
Declarative Dynamic Programming as an
Alternative Realization of Courcelle’s Theorem

Bernhard Bliem, Reinhard Pichler, and Stefan Woltran

Institute of Information Systems, Vienna University of Technology
{bliem, pichler, woltran}@dbai.tuwien.ac.at

Abstract. Many computationally hard problems become tractable if the graph
structure underlying the problem instance exhibits small treewidth. A recent ap-
proach to put this idea into practice is based on a declarative interface to specify
dynamic programming over tree decompositions, delegating the computation to
dedicated solvers. In this paper, we prove that this method can be applied to any
problem whose fixed-parameter tractability follows from Courcelle’s Theorem.

1 Introduction

Many computationally hard problems become tractable if the graph structure underly-
ing the problem instance at hand exhibits certain properties. An important structural
parameter of this kind is treewidth. By using a seminal result due to Courcelle [1] sev-
eral fixed-parameter tractability results have been proven in the last decade. To turn
such theoretical tractability results into efficient computation in practice, two contrary
approaches can be found in the literature (see also the excellent upcoming survey [2]).
Either the user designs a suitable dynamic programming algorithm that works directly
on tree decompositions of the instances (see, e.g., [3]), or a declarative description of
the problem in terms of monadic second-order logic (MSO) is used with generic meth-
ods that automatically employ a fixed-parameter tractable algorithm where the concepts
of tree decomposition and dynamic programming are used “inside”, i.e., hidden from
the user (see, e.g., [4, 5] or the recent approach [6, 7]). The obvious disadvantage of the
first strategy is its purely procedural nature, thus a practical implementation requires
considerable programming effort. The second approach lacks possibilities to incorpo-
rate domain-specific knowledge which is typically exploited in tailor-made dynamic
programming solutions and thus crucial for efficient solutions.

In order to combine the best of the two worlds, a recent LISP-based approach called
Autograph (see, e.g., [8]) allows to specify the problem at hand via combinations of
(pre-defined) fly-automata; hereby, domain-specific knowledge is incorporated on the
automata level. Another recent approach employs Answer Set Programming (ASP) [9]
in combination with a system called D-FLAT1 [10]. In this approach, it is possible to
entirely describe the dynamic programming algorithm by declarative means. D-FLAT
heuristically generates a tree decomposition of an input structure and provides the data

1 Dynamic Programming Framework with Local Execution of ASP on Tree Decomposi-
tions. Available as free software at http://www.dbai.tuwien.ac.at/research/
project/dynasp/dflat/.

structures that are propagated during dynamic programming. The task of solving each
subproblem is delegated to an efficient ASP system that executes a problem-specific
encoding. Such specifications typically reflect the problem solving intuition due to the
possibility of using a Guess & Check technique, and the rich ASP language (including,
e.g., aggregates) allows for concise, easy-to-read encodings.

So far, D-FLAT has only been applied to some sample problems lying in NP [10].
It has been left open if this approach is more generally applicable. In this work, we
present a slight extension of the D-FLAT approach and prove that this new method can
indeed be used to solve any MSO-definable problem parameterized by the treewidth
in fixed-parameter linear time. We introduce semantic trees as a tool for MSO model
checking (MC). Semantic trees are closely related to the approaches from [6, 11] but
have properties that better suit our needs. Complementing the practically oriented ex-
position of D-FLAT in [10], the current work gives a theoretical result: We present an
ASP-based description of a dynamic programming algorithm of the MSO MC problem
via semantic trees and thus show the general applicability of the D-FLAT method.

2 Semantic Trees and Tree Decompositions

In this section we present our approach to MSO MC based on semantic trees, which are
closely related to the game-theoretic techniques of [6] and the so-called characteristic
trees of [11]. Below, we recall some basic notions and then highlight our method.
MSO model checking over finite structures. Let σ = {R1, . . . , RK} be a set of
relation symbols. A finite structureA over σ (i.e., a “σ-structure”, for short) is given by
a finite domain dom(A) = A and relations RAi ⊆ Aα, where α denotes the arity of Ri.

We study the MSO model checking problem (i.e., the problem of evaluating an MSO
sentence) over σ-structures. To simplify the presentation, we consider MSO sentences
of the form φ = ∃Y1∃z1∀Y2∀z2 . . . ∃Yn−1∃zn−1∀Yn∀znψ, s.t. n is even and ψ is a
quantifier-free formula. Note that an atom in φ can either be of the formR(zi1 , . . . , ziα)
for someR ∈ σ or of the form Yi(zj). Let At(φ) denote the set of atoms occurring in φ.

An interpretation I of ψ overA is given by a tuple (C1, . . . , Cn, d1, . . . , dn), where
Ci ⊆ dom(A) is the interpretation of set-variable Yi and di ∈ dom(A) is the inter-
pretation of the individual variable zi. In a partial interpretation, we may assign the
special value undef to the individual variables zi in ψ. The truth value I(p) of an atom
p in a partial interpretation I is defined in the obvious way: If at least one individual
variable in the atom p is assigned the value undef in I , then we also set I(p) = undef .
Otherwise, I(p) yields true or false exactly as for complete interpretations.

In order to systematically enumerate all possible interpretations for the quantifier-
free part ψ of φ and to represent the truth value of ψ in each of these interpretations, we
introduce the notion of semantic trees.

Definition 1. For an MSO-formula φ and σ-structure A, we define the semantic tree
for φ and A as the following rooted, node-labeled tree with 2n+ 2 levels:

– Level 0 consists of the root.
– The nodes at levels 1 through 2n correspond to the variables Y1, z1, Y2, z2, . . . , Yn,
zn in this order.

2

– Each of the nodes at level 2n+ 1 corresponds to the result of evaluating the atoms
in ψ in one partial interpretation.

The rank and label ` of each node N must satisfy the following conditions: the root has
an empty label; every node at level 0, 2, 4, . . . , 2n − 2 has |2dom(A)| child nodes, s.t.
each subsetB ⊆ dom(A) occurs as the label of one of these child nodes; every node at
level 1, 3, 5, . . . , 2n−1 has |dom(A)|+1 child nodes, s.t. each d ∈ dom(A)∪{undef }
occurs as the label of one of these child nodes; for every node N at level 2n, we define
I(N) as the partial assignment where the labels along the path from the root to N
are assigned to the variables Y1, z1, Y2, z2, . . . , Yn, zn. Then every such node N has
exactly one child node, whose label is a pair (At+,At−), s.t. At+ and At− are the sets
of atoms in ψ that evaluate to true or, respectively, false in I(N).

For an MSO-formula φ and σ-structure A, we can use the corresponding semantic
tree S to get a naive MSO MC procedure: first delete the subtree rooted at every node
N from S whenever `(N) = undef ; then reduce the MSO MC problem to a Boolean
circuit evaluation problem by replacing the nodes in S by ∨ or ∧ depending on whether
the corresponding quantifier in the quantifier prefix of φ is existential or universal. The
leaf nodes of the Boolean circuit are labeled “true” or “false” depending on the truth
value of ψ in the interpretation represented by this branch.
Compression of semantic trees for a given tree decomposition. Of course, the MC
procedure via semantic trees requires exponential time in the size of A. We now show
how semantic trees can be compressed in the presence of a tree decomposition of A.

A tree decomposition of a structure A is a pair (T, χ) where T = (V,E) is a
(rooted) tree and χ : V → 2dom(A) maps nodes to so-called bags such that (1) for
every a ∈ dom(A), there is a t ∈ V with a ∈ χ(t), (2) for every relation symbol Ri
and every tuple (a1, . . . , aα) ∈ RAi there is a t ∈ V with {a1, . . . , aα} ⊆ χ(t), and (3)
for every a ∈ dom(A), the set {t ∈ V | a ∈ χ(t)} induces a connected subtree of T .
The latter is also known as the connectedness condition. The width of (T, χ) is defined
as maxt∈V (|χ(t)|) − 1. The treewidth of A is the minimum width over all its tree
decompositions. The notation t ∈ T expresses that t is a node of a tree decomposition
T . We write Tt andAt to denote the subtree of T rooted at t, and the substructure ofA
induced by the domain elements occurring in the bags in Tt, respectively.

By [12], we may assume that each node t ∈ T is of one of the following four
types: It is either a leaf node, an introduce node (having one child t′ with χ(t′) ⊆ χ(t)
and |χ(t) \ χ(t′)| = 1), a forget node (having one child t′ with χ(t′) ⊇ χ(t) and
|χ(t′) \ χ(t)| = 1) or a join node (having two children t1, t2 with χ(t) = χ(t1) =
χ(t2)). Moreover, we may assume that the root of T has an empty bag.

The idea of our decision procedure for A |= φ is to compute the semantic tree for
every substructure At of A. At the root node r of the tree decomposition, we thus get
the semantic tree for the unrestricted structure A, which we can then use for checking
A |= φ by a reduction to the Boolean circuit evaluation problem. We formally define
this semantic tree for substructure At below.

Definition 2. Consider an MSO-formula φ and σ-structure A with tree decomposition
T . For t ∈ T , we say that St is the local semantic tree at t if St is the semantic tree of
the MSO-formula φ and the induced substructure At of A.

3

To reach a fixed-parameter tractable algorithm w.r.t. treewidth, we introduce a com-
pression of the semantic tree at each node t in the tree decomposition. The compression
proceeds in two steps: First, we restrict the labels of the semantic trees to the domain
elements present in χ(t). Second, if some node in a semantic tree has two child nodes
with identical subtrees, then it suffices to retain only one of these subtrees.

Note that the concrete values of the labels at the internal nodes (i.e., the nodes
corresponding to set variables or individual variables) in a semantic tree are irrelevant.
Indeed, in the above reduction to Boolean circuits, only the tree structure of the semantic
tree and the truth values (At+,At−) at the leaf nodes matter. As will be explained
below, it is also convenient to slightly manipulate the truth values of some atoms which
should be undefined according to the above definition of partial truth assignments. Since
all subtrees with an undefined variable in one of the labels are ultimately removed from
the semantic tree anyway, this has no effect on the evaluation of formula φ over structure
A. In summary, we get the following notion of compressed, local semantic trees.

Definition 3. Consider an MSO-formula φ and σ-structure A with tree decomposition
T . For t ∈ T , let St denote the local semantic tree at t. We call Ct a compressed, local
semantic tree at t if Ct is obtained from St by applying rule L followed by rule A and
then exhaustively applying rule R defined below:

Rule L (changing Labels).

– For every node corresponding to a set variable (i.e., levels 1, 3, . . . , 2n − 1), the
label B ⊆ dom(A) is replaced B ∩ χ(t).

– For every node corresponding to an individual variable (i.e., levels 2, 4, . . . , 2n),
the label d is replaced by a special symbol ? if d ∈ dom(A) \ χ(t), and left un-
changed otherwise, i.e. if d ∈ χ(t) ∪ {undef , ?}.

Rule A (modification of Atom set At−). For every node at level 2n+1, let I denote the
interpretation along the path from the root to this node. In the label (At+,At−), replace
At− by At− ∪ {R(z1, . . . , zα) ∈ At(φ) | ∃i, j s.t. I(zi) = undef and I(zj) = ?}.

Rule R (eliminating Redundancy). LetN be a node in St and letN1,N2 be two distinct
child nodes of N . If the subtree rooted at N1 and the subtree rooted at N2 are identical,
then we delete N2 and the entire subtree rooted at N2 from St.

The intuition of rule A is the following: Recall that the meaning of I(zj) = ? is that
zj is set to some value occurring in the subtree below node t in the tree decomposition
but not in χ(t). The idea of letting I(zi) = undef is to set zi to some value neither
occurring χ(t) nor in the subtree below t. But then, by the connectedness condition of
tree decompositions, we know that such atoms can never become true, no matter how
the undefined variable will eventually be interpreted.

MSO model checking via compressed, local semantic trees. Given a finite structure
A with a tree decomposition T and an MSO sentence φ, our MC procedure works in
two steps: First, we compute a compressed, local semantic tree at every node t in T by a
bottom-up traversal of T . Then we evaluate φ overA by reducing the compressed, local
semantic tree at the root node r of T to a Boolean circuit. Fixed-parameter linearity
(w.r.t. the treewidth) of this algorithm is obtained as follows:

4

Theorem 1. For the MSO model checking problem A |= φ, let T be a tree decompo-
sition of A. Then we can compute in time O(f(τ(T), φ) · ||T ||) a compressed, local
semantic tree Ct at every node t in T . Here, τ(T) denotes the width of T and f is a
function not depending on A.

Proof (Sketch). The computation of a compressed, local semantic tree Ct for every node
t ∈ T proceeds in a bottom-up manner from the leaf nodes of T to the root. For this
computation, we distinguish the four possible types that a node t of T can have:

(1) If t is a leaf node, it can be shown that Ct simply coincides with the local semantic
tree St at t, i.e., none of the rules L, A, and R is applicable.

(2) Let t be an introduce node with child node t′, s.t. χ(t′) = χ(t) \ {b}. Then Ct is
obtained from Ct′ by copying subtrees of Ct′ and modifying the labels of the copies as
follows. Every node N in Ct′ with `(N) ⊆ χ(t′) gives rise to two nodes in Ct: one with
unchanged label `(N) and one with label `(N) ∪ {b}. Similarly, every node N in Ct′
with `(N) = undef gives rise to two nodes in Ct: one with unchanged label undef and
one with label b. Note that this corresponds to the intended meaning of the value undef ,
which is that a value shall be assigned to this individual variable “outside” the current
subtree of the tree decomposition. For the adaptation of the truth values (At+,At−)
at the leaf nodes of Ct, the connectedness condition of tree decompositions is crucial.
Finally, Ct is compressed via rule R.

(3) Let t be a forget node with child node t′, s.t. χ(t) = χ(t′) \ {b}. Then Ct is obtained
from Ct′ by first applying rule L. This means that we delete b from every set B in Ct′ .
Moreover, if an individual variable is interpreted as b in Ct′ , we replace this interpreta-
tion by ?. For the truth values (At+,At−) at the leaf nodes of Ct, it is now important to
apply rule A from Definition 3. Finally, Ct is compressed via rule R.

(4) Finally, let t be a join node with child nodes t1 and t2. By definition of join nodes, we
have χ(t) = χ(t1) = χ(t2). The nodes of Ct are obtained by combining “compatible”
nodes of Ct1 and Ct2 . For an odd level i < 2n in Ct (i.e., the labels of these nodes
provide the interpretation of a set variable in φ), a node N1 in Ct1 and a node N2 in Ct2
are compatible if `(N1) = `(N2). Compatibility in case of an even level 0 < i < 2n in
Ct (i.e., a node whose label interprets an individual variable) holds if either (a) `(N1) =
`(N2) and `(Ni) 6= ? or (b) one of `(N1), `(N2) is undef . In case (a), the node N in
Ct resulting from combining N1 and N2 simply gets the label `(N) = `(N1) = `(N2).
In case (b), the label of the resulting node N is set to `(Ni) with `(Ni) 6= undef .
Note that in (a), it is important to exclude the combination of nodes N1 and N2 with
`(N1) = `(N2) = ?. This is due to the intended meaning of ?, which stands for some
domain element in the subtree below t in the tree decomposition s.t. this value no longer
occurs in the bag of t. Hence, the two occurrences of ? in Ct1 and Ct2 stand for different
values. The label (At+,At−) at a leaf node of Ct is obtained from the labels of the
corresponding nodes in Ct1 and Ct2 by taking the component-wise union. Finally, we
compress Ct via rule R. ut

Our approach via (compressed) semantic trees has close links to the approaches
based on extended MC games in [6] and on characteristic trees in [11]. The most signif-
icant difference is that we explicitly introduce a special symbol ? for domain elements

5

not present anymore in a given bag of a tree decomposition. This allows us to define our
reduction of semantic trees by a simple equality test, while the reduce-operation in [6]
is based on an isomorphism criterion (which would not allow for a simple ASP realiza-
tion). The characteristic trees in [11] are used in the context of structures of bounded
rank-width and are computed by a bottom-up traversal of a given t-labeled parse tree
decomposition. The reduction of characteristic trees is also based on an equality crite-
rion. However, in contrast to tree decompositions, the notions of a “bag” and of a special
symbol ? (for domain elements not present anymore in some bag) are not applicable.

3 ASP and D-FLAT

In this section, we give brief introductions to Answer Set Programming (ASP) [9] and
the D-FLAT system [10]. We thus set the stage for presenting our main result, i.e., that
D-FLAT possesses enough expressive power for solving any MSO-definable problem
parameterized by the treewidth in fixed-parameter linear time.

ASP is a declarative language where a program Π is a set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn.

The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak}, b+(r) = {b1, . . . , bm} and
b−(r) = {bm+1, . . . , bn}. Intuitively, r states that if an answer set contains all of b+(r)
and none of b−(r), then it contains some element of h(r). A set of atoms I satisfies a
rule r iff I ∩ h(r) 6= ∅ or b−(r) ∩ I 6= ∅ or b+(r) \ I 6= ∅. I is a model of a set of rules
iff it satisfies each rule. I is an answer set of a program Π iff it is a subset-minimal
model of the program ΠI = {h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅} [13].

ASP programs can be viewed as succinctly representing problem solving specifi-
cations following the Guess & Check principle. A “guess” can, for example, be per-
formed using disjunctive rules which non-deterministically open up the search space.
Constraints (i.e., rules r with h(r) = ∅), on the other hand, amount to a “check” by
imposing restrictions that solutions must obey.

In this paper, we use the language of the grounder Gringo [14, 15] where programs
may contain variables that are instantiated by all ground terms (elements of the Her-
brand universe, i.e., constants and compound terms containing function symbols) before
a solver computes answer sets according to the propositional semantics stated above.

Example 1. The following program solves the INDEPENDENT DOMINATING SET prob-
lem for graphs that are given as facts using the predicates vertex and edge.

1{ in(X) : vertex(X) }.
2← edge(X,Y), in(X;Y).
3dominated(X) ← in(Y), edge(Y,X).
4← vertex(X), not in(X), not dominated(X).

Let (V,E) denote the input graph and recall that a set S ⊆ V is an independent domi-
nating set of (V,E) iff E ∩ S2 = ∅ and for each x ∈ V either x ∈ S or there is some
y ∈ S with (y, x) ∈ E. Note that this program not only solves the decision variant of
the problem, which is NP-complete, but also allows for solution enumeration.

6

Construct
i-tree

Call
ASP solver

Flatten
child i-trees

Parse
instance

Decompose Done?
no

yes

Visit next node
in post-order

Print
solution

Fig. 1. Control flow in D-FLAT

Informally, the first rule (a so-called choice rule having an empty body) states that
in is to be guessed to comprise any subset of V . The colon controls the instantiation
of the variable X such that it is only instantiated with arguments of vertex from
the input. The rule in line 2 – where in(X;Y) is shorthand for in(X), in(Y) –
checks the independence property. Lines 3 and 4 finally ensure that each vertex not in
the guessed set is dominated by this set.

In order to take advantage of this Guess & Check approach in a decomposed setting,
we make use of the D-FLAT system [10]. To perform dynamic programming on tree
decompositions, D-FLAT needs data structures to propagate the partial solutions. To
this end, it equips each node t in a tree decomposition T of an input structure A with
a so-called i-tree. By this we mean a tree where each node is associated with a set of
ground terms called items. D-FLAT executes a user-supplied ASP program at each node
t ∈ T (feeding it in particular the i-trees of children of t as input) and parses the answer
sets to construct the i-tree of t. This procedure is depicted in Figure 1. To keep track of
its origin, each i-tree node N is associated with a set of extension pointers, i.e., tuples
referencing i-tree nodes from the child nodes of t that have given rise toN . For instance,
if t has k children, the set of extension pointers of N consists of tuples (N1, . . . , Nk),
where each Nj is an i-tree node of the jth child of t. This allows us to obtain complete
solutions by combining the item sets along a chain of extension pointers.

As input to the user’s encoding, D-FLAT declares the fact final if the current node
t ∈ T is the root; current(v) for any v ∈ χ(t); if t has a child t′, introduced(v)
or removed(v) for any v ∈ χ(t) \ χ(t′) or v ∈ χ(t′) \ χ(t), respectively; root(r)
if t has a child whose i-tree is rooted at r; sub(N,N ′) for any pair of nodes N,N ′ in
a child’s i-tree, if N ′ is a child of N ; and childItem(N, i) if the item set of node
N from a child’s i-tree contains the element i. Finally, D-FLAT also provides the input
structure as a collection of ground facts.

The answer sets specify the i-tree of the current tree decomposition node. Each
answer set describes a branch in the i-tree. Atoms of the following form are relevant
for this: length(l) declares that the branch consists of l + 1 nodes; extend(l, j)
causes that j is added to the extension pointers of the node at depth l of the branch.
item(l, i) states that the node at depth l of the branch contains i in its item set. All
atoms using extend and item with the same depth argument constitute what we call
a node specification.

To determine where branches diverge, D-FLAT uses the following recursive condi-
tion: Two node specifications coincide (i.e., describe the same i-tree node) iff (1) their
depths, item sets and extension pointers are equal, and (2) both are at depth 0, or their
parent node specifications coincide. In this way, an i-tree is obtained from the answer

7

sets. It might however contain sibling subtrees that are equal w.r.t. item sets. If so, one
of the subtrees is discarded and the extension pointers associated to its nodes are added
to the extension pointers of the corresponding nodes in the remaining subtree. D-FLAT
exhaustively performs this action to eliminate redundancies.

Example 2. Listing 1.1 shows a D-FLAT encoding for INDEPENDENT DOMINATING
SET. All i-trees have height 1 (due to line 1); their roots are always empty and their
leaves contain items involving the function symbols in and dominated. Note that
lines 7–10 resemble the program from Example 1, while the rest of the program is
required for appropriately extending and combining partial solutions from child nodes.

Suppose D-FLAT is currently processing a forget node. Then there is one child
i-tree. For illustration, assume it consists of two branches whose respective leaf item
sets are ∅ and {in(a),dominated(b)}. This i-tree is provided to the program in List-
ing 1.1 by means of the following input facts:
root(r). sub(r,s1). sub(r,s2).
childItem(s2,in(a)). childItem(s2,dominated(b)).

Each answer set of the program corresponds to a branch in the new i-tree, and each
branch extends one branch from the child i-tree. The root of the new i-tree therefore
always extends the root of the child i-tree (line 2). Which branch is extended is guessed
in line 3. Lines 5 and 6 derive which vertices are “in” or “dominated” according to this
guess, and line 10 enforces the dominance condition. Note that it is not until a vertex
is removed that it can be established to violate this condition, since as long as a vertex
is not removed potential neighbors dominating it could still be introduced. So, if the
vertex c has been removed, then the constraint in line 10 would eliminate the answer set
extending branch “s2”, since c is neither “in” nor “dominated”. Lines 11 and 12 fill the
leaf item set with only those items that apply to vertices still in the current bag. (This
ensures that the maximum size of an i-tree only depends on the decomposition width.)
So if the branch with leaf “s2” is extended and vertex a is forgotten, these lines cause
that the answer set specifies the item dominated(b), but not in(a).

In introduce nodes, line 7 guesses whether the introduced vertex is “in” the partial
solution or not. Line 8 enforces the independence condition and line 9 determines dom-
inated vertices. Line 4 ensures that in join nodes a pair of branches is only extended if
these branches agree on which of the common vertices are “in”.

4 MSO MC on Tree Decompositions with ASP

We now present an encoding for MSO MC in the style of the approach from Section 2 in
order to show that ASP with D-FLAT can solve any MSO-definable problem in linear
time for bounded treewidth. In the following, let A and T denote the input structure
and one of its tree decompositions, respectively. For the sake of readability, we only
consider the case where A is a graph, given by the predicates vertex and edge. As
in Section 2, we assume the MSO formula φ for which A |= φ is to be decided to
be of the form ∃Y1∃z1∀Y2∀z2 . . . ∃Yn−1∃zn−1∀Yn∀znψ. Here we additionally assume
that ψ is in CNF. Our encoding can, however, be easily generalized. In particular, the
quantifier alternation is not required in principle but facilitates presentation. Much could

8

1length(1).
2extend(0,R) ← root(R).
31 { extend(1,S) : sub(R,S) } 1 ← extend(0,R).
4← extend(1,S;T), childItem(S,in(X)), not childItem(T,in(X)).
5in(X) ← extend(1,S), childItem(S,in(X)).
6dominated(X) ← extend(1,S), childItem(S,dominated(X)).
7{ in(X) : introduced(X) }.
8← edge(X,Y), in(X;Y).
9dominated(X) ← in(Y), edge(Y,X).
10← removed(X), not in(X), not dominated(X).
11item(1,in(X)) ← in(X), current(X).
12item(1,dominated(X)) ← dominated(X), current(X).

Listing 1.1. Computing independent dominating sets with D-FLAT

be done to improve the MSO model checker that emerges from this work; but this is
outside the scope of this paper whose focus is on the general applicability of D-FLAT.

The formula φ is specified in ASP as follows. If the quantifier rank is i, then the fact
length(i+1) is declared. (This will cause each i-tree branch to have length i+1.) Each
individual variable x or set variable X bound by the ith quantifier is declared by a fact
of the form iVar(i, x) or sVar(i,X), respectively. The atoms x ∈ X and membership
in the edge relation are represented as in(x,X) and edge(x, y), respectively. Facts of
the form pos(c, a) or neg(c, a) respectively denote that the atom a occurs positively
or negatively in the clause c. For convenience, we supply a fact clause(c) for each
clause c, and var(i, x) for each individual or set variable x bound by the ith quantifier.

Let t be the current node during a bottom-up traversal of a tree decomposition T
of A. The i-tree at t shall represent a compressed, local semantic tree. In particular,
an item set of a (non-leaf) i-tree node shall encode the label of the respective semantic
tree node. With each i-tree branch b we can thus associate a (partial) interpretation
Ib of the variables in φ. Ib assigns ? to variables with values not in χ(t), but we can
extend it to all possible assignments I+b without ? values by following the extension
pointers. As we assume φ to be in CNF, in the leaf of b we simply keep track of the
clauses that have been satisfied by I+b so far. We only use items of the following form:
assign(x, nn) denotes that Ib(x) = ?; assign(x, v) with v ∈ χ(t) denotes that
Ib(x) = v; assign(X, v) denotes that v ∈ Ib(X); true(c), which only occurs in leaf
item sets, indicates that the clause c is true under I+b . For any individual variable x, the
absence of any assign item whose first argument is x means that x is still undefined.

Listing 1.2 shows the ASP encoding that is to be executed at each node t ∈ T to
construct an i-tree representing Ct, the compressed, local semantic tree at t. As input,
the encoding is provided with a set of facts describing φ as well as T together with the
i-trees from the children of t (see Section 3). We say that D-FLAT accepts the input A
if the program executed at the root node of T has at least one answer set.

Theorem 2. An MSO MC instance A |= φ is positive iff D-FLAT, when executed on
Listing 1.2 together with φ (represented in ASP as a set of facts), accepts input A.

Proof (Sketch). Let A be the input graph with a tree decomposition T , let t ∈ T be the
node currently processed by D-FLAT during the bottom-up traversal, and let Ct denote

9

1assignedIn(X,S) ← childItem(S,assign(X,_)).
2% E v a l u a t i o n (on ly i n t h e r o o t)

3itemSet(0,R) ← final, root(R).
4itemSet(L+1,S) ← itemSet(L,R), sub(R,S).
5exists(S) ← itemSet(L,S), L #mod 4 < 2, sub(S,_).
6forall(S) ← itemSet(L,S), L #mod 4 > 1, sub(S,_).
7invalid(S) ← iVar(L,X), itemSet(L,S), not assignedIn(X,S).
8bad(S) ← length(L), itemSet(L,S), clause(C),

not childItem(S,true(C)).
9bad(S) ← forall(S), not invalid(S), sub(S,T), bad(T).
10bad(S) ← exists(S), not invalid(S), not good(S).
11good(S) ← exists(S), sub(S,T), not invalid(T), not bad(T).
12% Guess a b ra n ch f o r each c h i l d i−t r e e

13extend(0,R) ← root(R).
141 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), sub(R,_).
15← extend(_,S), bad(S).
16← extend(_,S), invalid(S).
17% P r e s e r v e and e x t e n d a s s i g n m e n t

18{ assign(X,V) : var(_,X) } ← introduced(V).
19assign(X,V) ← extend(_,S), childItem(S,assign(X,V)),

not removed(V).
20assign(X,_nn) ← extend(L,S), childItem(S,assign(X,V)),

removed(V), iVar(L,X).
21% Check : Only j o i n c o m p a t i b l e b r a n c h e s ; t h e r e s u l t i n g a s s i g n m e n t must be v a l i d

22← iVar(L,X), assign(X,V;W), V 6= W.
23← extend(L,S;T), S 6= T, childItem(S;T,assign(X,_nn)).
24← extend(L,S;T), var(L,X), childItem(S,assign(X,V)),

not childItem(T,assign(X,V)), vertex(V).
25% Dete rmine c l a u s e s t h a t have become t r u e

26assigned(X) ← iVar(L,X), extend(L,S), assignedIn(X,S).
27true(C) ← extend(_,S), childItem(S,true(C)).
28true(C) ← pos(C,edge(X,Y)), assign(X,V), assign(Y,W),

edge(V,W).
29true(C) ← neg(C,edge(X,Y)), assign(X,V), assign(Y,W),

vertex(V;W), not edge(V,W).
30true(C) ← neg(C,edge(X,Y)), extend(_,S),

childItem(S,assign(X,V)), removed(V), not assigned(Y).
31true(C) ← neg(C,edge(X,Y)), extend(_,S),

childItem(S,assign(Y,V)), removed(V), not assigned(X).
32true(C) ← pos(C,in(X,Y)), assign(X,V), assign(Y,V).
33true(C) ← neg(C,in(X,Y)), assign(X,V), vertex(V),

not assign(Y,V).
34% D e c l a r e r e s u l t i n g i t em s e t s

35item(L,assign(X,V)) ← var(L,X), assign(X,V).
36item(L,true(C)) ← length(L), true(C).

Listing 1.2. MSO model checking with D-FLAT

10

the compressed, local semantic tree at t after executing the encoding at t. Again, St de-
notes the (non-compressed) local semantic tree at t, while S is the (complete) semantic
tree for φ andA. We first show that Ct is always constructed as desired according to the
proof of Theorem 1. Then we show that from Ct we can always construct St, and that
this gives us S at the root of T . The computation of Ct depends on the type of t.

(1) If t is a leaf, we guess a valid (partial) variable assignment without any ? values
(lines 18 and 22) and declare the appropriate item sets (line 35). Additionally, we add
the clauses that are satisfied by the assignment (cf. rules deriving true) into the leaf
item set (line 36). Eventually, D-FLAT’s processing of the resulting answer sets (see
Section 3) yields an i-tree representing St, which coincides with Ct.
(2) If t is an introduce node with child t′, we guess a predecessor branch of the i-tree of
t′ (lines 13 and 14) whose assignment is preserved (line 19) and non-deterministically
extended (lines 18 and 22). Already satisfied clauses remain so (line 27). Again, clauses
that become satisfied are determined and the appropriate item sets are filled.

(3) If t is a forget node, we also guess a predecessor branch. We retain each assign
item unless it involves the removed vertex (line 19), and we set the value of each indi-
vidual variable that was assigned this vertex to ? (line 20). Determining satisfied clauses
and declaring item sets proceed as before. This yields an i-tree where the removed ver-
tex is eliminated from the interpretation of each set variable, and individual variables
previously set to that value are now assigned ?. Note that clauses might become satisfied
due to the reasons for rule A from Section 2.

(4) If t is a join node with children t1 and t1, χ(t) = χ(t1) = χ(t2) holds. Here, we
guess a pair of predecessor branches (lines 13 and 14). We generate Ct by combining
“compatible” branches b1 and b2 from Ct1 and Ct2 , respectively. The notion of com-
patibility is the same as in the proof of Theorem 1, and enforced in lines 23 and 24.
Thus the two assignments corresponding to b1 and b2 can simply be unified to yield the
assignment of the new branch b (line 19). The set of clauses true under the assignment
of b is now simply the union of the clauses true in b1 and the clauses true in b2 (line 27).

(5) If t is the root node of T (by assumption a forget node with an empty bag; see
Section 2), the child i-tree nodes are organized with exists, forall, invalid and
bad. Following the assumed form of the quantifier prefix of φ, non-leaf i-tree nodes at
levels 4j and 4j+1 (for j ≥ 0) are marked with “exists”, while those at levels 4j+2 and
4j + 3 are marked with “forall”. A non-leaf node at level l is “invalid” if the lth quan-
tifier binds an individual variable left uninterpreted by that node, and it is “bad” if the
subformula of φ starting after the lth quantifier cannot be true. For this purpose, we start
by labeling each leaf with “bad” if it does not report all clauses to be satisfied (line 8).
By following extension pointers, it can be verified that none of the interpretations rep-
resented by the respective branch satisfies the matrix of φ due to our bookkeeping of
satisfied clauses. All leaves that are neither “invalid” nor “bad” conversely correspond
to interpretations satisfying the matrix of φ. We then propagate truth values toward the
root (lines 9–11): A “forall” node is “bad” iff one of its children is “bad”, and an “ex-
ists” node is “bad” iff it has only “bad” or “invalid” children. To ensure correctness and
to only enumerate interpretations without undefined individual variables, the guessed
predecessor branch must contain neither “bad” nor “invalid” nodes (lines 15 and 16).

11

Finally, we show that A |= φ holds iff the root of the i-tree at the child of the root of T
is not “bad”. The i-tree of any t ∈ T below the root of T can be used to construct St by
means of the extension pointers, as can be seen by induction. Furthermore, the clauses
satisfied by the interpretation corresponding to a branch of St are exactly those in the
respective leaf item set. If t is the child of the root node, we obtain S in this way. If t is
the root of T , the propagation of truth values in the child i-tree (lines 1–11) corresponds
to the propagation of truth values in the Boolean circuit used for evaluation. If this
propagation finally yields “false”, line 15 ensures that no answer set exists because the
i-tree root at the child of t is then “bad”. Otherwise, there is a branch consisting only of
nodes that are neither “bad” nor “invalid”, and D-FLAT accepts the input. ut

Given an input structure A whose treewidth is below some fixed integer, one can con-
struct a tree decomposition of A in linear time. The total runtime for deciding A |= φ
for fixed φ is then linear, since the tree decomposition has linear size and the search
space in each ASP call is bounded by a constant. Note that Theorems 1 and 2 together
thus amount to an alternative proof of Courcelle’s Theorem.

5 Conclusion

There is vivid interest in turning theoretical tractability results obtained via Courcelle’s
Theorem into concrete computation which is feasible in practice [2]. In this paper, we
have shown that the ASP-based D-FLAT approach is one candidate for reaching this
goal, having provided a realization of a suitable dynamic programming algorithm for
the MSO model checking problem. Since MSO model checking is often impractical de-
spite bounded treewidth [16], it is advisable to implement problem-specific algorithms.
Experiments reported in [10] suggest that D-FLAT is a promising means to do so. In
contrast to recent MSO-based systems [6, 7] where the problem is expressed in a mono-
lithic way, D-FLAT allows to define the dynamic programming algorithm on a tree
decomposition via ASP. Like in the Datalog approach [17], this admits a declarative
specification while still being able to take advantage of domain knowledge. However,
the approach in [17] aims at a single call to a Datalog engine, thus the very restrictive
language of monadic Datalog is required to guarantee linear running times. Therefore,
encoding the dynamic programming algorithm at hand is rather tedious (for instance,
to handle set operations) making this approach less practical. In contrast, D-FLAT calls
an ASP-solver in each node of the tree decomposition. This not only ensures the linear
running times (assuming that D-FLAT encodings only use information from the cur-
rent bag) but also allows one to take advantage of a richer modeling language, reducing
the actual effort for the user. This leads to implementations of algorithms that leverage
bounded treewidth in a natural way, as the examples in Section 3 and [10] show. In the
current paper, we have shown that these were not just lucky coincidences – D-FLAT is
indeed applicable to any MSO-definable problem. Future work in particular includes a
comparison of the ASP-based D-FLAT approach with the LISP-based Autograph ap-
proach [8] regarding both the range of theoretical applicability and practical efficiency.

Acknowledgments. This work is supported by the Austrian Science Fund (FWF) projects
P25518 and P25607. We also thank the anonymous referees for helpful comments.

12

References

1. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput. 85(1) (1990) 12–75

2. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO model-
checking on tree-decomposable graphs. Available at http://tcs.rwth-aachen.de/
˜sikdar/index_files/article.pdf (2013)

3. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics And Its Applications. Oxford University Press (2006)

4. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6)
(2002) 716–752

5. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int. J. Found.
Comput. Sci. 13(4) (2002) 571–586

6. Kneis, J., Langer, A., Rossmanith, P.: Courcelle’s theorem – a game-theoretic approach.
Discrete Optimization 8(4) (2011) 568–594

7. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In: Proc.
ALENEX, SIAM / Omnipress (2012) 55–63

8. Courcelle, B., Durand, I.: Computations by fly-automata beyond monadic second-order
logic. CoRR abs/1305.7120 (2013)

9. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun.
ACM 54(12) (2011) 92–103

10. Bliem, B., Morak, M., Woltran, S.: D-FLAT: Declarative problem solving using tree decom-
positions and answer-set programming. TPLP 12(4-5) (2012) 445–464

11. Langer, A., Rossmanith, P., Sikdar, S.: Linear-time algorithms for graphs of bounded
rankwidth: A fresh look using game theory - (extended abstract). In: Proc. TAMC. Volume
6648 of LNCS., Springer (2011) 505–516

12. Kloks, T.: Treewidth: Computations and Approximations. Volume 842 of LNCS. Springer
(1994)

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4) (1991) 365–386

14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A
user’s guide to gringo, clasp, clingo, and iclingo. Preliminary Draft. Available at http:
//potassco.sourceforge.net (2010)

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-
lishers (2012)

16. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revis-
ited. Ann. Pure Appl. Logic 130(1-3) (2004) 3–31

17. Gottlob, G., Pichler, R., Wei, F.: Monadic datalog over finite structures of bounded treewidth.
ACM Trans. Comput. Log. 12(1) (2010)

13

