knowledge-base∆
and a formula, both overV , ∆ ⊢ α holds iff the QBF∀V (

∧

δ∈∆ δ → α) is true.

Example 2.28 Consider∆ = {p, p → q} and letα = q. We haveV = {p, q} and thus consider
the closed QBF

∀p∀q
(

(p ∧ (p → q)) → q
)

.

Observe that the inner part of that QBF, i.e., the propositional formula(p ∧ (p → q)) → q is
valid, and thus true under all assignments. Hence, the aboveQBF is true.

In the same way as the satisfiability problem of classical propositional logic is the “prototyp-
ical” problem ofNP, i.e., being anNP-complete problem, the satisfiability problem of QBFs in
prenex formare the “prototypical” problems of thek-th level of the polynomial hierarchy.

Proposition 2.29 ([30]) Given a propositional formulaφ with its atoms partitioned intoi ≥ 1
setsP1, . . . , Pi, deciding whetherQ1P1Q2P2 . . . QiPiφ is true is (i) Σp

i -complete, ifQ1 = ∃; (ii)
Πp

i -complete, ifQ1 = ∀.

In fact, the hardness results in above proposition hold onlyfor those QBFs where the quantifiers
in theprefixQ1P1Q2P2 . . . QiPi arealternating, i.e.,Qj 6= Qj+1 holds, for each1 ≤ j < i. We call
such QBFs also(Q1, i)-QBFs.

The complexity landscape can be extended to arbitrary closed QBFs if the maximal number
of quantifier alternations along a path in the QBF’s formula tree is taken into account. In turn, an
arbitrary QBF can be transformed into an equivalent QBF in prenex form. This transformation is
not deterministic and it is crucial for the performance of QBF solvers requiring the input formula
in this normal form (for details, see [17, 18]).

Finally, we highlight the used reduction approach. Given a decision problemD, we aim at
finding a translation schemeTD into closed QBFs, such that

1. TD(·) is faithful, i.e.,TD(K) is true iff K is a yes-instance ofD;

2. for each instanceK, TD(K) is computable in polynomial time with respect to the size ofK;
and

3. determining the truth of the QBFs resulting fromTD(·) is not computationally harder (by
means of Proposition 2.29) than the computational complexity of D.

In addition, if we are interested in a search problemS we aim at establishing a certain one-to-
one correspondence between the models of the QBF encodings and the solutions toS. Indeed the
TD(·) then has to yield open QBFs instead of closed QBFs. Given the models of the QBFTD(K),
the computation of the solutions ofK has to be feasible in polynomial time.

10



2.3 Basic Concept of Encodings

We now sketch our basic ideas for capturing logic-based argumentation in QBFs. In the following,
we assume a knowledgebase∆ to be given over a set of atomsV∆. Moreover,α, β always refer to
formulas, which are, without loss of generalization, assumed to be given over atoms fromV∆. In
general, for a setΦ of formulas, the setVΦ contains all atoms occurring inΦ.

Given a finite knowledgebase∆, we assign to each element of∆ several new atoms via a
generator function. The aim of this function to provide new atoms, such that interpretations over
those atoms are used to represent subsets of∆. The formal definition is as follows:

Definition 2.30 A generator function g maps eachδ ∈ ∆ to a new propositional atomg(δ) /∈ V∆,
such thatg(δ1) = g(δ2) impliesδ1 = δ2, for all δ1, δ2 ∈ ∆. With some abuse of notation we write,
for any subsetΦ ⊆ ∆, g(Φ) to denote the set{g(δ) | δ ∈ Φ}. Moreover, for two different generator
functionsg1, g2, we ensureg1(∆)∩ g2(∆) = ∅, i.e., each generator function provides its own fresh
atoms.

Interpretations (usually given over arbitrary atoms) are linked to subsets of∆ via generator
functions as follows.

Definition 2.31 Let I be an interpretation,g be a generator function, andΦ ⊆ ∆. We say thatI
representsΦ via g iff I ∩ g(∆) = g(Φ). Moreover, for a sequenceA = 〈Φ1, . . . , Φk〉 of subsets of
∆ and a corresponding sequenceG = 〈g1, . . . , gk〉 of different generator functions, we say that an
interpretationI representsA via G iff I ∩ gi(∆) = gi(Φi), holds for all1 ≤ i ≤ k.

A word of caution is in order here: WhenI representsΦ via someg, I may, but need not, be a
model ofΦ. The forthcoming Definition 2.32 and Lemma 2.33 provide the missing link.

Definition 2.32 For Γ ⊆ ∆, a formulaα, and a generator functiong, define

Γ ⇒g α = ∀VΓ∪{α}

(

(

∧

δ∈Γ

(g(δ) → δ)
)

→ α
)

.

Lemma 2.33 Let ∆ be a knowledge base, andI be an interpretation. ForΓ ⊆ ∆, andΦ ⊆ Γ,
such thatI representsΦ via generator functiong, then, for allα, we have that,Γ ⇒g α is true
underI iff Φ ⊢ α.

Proof. We have thatΦ ⊢ α iff each model over atomsVΦ∪{α} of Φ is also a model ofα. By the
semantics of QBFs, it is easily verified that the latter holdsiff the closed QBF

∀VΦ∪{α}

(

(
∧

δ∈Φ

δ) → α
)

(1)

is true. (Recall that a closed QBF is either true under any interpretationI or false under any
interpretationI). We next increase the set of quantified variables in (1) fromVΦ∪{α} to VΓ∪{α},
which yields

∀VΓ∪{α}

(

(
∧

δ∈Φ

δ) → α
)

. (2)

11



This QBF is also closed sinceΦ ⊆ Γ and it holds that (2) is true iff (1) is true, since the added
quantified variables do not have any influence here.

Next, we replace eachδ by the equivalent formula⊤ → δ, and add trivially true conjuncts of
the form⊥ → γ, yielding1

∀VΓ∪{α}

[(

(

∧

δ∈Φ

(⊤ → δ)
)

∧
(

∧

γ∈Γ\Φ

(⊥ → γ)
)

)

→ α
]

. (3)

So far, this shows thatΦ ⊢ α iff the closed QBF (3) is true. Now, letg be a generator function,
and consider any interpretationI which representsΦ via g. Hence, for eachδ ∈ Φ, g(δ) ∈ I, and
for eachγ ∈ Γ \ Φ, g(γ) /∈ I holds. Recall thatg(∆) ∩ V∆ = ∅, and thus by our assumptions
g(∆) ∩ VΓ∪{α} = ∅. We therefore can rewrite (3) to

∀VΓ∪{α}

[(

(

∧

δ∈Φ

(g(δ) → δ)
)

∧
(

∧

γ∈Γ\Φ

(g(γ) → γ)
)

)

→ α
]

. (4)

Observe that the atomsg(·) are free in (4) and thus are subject to interpretations. In fact, by the
definition of a representation (cf Definition 2.31), it is easy to see that (4) is true under anyI which
representsΦ via g iff (3) is true. To conclude the proof, observe (4) is equivalent toΓ ⇒g α. 2

Example 2.34 Let ∆ = {p, p → q}, α = q, and let us considerg(∆) = {gp, gp→ q}. Hence, the
generator function provides for eachδ ∈ ∆ a new variable of the formg(δ) = gδ. Then,∆ ⇒g α
is given by

∀p∀q
[(

(gp → p) ∧ (gp→ q → (p → q))
)

→ q
]

. (5)

Note that, for eachΦ ⊆ ∆, we thus have interpretations representingΦ via g. Sinceg(∆) are the
only free variables in∆ ⇒g α it is thus sufficient to investigate the following four interpretations
for being models of∆ ⇒g α:

I1 = ∅

I2 = {gp}

I3 = {gp→ q}

I4 = {gp, gp→ q}.

Let us now evaluate (5) under these four interpretation. We shall do so by first evaluating the
free variables in (5) and then inspect the remaining QBF, i.e., following method (ii) as sketched in
Example 2.27. We start withI1. Then (5) reduces to closed QBF

∀p∀q
[(

(⊥ → p) ∧ (⊥ → (p → q))
)

→ q
]

.

which is equivalent to

∀p∀q
[

q
]

.

1This can be done since the replacement theorem holds for QBFs.

12



This QBF is obviously false, and hence,I1 is not a model of (5).
For I2 one of conjuncts in the antecedent survives. We get

∀p∀q
[(

(⊤ → p) ∧ (⊥ → (p → q))
)

→ q
]

.

which is equivalent to

∀p∀q
[

p → q
]

.

Still, this QBF is false, and hence, alsoI2 is not a model of (5).
For I3, we get

∀p∀q
[(

(⊥ → p) ∧ (⊤ → (p → q))
)

→ q
]

.

which is equivalent to

∀p∀q
[(

p → q
)

→ q
]

.

Again, this QBF is false, and hence, alsoI3 is not a model of (5).
Finally, evaluating (5) underI4 yields

∀p∀q
[(

(⊤ → p) ∧ (⊤ → (p → q))
)

→ q
]

.

which is equivalent to

∀p∀q
[(

p ∧ (p → q)
)

→ q
]

.

This QBF is true since the inner part
(

p ∧ (p → q)
)

→ q is indeed a valid formula of proposi-

tional logic. Therefore,I4 is a model of (5).
So havingI4 as the only model, we conclude that the set it represents viag, namely{p, p → q},

is the only subsetΦ of ∆, for whichΦ ⊢ α holds.

QBFs abbreviated byΓ ⇒g α will be used as subformulae in various more complex QBF
formulae. In a sense, they are useful building blocks that can be used repeatedly. We will refer to
a schema likeΓ ⇒g α as a module.

3 Characterizations

In what follows, we will employ the basic encodingΓ ⇒g α to characterize various problems
for logic-based argumentation. We start by characterizingarguments and undercuts via models of
certain QBFs. Then, we suitably combine the latter in such a way that the resulting formulas will
allow us to reason about argument trees. We will first consider argument trees of a fixed structure
(i.e., where the parent function is given when constructingthe encodings) and then also provide
encodings, where the parent function is characterized by the QBF itself.

13



3.1 Arguments and Undercuts

Definition 3.1 For a knowledge base∆, a formulaα, and a generator functiong, define

arg(g, ∆, α) = ¬ (∆ ⇒g ⊥) ∧ (∆ ⇒g α) ∧
∧

δ∈∆

(

g(δ) → ¬
(

(∆ \ {δ}) ⇒g α
)

)

.

Note that the three main parts of the encoding check properties (2), (3), and respectively (4’)
from Proposition 2.3.

Theorem 3.2 For a knowledge base∆, a formulaα, an interpretationI, andΦ ⊆ ∆, such that
I representsΦ via generator functiong, we have thatarg(g, ∆, α) is true underI iff (Φ, α) is an
argument.

Proof. Using Lemma 2.33, we immediately conclude that the first two conjuncts ofarg(g, ∆, α)
are true inI iff conditions (2) and (3) from Proposition 2.3 hold. So, there only remains to take
care of the third conjunct inarg(g, ∆, α), i.e.:

∧

δ∈∆

(

g(δ) → ¬
(

(∆ \ {δ}) ⇒g α
)

)

.

However, all of the following five statements are equivalent:

(i) I |=
∧

δ∈∆

(

g(δ) → ¬
(

(∆ \ {δ}) ⇒g α
)

)

(ii) I |=
∧

δ∈Φ

¬
(

(∆ \ {δ}) ⇒g α
)

(iii) I |= ¬
(

(∆ \ {δ}) ⇒g α
)

for all δ ∈ Φ

(iv) I |= ¬∀V(∆\{δ})∪{α}

(

(

∧

σ∈(∆\{δ})

(g(σ) → σ)
)

→ α
)

for all δ ∈ Φ

(v) I |= ¬∀V(∆\{δ})∪{α}

(

∧

(Φ \ {δ}) → α
)

for all δ ∈ Φ

where the first and last steps are correct becauseI representsΦ via g.
Since(Φ\{δ}) ⊆ (∆\{δ}), all propositional symbols in

∧

(Φ\{δ}) → α are quantified upon
through∀V(∆\{δ})∪{α}. Hence,(v) holds iff

∧

(Φ \ {δ}) → α is invalid in propositional logic, or,
equivalently, iffΦ\ {δ} 6⊢ α. In other words, condition (4’) from Proposition 2.3 is satisfied iff (v)
holds, i.e., iff(i) holds. 2

We now consider the following example in order to compare thefunctioning of the third condi-
tion of Definition 3.1 with a simpler alternative that, whilst plausible, does not behave as required.
In fact, consider one replaces

∧

δ∈∆

(

g(δ) → ¬
(

(∆ \ {δ}) ⇒g α
)

)

in arg(g, ∆, α) by ¬
(

(∆ \ {δ}) ⇒g α)
)

.

We observe the following problem.

14



Example 3.3 Let ∆ = {p, q}, let α bep, and letg(∆) = {gp, gq}. So the original version of the
third condition in Definition 3.1 gives the following

(gp → ¬∀p∀q((gq → q) → p)) ∧ (gq → ¬∀p∀q((gp → p) → p))

We evaluate this with the following interpretations getting the answers we expect for the QBF in
each case.

I1 = ∅ therefore the QBF is true
I2 = {gp} therefore the QBF is true
I3 = {gq} therefore the QBF is true
I4 = {gp, gq} therefore the QBF is false

Now consider the alternative (incorrect) version of the definition which gives the following.

(¬∀p∀q((gq → q) → p)) ∧ (¬∀p∀q((gp → p) → p))

We evaluate this with the following interpretations which shows that we fail to get answer we expect
for the QBF withI2.

I1 = ∅ therefore the QBF is true
I2 = {gp} therefore the QBF is false
I3 = {gq} therefore the QBF is true
I4 = {gp, gq} therefore the QBF is false

With the encoding from Definition 3.1 at hand, we can decide a number of typical decision
problems, e.g., question whether given〈Φ, α〉, is 〈Φ, α〉 an argument? A more general variant of
this question is as follows: Given∆ and disjoint subsets∆+ and∆− of ∆, does there exist an
argument〈Φ, α〉, such that∆+ ⊆ Φ andΦ ∩ ∆− = ∅?

Definition 3.4 Letg be a generator function and∆+, ∆− ⊆ ∆. Then, we define as an abbreviation

fix (g, ∆+, ∆−) =
∧

δ∈∆+

g(δ) ∧
∧

δ∈∆−

¬g(δ).

Corollary 3.5 Given∆, two disjoint sets∆+ and∆−, a generator functiong, and a formulaα,
there exists an argument〈Φ, α〉 such that∆+ ⊆ Φ andΦ ∩ ∆− = ∅ iff

∃g(∆)
(

fix (g, ∆+, ∆−) ∧ arg(g, ∆, α)
)

(6)

is true.

Obviously, by setting∆+ = Φ and∆− = ∆\Φ in (6), we can answer the question given〈Φ, α〉,
is 〈Φ, α〉 an argument? In this setting, we shall also writefix(g, Φ) instead offix (g, ∆+, ∆−).
Another question is whether a certain elementδ ∈ ∆ is part of a support forα. For this, we can
set∆+ = {δ} and∆− = ∅ in (6). Finally, if we drop thefix (g, ∆+, ∆−) conjunct, i.e., we set
∆+ = ∆− = ∅ in (6), then our encoding is true iff there is a subsetΦ of ∆ such that〈Φ, α〉 is an
argument.

Next, we show how to use two different generator functionsg1 andg2 to characterize subsets
of ∆ simultaneously; in fact, this module allows us to derive thesupports of undercuts.

15



Definition 3.6 For a knowledge base∆ and generator functionsg1, g2, define

suc(g1, g2, ∆) = arg
(

g1, ∆,¬
∧

δ∈∆

(g2(δ) → δ)
)

.

Theorem 3.7 For a knowledge base∆, an interpretationI, andΦ1, Φ2 ⊆ ∆, such thatI rep-
resents〈Φ1, Φ2〉 via generator functions〈g1, g2〉, we have thatsuc(g1, g2, ∆) is true underI iff
(Φ1,¬(φ1 ∧ · · · ∧ φn) is an argument, where〈φ1, . . . , φn〉 is the canonical enumeration ofΦ2.

Proof. SinceI representsΦ2 via g2, it follows that, inI, g2(δ) → δ is equivalent withδ whenever
δ ∈ Φ2 and is equivalent with⊤ wheneverδ ∈ ∆ \Φ2. So, the next two statements are equivalent:

(i) I |= arg(g1, ∆,¬
∧

δ∈∆

(g2(δ) → δ))

(ii) I |= arg(g1, ∆,¬
∧

Φ2)

SinceI representsΦ1 via g1, Theorem 3.2 yields that(ii) holds iff 〈Φ1,¬
∧

Φ2〉 is an argument.
Therefore,(i), which means thatsuc(g1, g2, ∆) is true inI, holds iff 〈Φ1,¬

∧

Φ2〉 is an argument.
2

Corollary 3.8 For a knowledge base∆, a formulaα, an interpretationI, andΦ1, Φ2 ⊆ ∆, such
that I represents〈Φ1, Φ2〉 via 〈g1, g2〉, we have that

arg(g2, ∆, α) ∧ suc(g1, g2, ∆)

is true underI iff 〈Φ2, α〉 is an argument andΦ1 ∈ UndercutSupports(〈Φ2, α〉).

3.2 Argument Trees with Fixed Structure

We now show how to characterize trees via their tuple form using QBFs. We start with encodings
where the tree structure is fixed via a given parent function,but the nodes of the tuple form can
be arbitrarily characterized by assignments to the atoms from generator functions. In other words,
given a parent functionp overk and a formulaα, we characterize all sequencesA = 〈Φ1, . . . , Φk〉,
such that〈α,A, p〉 is a tuple form. We then refine these encodings to obtain all such sequences
A, such that the tuple form〈α,A, p〉 represents a (complete) argument tree. Note that in the
forthcoming encodings, we also assume thatp∗ comes together withp as an input. The aim of the
forthcoming module is to ensure thatp correctly applies to the sequenceA, in such a way thatp
does not lead to duplicate children notes (as required in Definition 2.18).

Definition 3.9 For a knowledge base∆, a sequence of generator functionsG = 〈g1, . . . , gk〉, and
a parent functionp overk, we define

distinct(G, ∆, p) =
∧

i,j:p(i)=p(j);i6=j

¬
(

∧

δ∈∆

gi(δ) ↔ gj(δ)
)

16



Lemma 3.10 For a knowledge base∆, a parent functionp overk, and an interpretationI repre-
sentingA = 〈Φ1, . . . , Φk〉 via G = 〈g1, . . . , gk〉, we have thatdistinct(G, ∆, p) is true underI iff
p is a parent function forA.

Proof. (only if direction) If distinct(G, ∆, p) is true inI then for all two distincti andj (each in
the range1..k) wherep(i) = p(j), there must existδ′ ∈ ∆ such thatgi(δ

′) ↔ gj(δ
′) is false in

I. So,I |= gi(δ
′) ∧ ¬gj(δ

′) or I |= ¬gi(δ
′) ∧ gj(δ

′). The cases are symmetric, so it is enough
to consider the former:I |= gi(δ

′) ∧ ¬gj(δ
′). Sincegi(δ

′) andgj(δ
′) are atoms, it then follows

that gi(δ
′) ∈ I andgj(δ

′) 6∈ I. Therefore,gj(δ
′) 6∈ I ∩ gj(∆) whereasgi(δ

′) ∈ I ∩ gi(∆) (as
gi(δ

′) ∈ gi(∆) due toδ′ ∈ ∆). However,I representsA = 〈Φ1, . . . , Φk〉 via G = 〈g1, . . . , gk〉
meaning thatI ∩gi(∆) is gi(Φi) andI ∩gj(∆) is gj(Φi) (Definition 2.31). Whencegi(δ

′) ∈ gi(Φi)
andgj(δ

′) 6∈ gj(Φj). I.e.,gi(δ
′) ∈ {gi(δ) | δ ∈ Φi} andgj(δ

′) 6∈ {gj(δ) | δ ∈ Φj} (cf Definition
2.30). As an immediate consequence,δ′ 6∈ Φj . On the other hand,gi(δ

′) ∈ {gi(δ) | δ ∈ Φi}
impliesδ′ ∈ Φi becausegi is injective according to Definition 2.30. Now,δ′ 6∈ Φj together with
δ′ ∈ Φi yieldsΦi 6= Φj .
(if direction) We must show thatdistinct(G, ∆, p) is true inI. In fact, we show that, for any two
distinct i andj (each in the range1..k) such thatp(i) = p(j), thengi(δ

′) ↔ gj(δ
′) is false inI

for someδ′ ∈ ∆. To start with,Φi 6= Φj becausep is a parent function forA = 〈Φ1, . . . , Φk〉.
Trivially, there then existsδ′ ∈ ∆ such that eitherδ′ ∈ Φi andδ′ 6∈ Φj or δ′ 6∈ Φi andδ′ ∈ Φj .
The cases are symmetric, so it is enough to consider the former. From δ′ 6∈ Φj , we easily get
gj(δ

′) 6∈ {gj(δ) | δ ∈ Φj}, which, by Definition 2.30, meansgj(δ
′) 6∈ gj(Φj). That is,gj(δ

′) 6∈
I ∩ gj(∆) becauseI representsA = 〈Φ1, . . . , Φk〉 via G = 〈g1, . . . , gk〉 (cf Definition 2.31). In
view of gj(δ

′) ∈ gj(∆) (due toδ′ ∈ ∆), it then follows thatgj(δ
′) 6∈ I. On the other hand,

δ′ ∈ Φi. So,gi(δ
′) ∈ {gi(δ) | δ ∈ Φi} = gi(Φi). Then,gi(δ

′) ∈ I ∩ gi(∆) becauseI represents
A = 〈Φ1, . . . , Φk〉 via G = 〈g1, . . . , gk〉 (cf Definition 2.31). So,gi(δ

′) ∈ I. Combined with
gj(δ

′) 6∈ I as proven above, this yieldsI 6|= gi(δ
′) ↔ gj(δ

′). 2

Hence, given a parent functionp, we now know how to characterize sequencesA =
〈Φ1, . . . , Φk〉 via QBFs, such that,p is a parent function forA. Thus, we can already obtain
all tuple forms〈α,A, p〉, for a givenp. Next, we add further conditions to get only thoseA, such
that〈α,A, p〉 represents also an argument tree.

Definition 3.11 For a knowledge base∆, a formulaα, a sequence of generator functionsG =
〈g1, . . . , gk〉, and a parent functionp overk, we define

argtree(G, α, ∆, p) = arg(g1, ∆, α) ∧
k
∧

i=2

(

suc(gi, gp(i), ∆)
)

∧

k
∧

i=2

∨

δ∈∆

(

gi(δ) ∧
∧

j∈p∗(i)

¬gj(δ)
)

.

17



Theorem 3.12 For a knowledge base∆, an interpretationI, and a tuple form〈α,A, p〉, such that
I representsA via generator functionsG we have that the QBF

distinct(G, ∆, p) ∧ argtree(G, α, ∆, p)

is true underI iff 〈α,A, p〉 represents an argument tree.

Proof. By Lemma 3.10 and the fact that〈α,A, p〉 is a tuple form (see item 3 in Definition 2.18),
distinct(G, ∆, p) is true underI. So, we need only focus onargtree(G, α, ∆, p).
Lemma 2.24 states that〈α,A, p〉 represent an argument tree iff (i)〈Φ1, α〉 is an argument, and (ii)
Φi ∈ UndercutSupports(A(p(i))) for 1 < i ≤ k, and (iii) Φi 6⊆ Φp(i) ∪ Φp2(i) ∪ · · · ∪ Φpn(i)=1 for
1 < i ≤ k. We show that each of (i)-(iii) holds iff the corresponding conjunct inargtree(G, α, ∆, p)
is true underI. By Theorem 3.2, (i) holds iffarg(g1, ∆, α), namely the first conjunct in
argtree(G, α, ∆, p), is true underI. Let us turn to (ii). In fact,Φi ∈ UndercutSupports(A(p(i)))
means that〈Φi,¬

∧

Φp(i)〉 is an undercut of〈Φp(i), . . .〉. By Theorem 3.7,〈Φi,¬
∧

Φp(i)〉 is an
argument iffsuc(gi, gp(i), ∆), namely the second conjunct inargtree(G, α, ∆, p), is true underI.
Let us turn to (iii). Trivially,Φi 6⊆ Φp(i) ∪ Φp2(i) ∪ · · · ∪ Φpn(i)=1 means that there existsδ′ ∈ Φi

such thatδ′ 6∈ Φp(i)∪Φp2(i)∪· · ·∪Φpn(i)=1. SinceI representsA viaG, for all j = 1..k, Definition
2.31 tells us thatgj(δ

′) is true underI iff δ′ ∈ Φj . Then,Φi 6⊆ Φp(i) ∪Φp2(i) ∪ · · · ∪Φpn(i)=1 iff for
someδ′, gi(δ

′) is true underI while gp(i)(δ
′), gp2(i)(δ

′), . . . , gpn(i)=1(δ
′) are all false underI. So,

Φi 6⊆ Φp(i) ∪ Φp2(i) ∪ · · · ∪ Φpn(i)=1 iff

∨

δ∈∆

(

gi(δ) ∧
∧

j∈p∗(i)

¬gj(δ)
)

is true underI. 2

Our next definition captures the condition that for a sequence of generator functionsG, and for
each argument that can be represented via a generator function gi in G, if there is an undercut for
it that can be represented by a generator functiong, theng is also inG.

Definition 3.13 For a knowledge base∆, a parent functionp over k, a sequence of generator
functionsG = 〈g1, . . . , gk〉, and a further generator functiong, we define

complete(G, ∆, p) =

k
∧

i=1

∀g(∆)
(

suc(g, gi, ∆) →
∨

j:p(j)=i

∧

δ∈∆

(g(δ) ↔ gj(δ))
)

.

Theorem 3.14 For a knowledge base∆, an interpretationI, and a tuple form〈α,A, p〉, such that
I representsA via generator functionsG we have that the QBF

distinct(G, ∆, p) ∧ argtree(G, α, ∆, p) ∧ complete(G, ∆, p)

is true underI iff 〈α,A, p〉 represents a complete argument tree.

18



Proof. By Theorem 3.7,suc(g, gi, ∆) is true underI iff 〈Ψ,¬
∧

Φi〉 is an argument (Ψ is taken
to denote the set thatg represents underI), or, equivalently,〈Ψ, . . .〉 is an undercut of〈Φi, . . .〉.
SinceI representsA via G, Definition 2.31 means thatgj(δ) is true underI iff δ ∈ Φj . Therefore,
g(δ) ↔ gj(δ) is true underI iff Ψ = Φj . So, complete(G, ∆, p) is true underI iff for each
1 ≤ i ≤ k and for eachΨ ∈ UndercutSupports(A(i)), there exists an indexj ∈ {1..k} such that
Φj = Ψ andp(j) = i. Then, apply Lemma 2.24 and Theorem 3.12. 2

As already shown for single arguments, we can use now thefix(g, Φ) module to encode further
decision problems. In our first example (given in Corollary 3.15), we can ensure that the argument
tree has a particular argument as the root of the tree.

Corollary 3.15 For a knowledge base∆, Ψ ⊆ ∆, an interpretationI, and a tuple form〈α,A, p〉,
such thatI representsA via generator functionsG we have that the QBF

fix (g1, Ψ) ∧ distinct(G, ∆, p) ∧ argtree(G, α, ∆, p)

is true underI iff 〈α,A, p〉 represents an argument tree with root(Ψ, α).

As a further example, we can check whether a given tuple form〈α,A, p〉 with A =
〈Φ1, . . . , Φk〉 via QBFs, represents an argument tree. To this end let,G(∆) =

⋃k
i=1 gi(∆).

Corollary 3.16 A tuple form〈α, 〈Φ1, . . . , Φk〉, p〉 represent an argument tree iff the closed QBF

∃G(∆)
(

k
∧

i=1

fix(gi, Φi) ∧ distinct(G, ∆, p) ∧ argtree(G, α, ∆, p)
)

.

is true.

Likewise, we can apply these two corollaries to complete argument trees by adding the conjunct
complete(G, ∆, p) accordingly.

3.3 Argument Trees with Arbitrary Structure

Compared to the previous characterization, we now shall notonly compute the sequenceA for a
tuple form〈α,A, p〉 with givenp, but also possible parent functionsp via the encodings. Hence,
we first have to represent functionsp as well as its closurep∗. Given a parent functionp overk, we
use further new atomsPk = {pi,j | 1 ≤ j < i ≤ k} andP ∗

k = {p∗i,j | 1 ≤ j < i ≤ k}. Intuitively,
if an atompi,j is true underI, thenI is used to characterize a parent functionp with p(i) = j. To
show how this can be done, we first need a weaker notion than a parent function. We sometimes
also regard a parent function overk as a binary relation over{1, . . . , k} satisfying the restrictions
in the following definition.

Definition 3.17 For k = 1, let p = ∅, and fork > 1, let p ⊆ {2..k} × {1..k} be a relation where
(i, j) ∈ p impliesj < i.

We say that an interpretationI representsp via Pk iff, for all 1 ≤ j < i ≤ k, pi,j ∈ I iff
(i, j) ∈ p.

19



The forthcoming propositional encoding has those interpretations as its models which represent
relations (according to Definition 3.17) satisfying the requirement for being a parent functions
(according to Definition 2.18).

Definition 3.18 For anyk ≥ 1, define

preparent(Pk) =
k
∧

i=2

i−1
∨

j=1

pi,j ∧
k
∧

i=3

i−1
∧

j=2

(

pi,j →

j−1
∧

l=1

¬pi,l

)

.

Example 3.19 Considerk = 4. There are six possible trees (i.e., realizations of a parent relation
p according to Definition 2.18) that can be formed from4 nodes. These can be represented by the
following six options:

Option 1 p(4) = 3, p(3) = 2, p(2) = 1
Option 2 p(4) = 3, p(3) = 1, p(2) = 1
Option 3 p(4) = 1, p(3) = 2, p(2) = 1
Option 4 p(4) = 2, p(3) = 1, p(2) = 1
Option 5 p(4) = 2, p(3) = 2, p(2) = 1
Option 6 p(4) = 1, p(3) = 1, p(2) = 1

By Definition 3.18, formulapreparent(P4) is as follows

p2,1 ∧ (p3,2 ∨ p3,1) ∧ (p4,3 ∨ p4,2 ∨ p4,1)
∧(p3,2 → ¬p3,1) ∧ (p4,2 → ¬p4,1) ∧ (p4,3 → ¬p4,1 ∧ ¬p4,2)

Note that(p4,3 → ¬p4,1 ∧ ¬p4,2) implies(p4,3 → ¬p4,1) and(p4,3 → ¬p4,2). Hence, by contrapo-
sition, we get(p4,1 → ¬p4,3) and(p4,2 → ¬p4,3), and thereby get the constraints we require on the
relationp to form a parent function.

Lemma 3.20 Let p ⊆ {2..k} × {1..k} be a relation where(i, j) ∈ p impliesj < i, and I be
an interpretation, such thatI representsp via atomsPk. Then, the formulapreparent(Pk) is true
underI iff p is a parent function overk.

Proof. Sincep is such that(i, j) ∈ p impliesj < i, the lemma holds iffpreparent(Pk) expresses
thatp is a function. In view of Definition 3.17, that everyi in {2..k} has an image byp is expressed
by

I |=
k
∧

i=2

i−1
∨

j=1

pi,j.

That i in {2..k} only has one image byp can be expressed as follows: if(i, j) ∈ p then for all
l 6= j, (i, l) 6∈ p. Since(i, l) ∈ p implies l < i, this test is only necessary fori in {3..k} (observe
that (2, 1) always is inp for k > 1 and there is no other possibility). Moreover, since the testis

20



checked for allj such that(i, j) ∈ p holds, it is enough to focus on(i, l) 6∈ p for all l < j. Finally,
it is sufficient thatj ranges from2 to i − 1. In view of Definition 3.17, this amounts to

I |=
k
∧

i=3

i−1
∧

j=2

(

pi,j →

j−1
∧

l=1

¬pi,l

)

.

2

Next, we show how to suitably characterize the closurep∗ (cf Definition 2.23) of a parent
functionp.

Definition 3.21 For anyk ≥ 1, define

closure(Pk, P
∗
k ) =

k
∧

i=2

i−1
∧

j=1

(

p∗i,j ↔ (pi,j ∨
i−1
∨

l=j+1

(pi,l ∧ p∗l,j))
)

Lemma 3.22 Letp be a parent function overk andq ⊆ {2..k}×{1..k} a relation where(i, j) ∈ q
impliesj < i. Moreover, letI be an interpretation representingp via Pk andq via P ∗

k . Then, the
formulaclosure(Pk, P

∗
k ) is true underI iff p∗(i) = {j | q(i, j)} for i = 2..k.

Proof. By Definition 3.17,closure(Pk, P
∗
k ) is, underI, equivalent, fori = 2..k andj = 1..i − 1,

to

q(i, j) ⇔

{

p(i, j), or
p(i, l) andq(l, j) for somel ∈ {j + 1, . . . , i − 1}

which, by virtue ofp being a parent function andq being such that(i, j) ∈ q implies j < i,
amounts to

q(i, j) ⇔

{

p(i, j), or
p(i, l) andq(l, j) for somel ∈ {1, . . . , k}

which is known to characterize the transitive closure ofp (taken as a relation) provided thatp has
a finite domain and is acyclic but both points are obvious here. 2

Example 3.23 Considerk = 4 as in Example 3.19. One possible parent function wasp(4) = 3,
p(3) = 2, p(2) = 1. We use atomsP4 = {p2,1, p3,1, p4,1, p3,2, p4,2, p4,3} and likewiseP ∗

4 . Any
interpretationI which assigns true top2,1, p3,2, p4,3, and false top3,1, p4,1, andp4,2 represents the
above parent functionp via P4. Let us now evaluateclosure(P4, P

∗
4 ) under suchI. In fact, we then

expect that only thoseI are models ofclosure(P4, P
∗
4 ) which assign true to all atoms inP ∗

4 . By

21



definition,I then representsp∗ (according to Definition 2.23) viaP ∗
4 . Observe that we have

closure(P4, P
∗
4 ) =

(

p∗2,1 ↔ p2,1

)

∧ (7)
(

p∗3,1 ↔
(

p3,1 ∨ (p3,2 ∧ p∗2,1)
)

)

∧ (8)
(

p∗3,2 ↔ p3,2

)

∧ (9)
(

p∗4,1 ↔
(

p4,1 ∨ (p4,2 ∧ p∗2,1) ∨ (p4,3 ∧ p∗3,1)
)

)

∧ (10)
(

p∗4,2 ↔
(

p4,2 ∨ (p4,3 ∧ p∗3,2)
)

)

∧ (11)
(

p∗4,3 ↔ p4,3

)

. (12)

Recall that we considerI assigning true top2,1, p3,2, p4,3; conjuncts (7), (9), and (12) thus require
that p∗2,1, p∗3,2, p∗4,3 are also assigned to true by a modelI of closure(P4, P

∗
4 ). Now we havep∗2,1

andp3,2 in I. Thus by line (8) alsop∗3,1 is true inI. Similarly for line (10), we already know that
p∗3,1 andp4,3 are true inI, and we can conclude that alsop∗4,1 is true inI. Finally, (11) forces also
p∗4,2 to be true inI as well, since we already have seen that for a modelI alsop4,3 andp∗3,2 are true
in I.

We are now ready to relate interpretations to parent functions in combination with sequences
A = 〈Φ1, . . . , Φk〉. For this, we have to guarantee that models represent parentfunctions (this is
done with the already introduced conjunctpreparent(Pk)) and that the represented parent function
correctly relates to a represented sequenceA avoiding duplicate children (in a way that is similar
to what we did in Definition 3.9 for the moduledistinct(G, ∆, p). The latter task is realized via the
second conjunct in the forthcoming definition.

Definition 3.24 For a knowledge base∆, and a sequence of generator functionsG = 〈g1, . . . , gk〉,
define

parent(G, ∆, Pk) = preparent(Pk) ∧
k
∧

i=3

i−1
∧

j=2

j−1
∧

l=1

(

(pi,l ∧ pj,l) → ¬
∧

δ∈∆

(gi(δ) ↔ gj(δ))

)

.

Lemma 3.25 For a knowledge base∆, and an interpretationI representingA = 〈Φ1, . . . , Φk〉
via G, and a relationp via Pk, we have thatparent(G, ∆, Pk) is true underI iff p is a parent
function forA.

Proof. We already know from Lemma 3.20 thatpreparent(Pk) is true underI iff p (represented by
I) is a parent function (overk). We thus need to show that the remaining part ofparent(G, ∆, Pk)
is true underI iff p is a parent function forA = 〈Φ1, . . . , Φk〉, that is,p(i) = p(j) impliesΦi 6= Φj ,
for any1 < j < i ≤ k (in fact, it is sufficient to use2 < j < i ≤ k, since the root has obviously
no parent node). SinceI also representsA (via G = 〈g1, . . . , gk〉), we haveΦi 6= Φj iff there
exists someδ ∈ ∆ such thatgi(δ) ↔ gj(δ) is false inI. This holds iff¬

∧

δ∈∆(gi(δ) ↔ gj(δ))

22



is true underI. Since we perform this test for each pair of childrenA(i), A(j) of each nodeA(l)
in the annotated tree (represented byI), the claim follows by the same arguments as used to show
Lemma 3.10. 2

Definition 3.26 For a knowledge base∆, a formulaα, and a sequence of generator functions
G = 〈g1, . . . , gk〉, we define

argtree(G, α, ∆, Pk, P
∗
k ) = arg(g1, ∆, α) ∧

k
∧

i=2

i−1
∧

j=1

(

pi,j → suc(gi, gj, ∆)
)

∧

k
∧

i=2

∨

δ∈∆

(

gi(δ) ∧
i−1
∧

j=1

(

p∗i,j → ¬gj(δ)
)

)

.

Theorem 3.27 For a knowledge base∆, a formulaα, and an interpretationI, representing a
sequenceA = 〈Φ1, . . . , Φk〉 via G, and a relationp via Pk we have that the QBF

AT (G, ∆, Pk) = parent(G, ∆, Pk) ∧ ∃P ∗
k

(

closure(Pk, P
∗
k ) ∧ argtree(G, α, ∆, Pk, P

∗
k )
)

is true underI iff 〈α,A, p〉 represents an argument tree.

Proof. We only give a sketch here, since we already know the following properties:

• By Lemma 3.25,I represent a parent function forA iff parent(G, ∆, Pk) is true underI;

• By Lemma 3.22, given an interpretationI representing a parent functionp (overk) via Pk,
I represents the transitive closure ofp via P ∗

k iff closure(Pk, P
∗
k ) is true underI;

• Formulaargtree(G, α, ∆, Pk, P
∗
k ) follows the same structure from Definition 3.11 but in-

stead of using the functionsp, p∗ explicitly, we represent them (see Definition 3.26) by the
respective setsPk andP ∗

k of variables. Using this observation and by suitably combining
the techniques forPk andP ∗

k (as done in the proofs above) with the structure of the proof
of Theorem 3.12, one can show the following relation: Given∆, α, and an interpretationI
representingA via G, a parent functionp for A via Pk, and the transitive closure ofp, i.e.
p∗, via P ∗

k , we have that〈α,A, p〉 represents an argument tree iffargtree(G, α, ∆, Pk, P
∗
k ) is

true underI.

From the latter observation and the semantics of the existential quantifier, the claim holds. Note
that we used∃P ∗

k just to “hide” the variables representing the transitive closure of the parent
function from the user, since it is not an explicit part of therequested problem, but rather an
internal detail which is fully determined byp. 2

23



Definition 3.28 For a knowledge base∆, a sequence of generator functionsG = 〈g1, . . . , gk〉, and
a further generator functiong, we define

complete(G, ∆, Pk) =
k
∧

i=1

∀g(∆)
(

suc(g, gi, ∆) →
i−1
∨

j=1

(

pi,j ∧
∧

δ∈∆

(g(δ) ↔ gj(δ))
)

)

.

Theorem 3.29 For a knowledge base∆, a formulaα, and an interpretationI, representing a
sequenceA = 〈Φ1, . . . , Φk〉 via G, and a relationp overPk we have that the QBF

CAT (G, ∆, Pk) = parent(G, ∆, Pk) ∧

∃P ∗
k

(

closure(Pk, P
∗
k ) ∧ argtree(G, α, ∆, Pk, P

∗
k ) ∧ complete(G, ∆, Pk)

)

is true underI iff 〈α,A, p〉 represents a complete argument tree.

The proof of Theorem 3.29 is similar to the proof for Theorem 3.14 except that at the end, Theorem
3.27 instead of Theorem 3.12 is required.

Again, we now can decide different decision problems by using above concepts plus fixing
some of the concepts. An interesting question is as follows:Given α andA, does there exist
an argument tree (a complete argument tree) using setsA? In other words, can we find a parent
functionp, such that〈α,A, p〉 represents an argument tree (a complete argument tree)?

Corollary 3.30 GivenA = Φ1, . . . , Φk and a formulaα, there exists a parent functionp, such that
〈α,A, p〉 represents

1. an argument tree iff the closed QBF

∃Pk∃G(∆)
(

k
∧

i=1

fix (gi, Φi) ∧ AT (G, ∆, Pk)
)

is true.

2. a complete argument tree iff the closed QBF

∃Pk∃G(∆)
(

k
∧

i=1

fix (gi, Φi) ∧ CAT (G, ∆, Pk)
)

is true.

4 Discussion

There is increasing interest in formalizations for argumentation, and in particular computational
models of argument (see for example [3, 12, 27, 15, 5, 7]). In this paper, we have addressed this
issue in the context of argumentation with classical logic as the underlying logic by providing

24



encodation in terms of quantified Boolean formulas. This approach is beneficial with respect to
several aspects.

First, it offers the possibility of implementing decision procedures for argumentation based on
classical logic using existing QBF solvers.

Second, it allows to obtain novel complexity results for interesting decision problems asso-
ciated with logic-based argumentation. Indeed, while for abstract argumentation, there has been
a comprehensive analysis of computational complexity of some of the key decision problems (in
particular [14]), there are only a few published results concerning computational complexity of
logic-based argumentation. In [25], for instance, it is shown that given a knowledgebase∆ and
a formulaα, ascertaining whether there is aΦ ⊆ ∆ such that〈Φ, α〉 is an argument (i.e.Φ is a
minimal consistent set of premises entailingα) is a Σp

2-complete decision problem. Our results
can be employed to obtain similar results for more involved decision problems. In fact, since all
encodings are constructible in polynomial time with respect to the size of the problem description,
inspecting the quantifier structure of the encodings and applying Proposition 2.29 immediately
yields upper complexity bounds for the encoded problems. For instance, this shows that several
decision problems formulated for argumentation trees remain located inΣp

2. Since the evaluation
of a single argument is already hard for this class,Σp

2-completeness for those decision problems
over argumentation trees is expected. However, if completeargumentation trees are taken into
account, our encodings indicate that this leads to an increasing complexity, having such problems
located inΣp

3. Establishing exact complexity results for numerous decision problems in logic-based
argumentation is indeed part of our ongoing work.

Finally, our results are useful for comparing different approaches to argumentation. In fact,
there is increasing interest in algorithms and implementations for argumentation systems includ-
ing for abstract argumentation systems [10, 2, 11, 28], for assumption-based argumentation sys-
tems [23, 13, 21], for logic-based argumentation systems based on defeasible logic [22, 9, 29, 8],
and for logic-based argumentation systems based on classical logic [16]. Undertaking empirical
evaluations that compare these algorithms is difficult because of the diverse approaches taken in
implementing them. So undertaking evaluations via encodations as QBFs offers the opportunity
for a level playing field for comparisons that draw out the strengths and weaknesses of each of the
algorithms and their underlying reasoning mechanisms.

References

[1] L. Amgoud and C. Cayrol. A model of reasoning based on the production of acceptable
arguments.Annals of Mathematics and Artificial Intelligence, 34:197–216, 2002.

[2] P Baroni and M Giacomin. Argumentation through a distributed self-stabilizing approach.
Journal of Experimental and Theoretical Artificial Intelligence, 14(4):273–301, 2002.

[3] T Bench-Capon and P Dunne. Argumentation in artificial intelligence.Artificial Intelligence,
171(10-15):619–641, 2007.

25



[4] S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and inconsistent
knowledge bases. InProceedings of the 9th Annual Conference on Uncertainty in Artificial
Intelligence (UAI 1993), pages 1449–1445. Morgan Kaufmann, 1993.

[5] Ph Besnard, S Doutre, and A Hunter, editors.Computational Models of Argument: Proceed-
ings of COMMA 2008. IOS Press, 2008.

[6] Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments.Artificial Intelli-
gence, 128:203–235, 2001.

[7] Ph. Besnard and A. Hunter.Elements of Argumentation. MIT Press, 2008.

[8] D Bryant and P Krause. A review of current defeasible reasoning implementations.Knowl-
edge Engineering Review, 2008.

[9] D Bryant, P Krause, and G Vreeswijk. Argue tuprolog: A lightweight argumentation engine
for agent applications. In P Dunne and T Bench-Capon, editors, Computational Models of
Argumentation (COMMA 2006), pages 27–31. IOS Press, 2006.

[10] C Cayrol, S Doutre, and J Mengin. Dialectical proof theories for the credulous preferred
semantics of argumentation frameworks. InQuantitative and Qualitative Approaches to Rea-
soning with Uncertainty (ECSQARU 2001), volume 2143 ofLNCS, pages 668–679. Springer,
2001.

[11] C Cayrol, S Doutre, and J Mengin. On decision problems related to the preferred semantics
for argumentation frameworks.Journal of Logic and Computation, 13(3):377–403, 2003.

[12] C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument.ACM Computing
Surveys, 32:337–383, 2000.

[13] P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-based ad-
missible argumentation.Artificial Intelligence, 170:114–159, 2006.

[14] P Dunne and T Bench-Capon. Coherence in finite argumentation systems.Artificial Intelli-
gence, 141:187–203, 2002.

[15] P Dunne and T Bench-Capon, editors.Computational Models of Argument: Proceedings of
COMMA 2006. IOS Press, 2006.

[16] V. Efstathiou and A. Hunter. Algorithms for effective argumentation in classical propositional
logic. In Proceedings of the International Symosium on Foundations of Information and
Knowledge Systems (FOIKS 2008), LNCS. Springer, 2008.

[17] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing different prenexing
strategies for quantified boolean formulas. InProceedings of the 6th International Conference
on the Theory and Applications of Satisfiability Testing (SAT-03). Selected Revised Papers,
volume 2919 ofLNCS, pages 214–228, 2004.

26



[18] U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. InProc. ECAI’06,
pages 477–481. IOS Press, 2006.

[19] T. Eiter and G. Gottlob. The complexity of logic-based abduction. Journal of the ACM,
42:3–42, 1995.

[20] M. Elvang-Gøransson, P. Krause, and J. Fox. Dialectic reasoning with classically inconsistent
information. InProceedings of the 9th Conference on Uncertainty in Artificial Intelligence
(UAI 1993), pages 114–121. Morgan Kaufmann, 1993.

[21] D Gaertner and F Toni. Computing arguments and attacks in assumption-based argumenta-
tion. IEEE Intelligent Systems, 22(6):24–33, 2007. Special Issue on Argumentation Technol-
ogy.

[22] A. Garcı́a and G. Simari. Defeasible logic programming: An argumentative approach.Theory
and Practice of Logic Programming, 4(1):95–138, 2004.

[23] A. Kakas and F. Toni. Computing argumentation in logic programming.Logic and Compu-
tation, 9:515–562, 1999.

[24] M. Narizzano, L. Pulina, and A. Tacchella. Report of theThird QBF Solvers Evaluation.
Journal of Satisfiability, Boolean Modeling and Computation, 2:145–164, 2006.

[25] S Parsons, M Wooldridge, and L Amgoud. Properties and complexity of some formal inter-
agent dialogues.Journal of Logic and Computation, 13(3):347–376, 2003.

[26] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible
priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

[27] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay,
editor,Handbook of Philosophical Logic. Kluwer, 2002.

[28] M South, G Vreeswijk, and J Fox. Dungine: A java dung reasoner. InComputational Models
of Argumentation (COMMA 2008). IOS Press, 2008.

[29] G Vreeswijk. An algorithm to compute minimally grounded defence sets in argument sys-
tems. In P Dunne and T Bench-Capon, editors,Computational Models of Argumentation
(COMMA 2006), pages 109–120. IOS Press, 2006.

[30] C. Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976.

27


