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Abstract

In this work we follow a novel method originally contrived by Michael Morak and Stefan
Woltran to optimize non-ground answer set programming (ASP) statements. Applying
the widely-used concept of tree decompositions, we split up single statements into mul-
tiple ones with less literals and less variables each, thus exposing the structure of rules
to grounders. As we show in our benchmarks, this approach can significantly reduce
the workload for grounders and solvers, constituting a potential performance-boost when
integrated into grounders. We extend the Morak-Woltran approach to the full ASP stan-
dard language and certain features of the Potassco system, enabling us to benchmark all
ASP Competition problem instances of 2013 and 2014.
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Chapter 1

Introduction

Answer Set Programming (ASP) is a declarative approach to problem solving widely
used in the fields of artificial intelligence and knowledge representation. Its increasing
popularity is in part the result of the increasingly efficient systems that implement the
language and solve the declaratively modeled logic problems, and in part based on the
high expressiveness of its modeling language.

Although state-of-the-art ASP systems have become more and more sophisticated in
recent years, there is still reason to believe that their performances may be improved
even further.

Most currently available ASP systems take a two-step approach: first, the declara-
tively modeled logic problem (“program”) is grounded, which means that variables are
instantiated with constant elements applicable to the program domain, which results in
an equivalent propositional program. The second step is for a solver to finally solve
the ground program, which may be imagined as repeatedly guessing some propositional
statements as being true or false, eventually finding one or more solutions or finding that
no solution exists. Systems like the Potassco suite gringo/clasp [Gebser et al., 2007]
strictly separate the grounder from the solver, whereas others, such as dlv [Leone et al.,
2006], use a higher degree of integration.

Grounding an ASP rule is in general an exponential effort in the number of variables in
the rule. However, like many other real-world problems that may be represented as graph
problems, many rules exhibit a certain structure which could reduce the complexity of
grounding if this structure only was exploited. Using the concept of tree decompositions,
rules with loose literal coupling, or, speaking in the language of tree decompositions,
rules with small treewidth, can be split up into several rules with less variables each,
effectively reducing the grounding time and size to be exponential in the treewidth only.

Explained in more detail, this approach performs a preprocessing of each rule in an
input program. The rule is first represented as a hypergraph, modeling the variables
as vertices and each of the rule’s elements (or literals) as a hyperedge containing the
element’s variables. Then, a tree decomposition is computed on this hypergraph, utilizing
already present efficient decomposition heuristics. Based on the decomposition, the rule is
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2 CHAPTER 1. INTRODUCTION

then split up into a set of smaller rules, semantically equal to the original rule, especially
taking care of unsafe variables.

Another advantage of this approach is that it breaks, or at least weakens, the ne-
cessity of expert hand-tuning of programs in order to reduce groundings. Going along
with this argument, laymen ASP programming may become less disappointing and more
empowering, eventually contributing to low-threshold access to ASP and expanding its
popularity.

The approach of this kind of non-ground preprocessing has, to our knowledge, so far
only been investigated in [Morak and Woltran, 2012]. Morak and Woltran implemented
a prototype, benchmarked it against the classical, non-preprocessed case, and presented
optimistic results. Their prototype, however, only supports a limited input language,
lacking the possibility of being benchmarked on certain problem instances.

Our goals are to implement a prototype, supporting all the language features of the
ASP-Core-2 input language format [Calimeri et al., 2012] and selected language features
of the Potassco system[Gebser et al., 2015], and to provide benchmarks for all problems
of the most recent ASP competition. These benchmarks show that our rule optimization
approach can indeed decrease the grounding and solving time substantially, and we thus
plan to implement it into existing state-of-the-art solvers in the future.

This work is structured as follows. In chapter 2, we will present the necessary
preliminaries, namely a characterization of ASP, tree decomposition and the approach
by Morak and Woltran. In chapter 3, we will introduce and discuss the concrete problems
we face and present solutions, especially representing a rule as a graph and rewriting it
based on the decomposition, how to handle unsafe variables, how even the inner contexts
of aggregates and choice rules may be decomposed, and what other preprocessing steps
we will perform. Chapter 4 will then present the benchmarking results of our prototype
using the instances of the fifth ASP competition. Finally, chapter 5 will close with a
summary and recapitulation and will throw a glance at the upcoming scientific tasks
regarding this topic.



Chapter 2

Background

In this chapter, we introduce the necessary prerequisites by giving an overview of answer
set programming, tree decompositions and an already taken attempt to ASP rewriting
using tree decompositions.

2.1 Answer Set Programming

In this section, we give a formal characterization of syntax and semantics of Answer Set
Programming, beginning with the ground case and finishing with language extensions.

2.1.1 Ground ASP

Syntax

A variable-free (or ground) disjunctive logic program is a set of rules of the form

H1 ∨ · · · ∨Hk ← B+
1 , . . . , B

+
n ,not B−1 , . . . ,not B−m

where all Hi, B+
i and B−i are atoms. An atom is of the form p(t1, . . . , tn), with the

predicate p having arity n ≥ 0 and constant terms ti. Predicates of arity 0 are called
propositions, where parentheses may be omitted. Rules with n = m = 0 are called
facts (“←” may be omitted) and rules with k = 0 are called constraints. For a rule r,
we denote by H(r) = {H1, . . . ,Hk} the set of head atoms, by B+(r) = {B+

1 , . . . , B
+
n }

the positive body and by B−(r) = {B−1 , . . . , B−m} the negative body of r. Likewise, we
denote by B(r) = {B+

1 , . . . , B
+
n ,not B−1 , . . . ,not B−m} the body of r, with its elements

being literals. A literal is therefore either an atom a or a default-negated atom not a (the
unary connective “not ” also being called negation as failure).

A term is a function of the form f(t1, . . . , tn) with arity n ≥ 0 and ti being terms
themselves. Functions of arity 0 are called constants.

3



4 CHAPTER 2. BACKGROUND

Semantics

A rule r is said to be triggered by a set S of atoms iff S triggers the body of r. The body
of r is said to be triggered by S iff all the atoms in the positive body and none of the
atoms in the negative body occur in S: S triggers r iff B+(r) ⊆ S and B−(r)∩S = ∅. A
rule r is said to be satisfied by a set S of atoms iff S does not trigger it or H(r)∩S 6= ∅.
Therefore, intuitively speaking, for s to satisfy a rule, if it triggers the body, it must
contain at least one of the head atoms.

A set S of atoms is said to be a model of a variable-free disjunctive logic program P iff
it satisfies all rules of P . Given a set S of atoms, we define the reduct PS of a variable-
free disjunctive logic program P as PS = {H(r) ← B+(r) : r ∈ P,B−(r) ∩ S = ∅}.
Intuitively speaking, the reduct discards rules whose negative bodies would conflict with
S, keeping only the positive bodies and the heads of the resulting rules.

We finally call a set S of atoms an answer set of a variable-free disjunctive logic
program P iff S itself is a subset-minimal model of the reduct PS .

2.1.2 ASP with Variables

We now give a characterization of logic programs with variables. Using variables, the
expressiveness of the ASP language equals first-order predicate logic.

Grounding

Generalizing the notion of ground disjunctive logic programs, in a disjunctive logic pro-
gram, a term may no longer be only a function, but may also be a variable: A term may
be a variable or a function f(t1, . . . , tn) with arity n ≥ 0 and ti being terms. Functions
of arity 0 are continued to be called constants.

A rule containing variables can be interpreted as an abbreviation of all possible in-
stantiations of the rule, with the variables being replaced by domain elements, where
each instantiation uses the same domain element for multiple occurrences of the same
variable. This task is usually performed by a grounder.

We denote by vars(l) the set of variables of the literal l and by vars(t) the set of all
variables of the term t, more formally: if v is a variable, then vars(v) = {v}; if f is an
n-ary function symbol, than vars(f(t1, . . . , tn)) =

⋃
t=t1,...tn

vars(t).

Example 2.1. Consider the single-rule logic program:

my_grandmother(X) ∨my_grandfather(X)← child(X,Y ), child(Y,me)

The intended meaning is that X is my grandmother or grandfather if Y is the child of
X and I am the child of Y . Given the domain {me, alice, bob}, the grounding of this
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program would be:

my_grandmother(me) ∨my_grandfather(me)← child(me,me), child(me,me)

my_grandmother(me) ∨my_grandfather(me)← child(me, alice), child(alice,me)

my_grandmother(me) ∨my_grandfather(me)← child(me, bob), child(bob,me)

my_grandmother(alice) ∨my_grandfather(alice)← child(alice,me), child(me,me)

my_grandmother(alice) ∨my_grandfather(alice)← child(alice, alice), child(alice,me)

my_grandmother(alice) ∨my_grandfather(alice)← child(alice, bob), child(bob,me)

my_grandmother(bob) ∨my_grandfather(bob)← child(bob,me), child(me,me)

my_grandmother(bob) ∨my_grandfather(bob)← child(bob, alice), child(alice,me)

my_grandmother(bob) ∨my_grandfather(bob)← child(bob, bob), child(bob,me) 4

Safety

When dealing with variables in ASP programs, we have to introduce the notion of safety.
A rule r of a disjunctive logiv program is said to be safe iff all variables occuring in the
head or negative body of r also occur in its positive body. A program P is safe iff all of
its rules are safe. From this point onward, we consider only safe logic programs.

2.1.3 Language Features

The presentation of the language features we will use in present work (which go beyond
the previously defined base language) will be succeeded by a recharacterization of safety
taking into account these features.

Definition of Features

The current ASP-Core-2 language standard [Calimeri et al., 2012] defines language fea-
tures all of which we are going to use. All of the subsequently described features are
taken from this standard, except for bitwise arithmetics, modulo, exponentiation, abso-
lute value, pooling, intervals and meta-statements, which are extensions introduced by
the Potassco suite [Gebser et al., 2015]. For more in-depth semantics of the described
features, we refer to [Calimeri et al., 2012]. All these extensions can be compiled into the
base language (that is, without these features), as shown in the ASP-Core-2 language
standard, the Potassco user guide, and in [Gebser et al., 2012].

Strong Negation If p is a predicate literal, p and −p are classical atoms.

Arithmetics If t1 and t2 are terms, then t1 + t2 (addition), t1 − t2 (subtraction),
t1 ∗ t2 (multiplication), t1/t2 (division), t1\t2 (modulo), t1 ∗ ∗t2 (exponentiation), −t1
(unary minus), |t1| (absolute value), &t1 (bitwise conjunction), ?t1 (bitwise disjunction),
t̂1 (bitwise exclusive or) and ∼ t1 (bitwise complement) are also terms.
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Built-in Atoms Let B≺ = {<,≤, >,≥,=, 6=} be the set of all binary operators. If
t1 and t2 are terms and ≺∈ B≺, then t1 ≺ t2 is an atom additionally to the previously
characterized “classical” atoms.

Aggregates If t1 and t2 are terms, then

#aggr{e1, . . . , en},
t1 ≺1#aggr{e1, . . . , en},

#aggr{e1, . . . , en} ≺1 t1 and

t1 ≺1#aggr{e1, . . . , en} ≺2 t2

are aggregates with ≺1,≺2∈ B≺, #aggr ∈ {#count ,#sum,#max ,#min} and e1, . . . , en
being aggregate elements. t1 and t2 are called the guard terms of the aggregate. An
aggregate element has the form t1, . . . , tm : l1, . . . , ln where ti are terms and li are literals.
We denote by B(e) = {l1, . . . , ln} the body and by H(e) = {t1, . . . , tm} the head of
an aggregate element e, with vars(B(e)) resp. vars(H(e)) denoting all the variables
occurring in any of the body’s literals resp. head’s terms.

We denote by invars(a) the set of all variables occurring in any of e1, . . . , en and
by outvars(a) the set of all variables occurring in any of the guard terms t1 or t2 of an
aggregate a.

An aggregate may only occur in the body of a rule, a weak constraint or a choice rule
(see below).

Weak Constraints and Optimize Statements A weak constraint has the form
:∼ b1, . . . , bn.[w@l, t1, . . . , tm] where n ≥ 0, m ≥ 0, bi are literals or aggregates (just like
a rule body) and w, l and ti are terms. If the level l is 0, the part @l may be omitted.
We denote by B(r) = {b1, . . . , bn} the body and by H(r) = {w, l, t1, . . . , tm} the head of
a weak constraint r.

The semantics of a weak constraint is for an answer set to minimize the sum of
weights of the weak rules it triggers, grouped by levels (with the level 0 being the most
“important”). For a more formal semantics characterization, we refer to [Calimeri et al.,
2012].

A syntactic shortcut for a set of weak constraints is an optimize statement. An opti-
mize statement has the form #opt{e1; . . . ; en}. where #opt ∈ {mathit#minimize,#maximize}
and ei is an optimize element. An optimize element is of the form w@l, t1, . . . , tm :
b1, . . . , bn with m ≥ 0, n ≥ 0, w, l and ti being terms and bi being literals. As with weak
constraints and aggregate elements, we denote by B(e) = {b1, . . . , bn} the body and by
H(e) = {w, l, t1, . . . , tm} the head of an optimize element e.

We now redefine the notion of a program: A program is a set of statements. A
statement is either a rule, a weak constraint, an optimize statement, a choice rule or a
meta-statement (see below).
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Queries A query is of the form a?, where a is a ground or non-ground classical atom
(that is, a classical atom with or without variables). The semantics of a query only
influences the output form of an ASP solver, it has no influence on the answer set
semantics of the rest of the program. In the present work, we will therefore not deal with
its semantics.

A program may, additionally to the set of statements, contain up to one query.

Anonymous Variables A variable may be denoted by an underscore (_), which
stands for a fresh variable in the respective context.

Choice Rules If t1 and t2 are terms, then a choice rule is of the form

{e1; . . . ; em} ← b1, . . . , bn,

t1 ≺1 {e1; . . . ; em} ← b1, . . . , bn,

{e1; . . . ; em} ≺1 t1 ← b1, . . . , bn or

t1 ≺1 {e1; . . . ; em} ≺2 t2 ← b1, . . . , bn

where n ≥ 0, m ≥ 0, ≺1,≺2∈ B≺, bi are literals or aggregates (just like a rule body) and
ei are choice elements. t1 and t2 are called the guard terms of the choice rule. Similar
to “classical” rules, we denote by B(r) = {b1, . . . , bn} the body of a choice rule r and by
H(r) its head (the part left to the ← symbol). By vars(H(r)) we denote the set of all
variables occurring in H(r).

A choice element has the form a : l1, . . . , lk where a is a classical atom, k ≥ 0 and
li are literals. Similar to aggregate elements, we denote by B(e) = {l1, . . . , lk} the body
and by H(e) = {a} the head of a choice element e, with vars(B(e)) resp. vars(H(e))
denoting all the variables occurring in any of the body’s resp. head’s literals.

The intended meaning is that if the body results to true, the subset of ground choice
elements whose heads are true has a cardinaliy so that the inequality conditions hold.

Pooling and Intervals Everywhere a term may occur, it is admissible to instead have
a pool or an interval. A pool is of the form t1; . . . ; tn with n > 1 and ti being terms,
representing each term. An interval is of the form t1..t2 with t1 and t2 being terms,
representing each integer in the range [t1, t2]. During grounding, the context of the pool
or interval is expanded to each representing term. Thus, in a literal in a rule body, a pool
or interval means a disjunction, and in a literal in a rule head, it means a conjunction.

Meta-Statements Potassco introduces the meta-statement #show a. (amongst oth-
ers), where a is of a certain form. These meta-statements, similar to queries, only influ-
ence the output form of an ASP solver and have no influence on the answer set semantics
of the rest of the program. In the present work, we will therefore not deal with their
semantics.
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Safety and Globality with Language Features

When dealing with safety of logic programs featuring the presented extensions (without
compiling them into the base language), safety has to be redefined, since it is no longer
sufficient for all variables just to occur somewhere in the positive body. Safety of the
extended language is partly defined in the ASP-Core-2 language standard [Calimeri et al.,
2012]. The language extensions it does not include in its safety characterization are
pooling and intervals. To deal with their safety, it is sufficient to rewrite pooling as
introduced in subsection 3.3.1 and to consider intervals like arithmetic terms.

For the main part of our work, the notion of globality is crucial. We therefore introduce
it for different syntactic types. In the remainder of this section, we consider only logic
programs whose optimize statements consist of only one optimize element each.

We introduce the notion of global variables. The set of global variables of a rule, choice
rule, weak constraint or optimize statement r, denoted by glob(r), is the union of all the
variables occurring in the literals {l ∈ B(r) : l is a literal} and all the variables
occurring in the guard terms of the aggregates {a ∈ B(r) : a is an aggregate}.

The set of global variables of a head or body literal l in a statement r is globr(l) =
glob(l) = vars(l) and is therefore independent of its “context” r.

The set of global variables of an aggregate a in a statement r is globr(a) = (invars(a)∩
glob(r))∪ outvars(a). As can be seen, a variable in an aggregate has either “local” scope
inside an aggregate element or “global” scope in the sense that it “binds” to outside the
aggregate or to the aggregate guards.

The set of global variables of a rule head H(r) is globr(H(r)) =
⋃

l∈H(r) glob(l).
The set of global variables of the head of a weak constraint r is globr(H(r)) =⋃

t∈H(r) vars(t).
We denote by the head (resp. the body) of a single-element optimize statement the

head (resp. the body) of its optimize element. The set of global variables of the head of
a single-element optimize statement r is globr(H(r)) =

⋃
t∈H(r) vars(t).

The set of global variables of the head H(r) of a choice rule r is globr(H(r)) =
(vars(H(r)) ∩ glob(r)). As with aggregates, a variable in a choice element has either
local or global scope.

2.2 Tree Decompositions

Many real-world problems are reducible to problems on graphs. Many of these graph
problems are very hard to solve in general, but become tractable when being restricted
to trees. Since many real-world problems are based on domains that comprise a certain
structure instead of being generally random, the graphs they reduce to might be consid-
ered more “tree-like” than randomly generated, unstructured graphs. In fact, the research
in tree decompositions has helped us measure the “tree-likeliness” of graphs and provides
us with structures we can utilize to solve graph problems more efficiently. [Robertson
and Seymour, 1984]

The notion of a hypergraph is a generalization of the notion of a graph, where an
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edge does not only connect two vertices, but any number of vertices of the graph. A
hypergraph G is a pair G = 〈V,E〉, with V denoting the set of vertices or nodes and E
denoting the set of hyperedges of G. Each hyperedge e is a subset of the vertices V of
the hypergraph: e ⊆ V |e ∈ E.

A tree decomposition of a hypergraph G = 〈V,E〉 is a (rooted) tree D(G) = 〈N,F 〉
with nodes (also called bags) N ⊆ 2V and edges F such that the following conditions
hold:

1. for each e ∈ E there exists a node n ∈ N such that e ⊆ n,

2. for each v ∈ V the set {n ∈ N : v ∈ n} induces a connected subtree of T , and

3.
⋃

n∈N n = V

We denote by the width of a tree decomposition D(G) of a hypergraph G the size of
its largest bag, minus 1: maxn∈N (|n|) − 1. The treewidth of a hypergraph G is defined
as the smallest width of all possible tree decompositions of G.

For any given decomposition node n ∈ N , we denote by parent(n) the parent node
of n (except for the root node) and by desc(n) the set of n’s children (which is empty if
n is a leaf node).

Since it is in general NP-hard to find a tree decomposition of minimal width, much
effort has been invested in finding good heuristics. As a result, today, heuristics exists
that find almost-minimal decompositions in appropiate time. [Dermaku et al., 2008]

2.3 Rewriting Base ASP Programs

[Morak and Woltran, 2012] have already investigated and implemented a rule decompo-
sition algorithm, which was but limited to the ASP base language (that is, without the
language features introduced in subsection 2.1.3). They proposed a hypergraph repre-
sentation of a rule as follows:

A hypergraph of a non-ground logic program rule r is a pair HG(r) = (V,E)
such that V consists of all the variables occurring in r and E is a set of hyper-
edges, such that for each atom A ∈ B(r) there exists exactly one hyperedge
e ∈ E, which consists of all the variables occurring in A. Furthermore there
exists exactly one hyperedge e ∈ E that contains all the variables occurring
in H(r).

Their rule rewriting algorithm for a non-ground rule r functions as follows:
Let Yn = n ∩ parent(n) and Tn be a fresh predicate for each decomposition node

n ∈ N except the root node.

1. Compute a tree decomposition of r, trying to minimize the maximal bag size and
having the edge representing H(r) only in the root node of the decomposition.

2. Do a bottom-up traversal of the decomposition, n denoting the current tree node:
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if n is not the root node , generate a rule of the form:

Tn(Yn)←{l ∈ B(r)|vars(l) ⊆ n, vars(l) 6= ∅}

∪{ΣX(X)|X ∈
⋃

l∈B−(r)|vars(l)⊆n

vars(l)}

∪{Tm(Ym)|m ∈ desc(n)}

The new predicates ΣX(X) are necessary to guarantee safety of the generated
rule. For each variableX ∈

⋃
l∈B−(r)|vars(l)⊆n vars(l), we additionally generate

the rule

ΣX(X)← b

With b ∈ B+(R)|X ∈ vars(b) being a positive predicate containing X.

if n is the root node , generate the rule:

H(r)←{l ∈ B(r)|vars(l) ⊆ n}

∪{ΣX(X)|X ∈
⋃

l∈B−(r)|vars(l)⊆n

vars(l)}

∪{Tm(Ym)|m ∈ desc(n)}

Note that this head rule also includes all ground literals, since they were not
included in the other generated rules.

[Morak and Woltran, 2012] proofed that the answer sets of a base logic program
correspond (i.e. are the same modulo the newly introduced predicates) to those of the
program resulting of application of the proposed algorithm to each rule in the original
program.



Chapter 3

Rule Decomposition

Our goal in this paper is to split up each statement of any answer set program into
multiple ones, using a tree decomposition on the statement in order to reproduce a new
statement for each bag of the decomposition. Much of this work is based on [Morak and
Woltran, 2012]. Our contribution is to extend the functionality presented in section 2.3
to programs containing the language features introduced in subsection 2.1.3.

In this chapter, we will therefore first have a look at how to represent a single ASP
statement as a hypergraph. Since constructing a tree decomposition on this hypergraph
is performed by off-the-shelf libraries, the subsequent chapter already deals with the op-
posite direction: how to rewrite a statement into multiple ones based on a decomposition.
Since less substantial but still relevant, we will finally describe the preprocessing steps
performed before building the hypergraph representation.

3.1 Graph Representations of ASP Rules

As in the base language case, each statement (except for meta-statements, which are not
decomposable) is made up of a head and a body, the body in turn is made up of body
elements (literals and aggregates). These body elements, along with the head, have to
be represented as edges in our hypergraph representation.

In line with the base language case, we construct for a non-ground logic program
statement r its hypergraph representation HG(r) = 〈glob(r), E〉 such that E is the
smallest set satisfying that globr(H(r)) ∈ E and for each body element b ∈ B(r) (literal
or aggregate), globr(b) ∈ E.

Note that we did not define globr(H(r)) for optimize statements r that contain more
than one optimize element (how could we?). We therefore chose to preprocess each rule
to split up such optimize statements into multiple, semantically equivalent ones. This
task is regarded in subsection 3.3.1.

Since local variables inside aggregates and choice elements are not included in the
hypergraph, different body elements and heads containing local variables with the same
name may end up in different bags in the decomposition and therefore finally in different
rules. This is intended behavior, since those variables do not join.

11
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Example 3.1. Consider the following single-statement program:

Y ≤ {p(X) : q(X)} ← r(Y ), q(Z), Z ≤ #sum{X : p(X)}

The hypergraph representation of this statement is 〈{Y, Z}, {{Y }, {Z}}〉. We would
expect our tree decomposition to consist of two bags, {Y } and {Z}, with the first one
being the root (since Y is a head variable). Based on the one presented in section 2.3,
the subsequent rule synthesis algorithm is expected to produce rules similar to these:

tmp ← q(Z), Z ≤ #sum{X : p(X)}
Y ≤ {p(X) : q(X)} ← r(Y ), tmp 4

3.2 Rule Synthesis and Unsafe Variables

When it comes to generating rules based on a given decomposition, we can basically adopt
the Moark-Woltran rewriting algorithm of section 2.3, since the notion of a variable has
not changed introducing new language features. Regarding unsafe variables however, we
have to refine the safety closure temporary predicates ΣX , since the definition of safety
is now different to that of the base ASP language.
Example 3.2. Consider the rule:

h(V )← p(Z), not p(X), X = Y + Z, Y = U + 1, q(U, V ).

The decomposition of the hypergraph representation may look like this:
V U Y

X Y Z

Using the approach of Morak and Woltran, at the beginning of the tree traversal, we
create a temporary rule containing all those body elements that only use the variables
X, Y and Z, namely p(Z), not p(X) and X = Y + Z. In this body, both the variables
X and Y are unsafe, so, following the Morak-Woltran algorithm, we have to include the
safety-guaranteeing predicates ΣX and ΣY . Trying to construct safety definition rules
for these predicates leads us to a problem: There does not exist a positive body predicate
containing either of those two variables, so the question to this end is: how many and
which body elements do we have to include in order to make the generated rule safe? 4

In order to answer this question, we first introduce the notion of the safety charac-
terization of literals, aggregates and terms.

3.2.1 Introducing Safety Characterization

Definition 3.3. A safety characterization is a triplet 〈S,U,R〉 with S denoting the set
of safe variables, U denoting the set of unsafe variables and R denoting the set of safety
rules. A safety rule is of the form D → d, where D denotes the safety rule’s dependees,
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which is a set of variables, and d denotes the safety rule’s depender variable. We denote
by C the set of all safety characterizations. 4

The concept of safety rules should not be mistaken with rules in the ASP language.
The former is merely used as a notational aid for performing safety analysis on the latter.

The meaning of a safety rule may be read as “if in this context, all dependee variables
are safe, then the depender variable is safe as well”.
Definition 3.4. A safety rule r = D → d is said to be in normal form (or normal) iff
D 6= ∅ and d 6∈ D. A safety characterization c = 〈S,U,R〉 is said to be in normal form
iff the following conditions hold:

normal rules: each safety rule r in R is in normal form,

variable safety: S ∩ U = ∅,

unsafe dependers: for each rule D → d in R, d ∈ U (note that combined with the
variable safety condition, this implies d 6∈ S),

unsafe dependees: for each rule D → d in R, D ⊆ U (note that combined with the
variable safety condition, this implies D ∩ S = ∅).

Note that the last two conditions imply the unsafe rules condition: for each safety rule
D → d in R, (D∪{d}) ⊆ U . By Cn we denote the set of all normal safety characterizations
(clearly, Cn ⊆ C). 4
Definition 3.5. The safety characterization closure is the function clos : 2C → Cn that,
given a set of safety characterizations, produces a normal safety characterization com-
bining the given ones. clos is defined as follows:

clos(Cs) = norm

〈 ⋃
〈S,U,R〉∈Cs

S,
⋃

〈S,U,R〉∈Cs

U,
⋃

〈S,U,R〉∈Cs

R

〉
The normalization function norm : C → Cn is defined in algorithm 1. 4

Informally speaking, the closure combines safety characterizations in such a way that
it tries to make as many variables as possible safe, triggering safety rules if their dependees
are safe. The concept of combining safety rules and infering safety of variables based on
rules is quite similar to aspects of ASP, and in fact the clos function may be implemented
in a declarative way.

3.2.2 Safety Characterization of ASP Elements

Now that we have introduced the concept of safety characterizations, we may define
the safety characterizations of terms, literals and aggregates (in this order), based on
the definition of safety in [Calimeri et al., 2012]. We denote by safetyr(e) the normal
saferty characterization of the term, literal or aggregate e if it occurs in the body of the
statement r.
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input : a safety characterization C
output: C in normal form

1 foreach r ∈ C.R do
2 if r.d ∈ r.D then
3 remove r from C.R;
4 end
5 end
6 repeat
7 foreach r ∈ C.R do
8 if r.d ∈ C.S then
9 remove r from C.R;

10 else
11 remove from r.D all variables that also occur in C.S;
12 if r.D is empty then
13 insert r.d into C.S;
14 remove r from C.R;
15 end
16 end
17 end
18 until neither C nor any of C.R have changed in last pass;
19 insert into C.U all variables that occur in any rule in C.R;
20 remove from C.U all variables that also occur in C.S;
21 return C;

Algorithm 1: safety characterization normalization
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Since when using pooling, terms with different variables may be pooled, resulting in
different safety behaviour in different pooling instantiations. We therefore in this section
only consider statements that do not contain pooling and restrict our rewriting process
to such statements. This is why we need to preprocess any statement before handing it
to the rewriting pipeline. On how to do this, see subsection 3.3.1

Terms

If t is a constant or an anonymous variable, safetyr(t) = safety(t) = 〈∅, ∅, ∅〉 for any rule
r.

If t is a variable, safetyr(t) = safety(t) = 〈{t}, ∅, ∅〉 for any rule r.
If t is a function f(t1, . . . , tn), then safetyr(t) = safety(t) = clos({safety(ti) : 1 ≤ i ≤

n}) for any rule r.
If t is an n-ary arithmetic term or an interval term with subterms t1, . . . , tn, then

safetyr(t) = safety(t) =
〈
∅,
⋃

s=t1,...,tn
vars(s), ∅

〉
for any rule r (i.e. all variables are

unsafe). Since the arithmetic operations discussed in subsection 2.1.3 are only unary and
binary and intervals have a binary syntax, n may only be either 1 or 2.

Note that the safety characterization of a term is always rule-free, i.e. it does not
contain safety rules, but only safe and unsafe variables.

Classical Literals

Recap: A classical literal is either a classical atom or a naf-negated classical atom, with
a classical atom being either a predicate or a strongly negated predicate.

If l is a naf-negated classical atom, safetyr(l) = safety(l) = 〈∅, vars(l), ∅〉 for any rule
r.

If l is a predicate or strongly negated predicate [−]p(t1, . . . , tn), then safetyr(l) =
safety(l) = clos({safety(ti) : 1 ≤ i ≤ n}) for any rule r.

Built-in Literals

If l = t1 ≺ t2 is a built-in literal with ≺∈ B≺ \ {=}, then safetyr(l) = safety(l) =
〈∅, vars(l), ∅〉 for any rule r.

If l is a built-in literal of the form t1 = t2 with safety(t1) = 〈S1, U1, ∅〉 and safety(t2) =
〈S2, U2, ∅〉, then, for any rule r:

safetyr(l) = safety(l) =

= norm (〈∅, vars(l), {vars(t1)→ s2 : s2 ∈ S2} ∪ {vars(t2)→ s1 : s1 ∈ S1}〉)

The intuition here is: No variables are safe. If all the variables on the left side of the
equation are being made safe in the context, then all the variables that are in the safe set
in the right term’s safety characterization are also being made safe by this literal, and
vice versa.
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Aggregates

If a is an aggregate of the form #aggr{e1, . . . , en} (i.e. it has no guards), then safetyr(a) =
〈∅, globr(a), ∅〉.

If a is an aggregate of the form t ≺ #aggr{e1, . . . , en} with ≺∈ B≺ \ {=}, then
safetyr(a) = 〈∅, globr(a), ∅〉.

If a is an aggregate of the form t = #aggr{e1, . . . , en} and safety(t) = 〈S,U, ∅〉, then:

safetyr(a) = norm (〈∅, globr(a), {invars(a) ∩ glob(r)→ s : s ∈ S}〉)

The intuition here is in line with that of a built-in literal.
If a is an aggregate of the form #aggr{e1, . . . , en} ≺ t, then safetyr(a) = safetyr(t ≺

#aggr{e1, . . . , en}).
If a is an aggregate of the form t1 ≺1 #aggr{e1, . . . , en} ≺2 t2, then safetyr(a) =

clos {safetyr(t1 ≺1 #aggr{e1, . . . , en}), safetyr(#aggr{e1, . . . , en} ≺2 t2)}.

Sets of Body Elements

Definition 3.6. Given a set B of literals and aggregates and a statement r, we define
safetyr(B) = clos{safetyr(c) : c ∈ B} 4
Theorem 3.7. A statement r is safe iff safetyr(B(r)) = 〈glob(r), ∅, ∅〉 (without proof).

4

3.2.3 Choosing Elements for Domain Closure

Now that we may calculate a safety characterization for each body element of a statement,
it is possible, given an unsafe variable, to choose a set of body elements of the original
statement so that their combined safety characterization includes the given variable as
safe. Formally:

Theorem 3.8. Let r be a safe statement and v ∈ glob(r) a variable. There exists a set
of body elements Σv ⊆ B(r), such that safetyr(Σv) = 〈S, ∅, ∅〉 and v ∈ S.

Proof. use theorem 3.7 and let Σv = B(r). 4
What the proof of theorem 3.8 does not imply is that it might be possible to find a

real subset Σv ⊂ B(r):

Definition 3.9. Let r be a safe statement and v ∈ glob(r) a variable. We denote by
candr(v) ⊆ 2B(r), or “candidate bodies for saving v in r”, the set of subset-minimal
elements of {B ⊆ B(r) : safetyr(B) = 〈S, ∅, ∅〉 , v ∈ S}. 4

These candidate bodies can be inductively calculated.
Now we are able to use algorithm 2 for constructing safety closure rules and alter

Morak and Woltran’s rule rewriting algorithm from section 2.3. More precisely, we
replace the “if n is not the root node” part by the following:
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input : statement r, temporary rule t whose body includes a subset of B(r) and
a number of temporary child join predicates

output: safety closure rules

1 R := ∅;
2 while t’s safety characterization contains unsafe variables do
3 v := choose one of t’s safety characterization’s unsafe variables;
4 B := choose the element of candr(v) with the least number of variables;
5 p := create a temporary predicate name;
6 insert p(v)← B into R;
7 insert p(v) into the body of t;
8 end
9 return R;

Algorithm 2: safety closure construction

if n is not the root node , generate the rule t of the form:

Tn(Yn)←{l ∈ B(r)|vars(l) ⊆ χ(n), vars(l) 6= ∅}
∪{Tm(Ym)|m ∈ desc(n)}

Then, we run algorithm 2 with actual arguments r and t and produce the returned
rules (which, in turn, may be decomposed as well). Note that algorithm 2 adds the
new temporary domain closure predicates to t’s body.

Note that in line 4 of algorithm 2, we chose that body for safety closure that has
the least number of variables, hoping to reduce grounder workload. A probably more
promising approach is discussed in section 5.2.
Example 3.10. Reconsider example 3.2. When processing the leaf bag containing X, Y
and Z, after the rule t = T1(Y )← p(Z), not p(X), X = Y +Z is generated, algorithm 2
is called. In line 3, the algorithm may choose one of the unsafe variables X and Y .

If it chooses Y , then the candidate bodies for saving Y only consists of the body
{Y = U + 1, q(U, V )} and the domain closure rule tmpsafe(Y ) ← Y = U + 1, q(U, V )
ist being generated, updating t to T1(Y )← p(Z), not p(X), X = Y + Z, tmpsafe(Y ).
Rechecking the condition in line 2, algorithm 2 will find that t is now already safe (without
explicitly having saved X!) and returns.

If, however, the algorithm first chooses X, a domain closure rule will be generated
that contains the whole body of our original rule r, except for not p(X). Instead of
reducing the grounding, this decision would contrarily blow it up. As if that was not
enough, rechecking the condition in line 2, algorithm 2 will find that Y is still unsafe
and will generate a second domain closure rule equal to the one above. X may now be
considered saved “twice”, whereas once would be enough. 4

As you can see in this example, which unsafe variable to choose first may be crucial
to the slimness of the resulting program. To this end, if applicable, a variable shoud be
chosen that is not a depender in any safety rule of t’s safety characterization.
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3.3 Preprocessing Steps

Before feeding each statement of an ASP program to the decomposition pipeline, the
program needs to be preprocessed, in part because the pipeline can’t handle pooling
(discussed in the next section), and in part in order to do some additional optimization
(discussed in the subsequent section).

3.3.1 Pooling and Optimize Splitting

As already discussed in subsection 3.2.2, in order to perform our safety analysis on a
statement, it must not contain pools. Also in section 3.1, we found that we need optimize
statements to contain no more than one optimize element. Although the latter has
nothing to do with pooling, those two problems are similar, since in both, the statement
may be split up into multiple ones (and the instantiations are syntactically seperated by
the semicolon character).

We chose first to perform optimize splitting: If a statement is an optimize statement
with n optimize elements in its head, it it split into n new optimize statements, each
being a copy of the original one, with the optimize elements being replaced by only one.

Formally, the optimize statement #opt{e1, . . . , en} becomes the set of optimize state-
ments {#opt{ei} : 1 ≤ i ≤ n}.

Afterwards, we perform pooling splitting using the notational aid of positions in the
syntax tree of a statement. By global position we mean the position of a term that
has global context, i.e. if a new variable were at this position, it would globally bind
(as opposed to a position inside of an aggregate or choice element): If a statement r
contains a pooling term t1, . . . , tn at global position p, it becomes a set of n statements
being a copy of r, each replacing the term at position p by an other ti. If a statement r
contains a pooling term t1, . . . , tn at non-global position p inside an aggregate or choice
element, the element itself is copied inside the aggregate or choice head, not resulting in
more statements. This algorithm is then performed recursively on all newly generated
statements.
Example 3.11. Consider following single-statement program:

#minimize{X : p(X); 1, X : q(X, (2; 3 + (4; 5)))}

After optimize splitting, it reads:

#minimize{X : p(X)}
#minimize{1, X : q(X, (2; 3 + (4; 5)))}

After the first pooling splitting, it may read:

#minimize{X : p(X)}
#minimize{1, X : q(X, (2)}
#minimize{1, X : q(X, (3 + (4; 5)))}
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After the recursive pooling splitting, it reads:

#minimize{X : p(X)}
#minimize{1, X : q(X, (2)}
#minimize{1, X : q(X, (3 + (4)))}
#minimize{1, X : q(X, (3 + (5)))} 4

Note that it makes no difference in which order the pooling terms are being split. In
the example above, first splitting the term 4; 5 would have resulted in the same set of
statements.
Example 3.12. Consider following single-statement program:

res(W )←W = #sum{X : X = (1; 2; 3); Y : p(Y )} < (−5; 5)

We choose to first perform the splitting of the global term −5; 5 (again, making no
difference in the end if we chose otherwise), resulting in:

res(W )←W = #sum{X : X = (1; 2; 3); Y : p(Y )} < (−5)

res(W )←W = #sum{X : X = (1; 2; 3); Y : p(Y )} < (5)

After the recursive call, the program reads:

res(W )←W = #sum{X : X = (1); X : X = (2); X : X = (3); Y : p(Y )} < (−5)

res(W )←W = #sum{X : X = (1); X : X = (2); X : X = (3); Y : p(Y )} < (5) 4

3.3.2 Aggregates and Choice Rules

In our decomposition algorithm, statements are split considering their body elements as
atomic. Thus, long aggregate element or choice element bodies are not examined by the
algorithm, leading to a potential optimization bottleneck. Because often, the body of an
aggregate element or choice element contains a set of literals that can be extracted into
a new rule, allowing for our statement decomposition algorithm to split this rule. This
is best explained by an example:
Example 3.13. Consider the following statement:

←#sum{X,Y : p(Z), q(Z,U), q(U, T ), q(T, S), f(V + 1,W ), X = 2 ∗W ; X : p(X)},
Y = 1, Z = 2, V = 3, S = 4

This statement may be rewritten into the semantically equivalent statements

←#sum{X,Y : tmp(Z, S), f(V + 1,W ), X = 2 ∗W ; X : p(X)},
Y = 1, Z = 2, V = 3 S = 4

tmp(Z, S)←p(Z), q(Z,U), q(U, T ), q(T, S)
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The latter set of statements is optimizable by our decomposition algorithm, whereas the
former is not. 4

In order to perform this kind of optimization, we use algorithm 3, called on each
aggregate element and choice element in our program. Note that since we use safety
analysis in this algorithm, this optimization has to be performed after pooling splitting.

input : statement r, aggregate or choice element e inside r
output: if optimizable, new temporary rule (and alters e); if not, nothing

1 // first, calculate those literals B that may be extracted:
2 x := the set of unsafe variables U in safetyr(B(e)) = 〈S,U,R〉;
3 B := {l ∈ B(e) : vars(l) ∩ x = ∅};
4 repeat
5 s := safety(B) ;
6 foreach l ∈ B do
7 if s.U ∩ vars(l) 6= ∅ then
8 remove l from B ;
9 end

10 end
11 until s.U = ∅;
12 if B = ∅ then
13 /*not optimizable*/
14 return;
15 else
16 // calculate the join variables for the new predicate:
17 v := glob(← B) ∩ (glob(r) ∪ vars(H(e)) ∪ vars(B(e)));
18 p := create a temporary predicate name;
19 insert p(v) into the body of e;
20 return new rule p(v)← B;
21 end

Algorithm 3: aggregate and choice splitting algorithm

3.4 Putting it All Together

Now that we have the algorithmic foundations, we can combine them to build a prepro-
cessing application: Whenever a statement is to be optimized we follow these steps:

1. First perform splitting of optimize statements, followed by pooling splitting, both
as described in subsection 3.3.1.

2. Afterwards, a preparational safety calculation may be done, since in the following
steps, the safety characterizations of term, literals and aggregates may be needed
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(subsection 3.2.2). Those safety characterizations may altertively also be later
calculated on demand.

3. Split aggregates and choice rules (in any order), as described in subsection 3.3.2.

4. From each resulting statement, build a hypergraph (section 3.1) and feed it into a
tree decomposition library.

5. Perform a bottom-up traversal on the returned tree decomposition, generating a
rule for each bag, as defined in the Morak-Woltran algorithm, considering our
changes regarding unsafe variables from subsection 3.2.3. If the bag contains unsafe
variables, we need to generate additional safety closure rules.





Chapter 4

Benchmarks

With our prototype implementation lpopt in the programming language C++, we have
benchmarked the performance of gronding and solving lpopt-preprocessed programs (that
is, the output of lpopt) against non-preprocessed ones.

We have chosen to use the instance sets of the fifth answer set programming competi-
tion 2014 1, providing for most problem classes the old encoding of the ASP competition
2013 and the new one of 2014.

In appendix A, some more technical details and the benchmark results are given. Out
of the 49 encodings, lpopt was able to syntactically rewrite 41, indicating that even such
extensively hand-tuned programs as those of the international ASP competition can be
further decomposed in an automated manner. Those problem classes that show the most
interesting differences between lpopt-preprocessing and non-preprocessing performance
are now discussed.

4.1 Pessimistic Results

The 2014 KnightTourWithHoles The groundings of the preprocessed encoding are about
five times larger than those of the non-preprocessed ones, and grounding takes about
50% longer. An explanation of this phenomenon gives a look at the differences between
the encodings (in diff -like formatting):

< other(X,Y,XX,YY) :- valid(X,Y,XX,YY), move(A,B,XX,YY), X!=A.

> temp_decomp_16_0(A,XX,YY) :- move(A,B,XX,YY).
> temp_decomp_16_2_safe(X) :- valid(X,Y,XX,YY).
> temp_decomp_16_1(X,XX,YY) :- X!=A, temp_decomp_16_0(A,XX,YY),

temp_decomp_16_2_safe(X).
> other(X,Y,XX,YY) :- valid(X,Y,XX,YY), temp_decomp_16_1(X,XX,YY).

The problem here is the safety closure rule: in order to save X, the 4-arity valid predicate
is copied into a new rule. In this encoding, this predicate is intensional, meaning that

1https://www.mat.unical.it/aspcomp2014/

23
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the grounder does not know for which variable assignments is it true or false. Having an
intensional predicate as domain closure blows up the grounding size, because all possible
variable assignments have to be taken along up our decomposition. We consider this
topic at section 5.2.

The 2013 Weighted-sequenceProblem shows about 5 to 10 times slower grounding
and about three times as big a grounding when using preprocessing. Also in this case,
we have intensional domain closure predicates.

4.2 Optimistic Results

The most outstanding result is the 2014 PermutationPatternMatching problem. Ground-
ing time of the heaviest instance is 980 seconds without preprocessing and 17 seconds
with preprocessing, the same instance not finishing solving without preprocessing (time-
out 300 seconds) and finishing withing 110 seconds when being preprocessed. Let us
have a look at the differences between the original and the preprocessed encoding:

> kval(K) :- p(K,P), patternlength(L), K <= L.
< temp_decomp_0_1_safe(K) :- p(K,P).
< temp_decomp_0_0(K) :- patternlength(L), K<=L, temp_decomp_0_1_safe(K).
< kval(K) :- p(K,P), temp_decomp_0_0(K).

> pair(K1,K2) :- kval(K1), kval(K2), p(K1,P1), p(K2,P2), P1 <= P2.
< temp_decomp_1_1_safe(P2) :- p(K2,P2).
< temp_decomp_1_0(K1,P2) :- kval(K1), p(K1,P1), P1<=P2,

temp_decomp_1_1_safe(P2).
< pair(K1,K2) :- kval(K2), p(K2,P2), temp_decomp_1_0(K1,P2).

> { geq(K,I) } :- kval(K), t(I,E).
< temp_decomp_2_0(I) :- t(I,E).
< {geq(K,I)} :- kval(K), temp_decomp_2_0(I).

> :- kval(K), t(I,E), geq(K,I+1), not geq(K,I).
< temp_decomp_3_1_safe(I) :- t(I,E).
< temp_decomp_3_0(I) :- kval(K), geq(K,I+1), not geq(K,I),

temp_decomp_3_1_safe(I).
< :- t(I,E), temp_decomp_3_0(I).

> :- kval(K), t(I,E), geq(K-1,I), not geq(K,I+1).
< temp_decomp_4_0(I) :- t(I,E).
< :- kval(K), geq(K-1,I), not geq(K,I+1), temp_decomp_4_0(I).

> :- pair(K1,K2), solution(K1,E1), solution(K2,E2), E2 < E1.
< temp_decomp_7_0(E1,K2) :- pair(K1,K2), solution(K1,E1).
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< :- solution(K2,E2), E2<E1, temp_decomp_7_0(E1,K2).

One can see that the original instance is not as well hand-tuned as the encodings
of other ASP Competition problem classes. Six rules could be split up. Although a
few safety closure predicates had to be introduced, they only depend on the extensional
predicates p and t. For a discussion on this matter, see section 5.2. p and t do not occur
in any rule head of the encoding, they only occur as facts in the instance program parts.

Another positive example is the 2013 StableMarriage problem. When using prepro-
cessing, the grounding size increases dramatically from 5,700 to almost 280,000 or from
10,000 to 650,000 variables, respectively, meaning a multiplication from 50 to 65. The
grounder is thirty times faster when using preprocessing, and the sat-supported solver
three times faster.

The only rule that differs (from the six-rule-encoding) it the following:

< :- match(M,W1), manAssignsScore(M,W,Smw), W1!=W, manAssignsScore(M,W1,Smw1),
Smw>Smw1, match(M1,W), womanAssignsScore(W,M,Swm),
womanAssignsScore(W,M1,Swm1), Swm>=Swm1.

> temp_decomp_6_0(Swm1,W) :- match(M1,W), womanAssignsScore(W,M1,Swm1).
> temp_decomp_6_2_safe(Swm) :- womanAssignsScore(W,M,Swm).
> temp_decomp_6_1(Swm,W) :- Swm>=Swm1, temp_decomp_6_0(Swm1,W),

temp_decomp_6_2_safe(Swm).
> temp_decomp_6_3(M,W) :- womanAssignsScore(W,M,Swm), temp_decomp_6_1(Swm,W).
> temp_decomp_6_4(M,Smw,W1) :- match(M,W1), manAssignsScore(M,W,Smw),

W1!=W, temp_decomp_6_3(M,W).
> :- manAssignsScore(M,W1,Smw1), Smw>Smw1, temp_decomp_6_4(M,Smw,W1).

Again, the only safety closure body consists of the extensional predicate womanAs-
signsScore.

The last benchmark problem to discuss is NoMistery, both 2013 and 2014. The
grounding times are in both cases about half, the grounding sizes as well. The few
solving time points one can see are mostly below that non-preprocessed ones, in part
way below, in one extreme case even 9 seconds instead of 174 (sat-supported). Consider
the differences in the 2014 encoding:

< action(drive(T,L1,L2)) :- fuelcost(Fueldelta,L1,L2), truck(T).
> temp_decomp_9_0(L1,L2) :- fuelcost(Fueldelta,L1,L2).
> action(drive(T,L1,L2)) :- truck(T), temp_decomp_9_0(L1,L2).

< del(fuel(T,Fuelpre),S) :- drive(T,L1,L2,S), fuel(T,Fuelpre,S-1).
> temp_decomp_22_0(S,T) :- drive(T,L1,L2,S).
> del(fuel(T,Fuelpre),S) :- fuel(T,Fuelpre,S-1), temp_decomp_22_0(S,T).

< fuel(T,Fuelpre-Fueldelta,S) :- drive(T,L1,L2,S), fuelcost(Fueldelta,L1,L2),
fuel(T,Fuelpre,S-1), Fuelpre>=Fueldelta.
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> temp_decomp_23_0(Fueldelta,S,T) :- drive(T,L1,L2,S), fuelcost(Fueldelta,L1,L2).
> fuel(T,Fuelpre-Fueldelta,S) :- fuel(T,Fuelpre,S-1), Fuelpre>=Fueldelta,

temp_decomp_23_0(Fueldelta,S,T).

< preconditions_d(T,L1,L2,S) :- step(S), at(T,L1,S-1), fuel(T,Fuelpre,S-1),
fuelcost(Fueldelta,L1,L2), Fuelpre>=Fueldelta.

> temp_decomp_32_1_safe(Fueldelta) :- fuelcost(Fueldelta,L1,L2).
> temp_decomp_32_0(Fueldelta,S,T) :- step(S), fuel(T,Fuelpre,S-1),

Fuelpre>=Fueldelta,
temp_decomp_32_1_safe(Fueldelta).

> preconditions_d(T,L1,L2,S) :- at(T,L1,S-1), fuelcost(Fueldelta,L1,L2),
temp_decomp_32_0(Fueldelta,S,T).

Also here, the only safety closure predicate only uses the extensional predicate fuel-
cost.



Chapter 5

Conclusion

5.1 Summary

In this work, we have extended the algorithm introduced in [Morak and Woltran, 2012],
which preprocesses non-ground answer set programs, splitting up rules into smaller ones
employing tree decompositions, thus reducing the number of variables and predicates per
rule. Therefore reducing the number of instantiation candidates, this approach reduces
grounding time and size, effectively speeding up ASP systems. Our extension to this
approach consists of additionally supporting various features to the ASP language, as
those defined in the ASP-Core-2 standard and selected ones of the Potassco ASP system.
We have discussed the reuirements for and characterization of such a system, implemented
a prototype preprocessing program and benchmarked it, in part showing astounding
results, and mainly showing that further work in this area is required.

Considering that, up to now, many program encodings have to be extensively hand-
tuned in order to avoid the grounding bottleneck, with our approach, this is no longer
needed. When splitting up rules by (economically expensive) expert hands, a program’s
readability suffers — since one of the advantages of declarative problem frameworks is
the one-to-one relationship between intention and representation.

We also see a big advantage in this work regarding laymen-written programs and
automatically produced programs, since in these cases, experts are not available that
could rewrite a program. Those programs may include long rule bodies with relatively
loose literal coupling by variables (low treewidth), where out preprocessing optimization
comes in handy.

5.2 Future Work

As already touched in subsection 3.2.3, choosing a body candidate for safety domain
closure is not optimal in out algorithm. To this end, we refer to the terminology of
extensional and intensional predicates, originating in the declarative programming lan-
guage Datalog [Abiteboul et al., 1995]: Extensional relations are considered those being
defined in a constant database, i.e. the declarative program does not compute exten-
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sional facts. Intensional relations are those not represented in the database, i.e. being
computed by the program. In ASP, in line with this definition, extensional predicates are
considered those that only appear as facts and not in rule heads, yielding to the grounder
exactly knowing whether an occurrence of such a predicate is true or false. Intensional
predicates are considered all other.

When it comes to choosing a safety domain closure set of literals, it is therefore best to
choose as little intensional predicates as possible (preferrably only extensionals), since the
grounder then already exactly knows which terms to instantiate for the unsafe variable,
not postponing a guess to the solver. This also leads to smaller and faster groundings.

Future academic research in the area of non-ground rule splitting is therefore en-
couraged to distinguish between extensional and intensional predicates. Since grounders
like gringo already make this distinction, this goal is best reached by incorporating our
rule-splitting mechanism into grounders instead of shipping standalone programs.

Similar to this problem is the question how to treat body elements that are contained
in more than one bag of the tree decomposition. Our algorithm, as defined above, puts
such an element in each and every decomposition rule it is contained in, although, for
semantic correctness, it would be sufficient to have it in only one: if it is an extensional
predicate, it should be produced in the lowermost tree node, leading to the grounder
being able to restrict the instantiation domains in all following parent nodes. If it is an
intensional predicate, it should contrarily be produced in the topmost tree node, leading
to deferring solver guessing to influence as little other predicates as possible.

In our aggregate and choice element splitting algorithm 3, in line 3 we begin with
constructing a body B, and then “thinning it out” to be safe. An other possibility would
be to add safety domain closures like in the statement splitting algorithm, also considering
taking literals outside of the aggregate or choice rule head. Again, this would be most
applicable if the chosen domain closure literals were extensional.

In order for non-ground statement splitting to perform even better, it should be inte-
grated into a grounder, resulting in the benefit that the safety domain closure predicates
would not be needed, since the gronder could directly instantiate unsafe variables with
the respective constant terms. This would speed up grounding and reduce its generated
size, since those predicates would no longer exist.



Appendix A

Benchmark Results

problem class name 13avail 14avail 13opt 14opt
AbstractDialecticalFrameworks y y y y
BottleFillingProblem y y y n
ComplexOptimizationOfAnswerSets y y y y
ConnectedMaximim-densityStillLife y y y y
CrossingMinimization y y y y
GracefulGraphs y y y n
GraphColouring y y n y
HanoiTower y y y y
IncrementalScheduling y y y y
KnightTourWithHoles y y y y
Labyrinth y y y y
MaximalCliqueProblem y y n n
MinimalDiagnosis y y y y
Nomistery y y y y
PartnerUnits y y y y
PermutationPatternMatching y y y y
QualitativeSpatialReasoning y y n n
RicochetRobots y y y y
Sokoban y y y y
Solitaire y y y y
StableMarriage y y y y
StrategicCompanies y n n n
ValvesLocationProblem y y y y
Visit-all y y y y
Weighted-sequenceProblem y y y y

Above table lists the problem classes of the ASP competition 2014, each entry contain-
ing the information whether a 2013 and/or a 2014 encoding is available (13avail/14avail)
and whether, for each year, our preprocessing algorithm lpopt outputs a program that is
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syntactically different from the input (13opt/14opt).
The benchmarks have been run on a 3.5GHz AMD Opteron Processor 6308 with 192

GB of RAM to its disposal. We used the Potassco software suite, namely gringo verison
4.5.3 as the grounder and clasp version 3.1.3 as the solver.

Since on each instance, lpopt takes no longer than 0.01 seconds, this time is not
reported. We only benchmarked those encodings for which lpopt found an optimization
(column “..opt” in the table).

In each problem class, the ASP competition 2014 chose 20 problem instances.
For discussion of the benchmark results, refer to chapter 4.
The grounding size has been measured by the number of variables as reported by

running clasp --solve-limit=0 -s2. This number includes both the number of rule
bodies and the number of atoms. In no instance, there was a timeout for gringo, but we
set the timeout for clasp to 300 seconds. Instances where clasp runs into this timeout
are not printed in the respective plots.

On each instance, we ran clasp two times: once without arguments and once with the
--sat-prepro argument, enabling SatELite-like preprocessing (except for KnightTour-
WithHoles).
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