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Abstract—Sudoku is not only a popular puzzle but also
an interesting and challenging constraint satisfaction problem.
Therefore, automatic solving methods for this problem have
been the subject of several publications in the last two decades.
Although current methods provide good solutions for small sized
puzzles, larger instances remain challenging. This paper intro-
duces a new local search technique based on the min-conflicts
heuristic for Sudoku. Furthermore, we propose an innovative
hybrid search technique that exploits constraint programming
as perturbation technique within the iterated local search frame-
work. We experimentally evaluate our methods on challenging
benchmarks for Sudoku and report improvements over state of
the art solutions. To show the generalizability of the proposed
approach, we also applied our method on another challenging
scheduling problem. The results show that the proposed method
is also robust in another problem domain.

Index Terms—Heuristic methods, Sudoku, Iterated Local
Search, Constraint programming, Min-conflicts heuristic, Hybrid
techniques

I. INTRODUCTION

Sudoku is a logic puzzle where one has to fill a grid with
numbers that typically lie between one and nine. The

challenge of solving these problems became popular among
people all over the world during the last decades, and it
can be found in a wide variety of newspapers nowadays.
From a scientific point of view Sudoku is a typical constraint
satisfaction problem. In [1] it has been shown that the decision
problem which asks if there is a solution to the given Sudoku
instance is NP-complete.

Although Sudoku may seem not to be a relevant problem on
the first look, many large instances of this problem are still not
solved satisfactorily. Therefore, they serve as very challenging
benchmarks to test the robustness of new methods. Indeed
such problems can contribute to the development of innovative
techniques that can be applied in other areas of high practical
relevance. In this paper we show that our efforts on solving
challenging Sudoku problems resulted in methods that can also
be useful in other problem areas like employee scheduling.

Formally a Sudoku puzzle instance can be described as an
n2 × n2 grid which is divided into n2 distinct squares. These
squares divide the whole grid into n × n sub-grids. To solve
a Sudoku, each cell must be filled with a number in the range
of 1 to n2. Additionally, three constraints must be fulfilled to
achieve a valid solution:

1) In every row the numbers 1 to n2 appear exactly once.
2) In every column the numbers 1 to n2 appear exactly

once.

3) In every n × n sub-grid the numbers 1 to n2 appear
exactly once.

A typical puzzle contains a number of cells already prefilled,
which are considered fixed. The variable n determines the size
and also to some degree the difficulty of a Sudoku. This is
sometimes referred to as the puzzle’s order and we will also
use this term from now on. Problems that are meant to be
solved by the human mind usually have an order of three, and
most of the instances which are published in newspapers have
this size.

In the literature different techniques have been proposed
to solve Sudoku puzzles. Especially two large groups of
methods and techniques have been repeatedly applied: Exact
methods and stochastic search based heuristics. Those two
classes differentiate in several properties, but the most crucial
difference lies within the fact that exact methods will always
find the best solution available if given enough time, while
stochastic search based approaches are non-deterministic and
cannot guarantee to find the optimal solution.

Exact Sudoku solving techniques based on constraint pro-
gramming (CP) have been well studied and proposed for
instances that consist of grids with 9 × 9 cells. For example
in [2], the author introduces a formal model of Sudoku as
a constraint satisfaction problem. A similar solving method
is investigated in [3], where the authors conduct a compari-
son of different variable- and value-selection heuristics using
backtracking search with constraint propagation.

In all of those publications it has been shown that ap-
proaches relying on CP work well on 9×9 puzzles and are also
able to classify the difficulty of puzzles seen from a human’s
perspective. Additional improvements to solve puzzles of this
size have been published in [4] and [5]. These papers focus
on solving the hardest 9 × 9 problem instances by applying
hybrid search techniques.

Modeling Sudoku as a satisfiability problem has been
proposed in [6]. The authors present two encoding variants
that can be used to solve puzzles by utilizing SAT-solvers
and corresponding inference techniques. Experiments were
conducted on 9×9 Sudoku and have shown comparable results
to CP based approaches.

Larger Sudoku grids that consist of 16×16 or even 25×25
cells (that would correspond to an order of 4 or 5 respectively)
and may have more than one possible solution, introduce new
challenges. Exact methods which try to find a solution by ap-
plying intelligent enumeration mechanisms come to their lim-
its here, since the search space is simply too large to enumerate
all solutions in feasible time. For solving also larger instances,
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the author from [7] introduces the first meta-heuristic driven
approach for Sudoku puzzles with an implementation that
uses simulated annealing. The paper concludes that puzzles
of higher order can be tackled by heuristic techniques and are
able to outperform exact methods when solving such problems.
The ideas and problem formulation presented in [7] have since
then been extended in [8] and [9]. Those articles introduce
constraint propagation techniques to reduce the search space
before applying the meta-heuristic driven search process. To
the best of our knowledge, they set the state of the art
for solving large Sudoku puzzles. However, although these
techniques perform significantly better than exact methods,
there still is place for improvement. Sudoku instances that
consist of a grid with 25 × 25 cells and have about 55% of
their cells filled initially, form the hardest class of problems
considered in the literature. This shows in a significant drop
of the success rate when using the simulated annealing based
solver in all of the published results. Therefore, in this article
we focus on large problem instances.

In this paper we propose a new method for solving the
Sudoku problem based on iterated local search which uses
the min-conflicts heuristic. Additionally, our method includes
constraint programming techniques that are applied during the
perturbation phases of an iterated local search based procedure.
Although local search techniques in hybridization with CP
have been previously proposed in the literature, to the best
of our knowledge the ideas used in this paper regarding min-
conflicts and our perturbation methods during iterated local
search are innovative and have not been considered before.
With the use of a random instance generator that has been
proposed in the literature we randomly generate a total of
1200 puzzle benchmark instances. We experimentally evaluate
our methods as we compare our results with state of the art
methods for Sudoku, where we report improvements regarding
the success rate. Additionally, we report results of using the
proposed methods on another problem from the scheduling
area and thereby show the generalizability of our algorithm.

II. A NEW APPROACH FOR SOLVING THE SUDOKU
PROBLEM

In order to describe our problem formulation we will use
the terminology introduced by Lewis [7] which defines the
notion of a square. A square refers to each of the n×n sized
sub-grids that form the Sudoku puzzle.

Furthermore, squarer,c denotes the square in row r and
column c, considering an instance as a grid of squares and
r, i ∈ {1, ..., n}. In a similar fashion a value of a cell in row
i and column j of the overall n2×n2 sized grid is referred to
as celli,j , where i, j ∈ {1, ..., n2}. A cell which has its value
predefined in the puzzles is called fixed, whereas a cell that is
initially empty and has to be filled by the solver is referred to
as unfixed. Finally, a grid that is complete and fulfills all of
the problem’s constraints is referred to as optimal.

A. Representation and neighborhood

In our local search techniques we use a direct representation
of the Sudoku grid. To generate an initial solution all of the

puzzle’s unfixed cells are filled randomly in such a way that
the third constraint of the puzzle will not be violated. In other
words every square contains the values from 1 to n2 exactly
once. The neighborhood operator will then in each search step
choose two different unfixed cells in the same square and swap
them. Details on how those cells are selected will be given in
section II-C. The way the initial solution and the neighborhood
operator are defined has the positive side effect that the third
constraint of the puzzle is always fulfilled. This leads to a
reduced overhead when calculating the objective value of a
solution.

B. Evaluation of candidate solutions

Since two cells lying inside the same square can never
contain the same number throughout search, it makes sense
to only consider potential conflicts per row and column in
the evaluation function. Therefore, we use the cost function
proposed in [7], which looks at each row and column indi-
vidually. For each row/column all missing numbers from 1 to
n2 are counted and summed up. An optimal solution without
any constraint violations will therefore have a cost of 0. The
objective function f for a candidate solution S is defined as:

f(S) =

n2∑
i=1

r(i) +

n2∑
i=1

c(i) (1)

where r(i) and c(i) represent the number of missing values
in row i or column i respectively. Obviously a conflict neces-
sarily arises wherever a single number appears multiple times
in a row or column.

In order to keep the required time consumed during the
calculation of the cost function as low as possible, we applied
delta-evaluation, which makes use of the fact that each single
search step influences the number of conflicts for at most two
rows and the two columns of the swapped cells. Therefore only
affected row/column costs are updated in each search step.

C. Applying the min-conflicts heuristic on Sudoku

In order to achieve an effective local search for the Sudoku
problem we use a variant of the min-conflicts heuristic. The
general idea behind this heuristic lies in concentrating on
variables that cause conflicts and to remove those conflicts by
swapping the affected cells to better positions. The procedure
works in two steps: First a conflicting cell is selected randomly
and then a good swap partner is determined.

Figure 1 illustrates the use of the min-conflicts heuristic:
On the left we see the grid as it appears before the cell swap.
The circled value 1 in the upper left sub-grid represents the
randomly selected cell which is in conflict (the two cells with
the red background highlight these conflicts). The numbers
outside the Sudoku grid (highlighted with blue background)
give information about the number of missing values in the
considered rows and columns. In the search for a good swap
partner the algorithm selects the value that would lead to the
lowest possible number of conflicts if swapped with. In this
case value 5 which is also circled is selected (Note that a
swap with any other cell would not move the value 1 to a
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good position). On the right side we can see the grid after
the swap has been performed. The number of conflicts for the
affected rows and columns has been decreased successfully.

One drawback of using the min-conflicts heuristic in local
search lies in the fact that it can get stuck in local optima
easily. To avoid this problem, we considered the combination
of a tabu list and the min conflicts heuristic which has been
used also in other problem domains [10]. The tabu list stores
recently performed swaps in order to prevent cyclic changes
to a solution. All swapping moves that are contained in this
list, are considered to be tabu for a number of forthcoming
iterations, which means that they will not be considered as
potential cell swaps. One exception to this rule are swaps
that would lead to a cost decrease that could beat the best
found solution so far. If this so called aspiration criterion
is fulfilled, a swap will be allowed even if it is considered
to be tabu. As soon as the best swap candidates have been
determined, usually the change would just be performed and
the search would proceed to the next iteration. Other local
search variants only accept it if evaluation yields a decrease
of the cost function. We decided to use a combination of both
approaches: Candidates which lead to a higher or equal cost
are accepted only under a certain acceptance probability which
is given as a parameter to the program. Candidates which lead
to a lower solution cost however will always be accepted. The
whole process of generating and selecting swaps is repeated
until either the optimal solution is found, or no improvement
can be achieved for a given number of iterations. This iteration
limit is also defined through a program parameter. The overall
local search procedure which we use is described in Algorithm
1.

D. Using constraint programming methods in iterated local
search

Although basic local search often can produce satisfying
results, it has been shown in the literature ([8], [9]) that the
introduction of constraint programming methods can bring
significant improvements to the algorithm.

One simple variant which was first described in [8] uses
constraint propagation to reduce the domains for each cell
variable until all variables are arc consistent before performing
local search. Any unfixed cell that has only one possible
domain value left can then be considered as a prefixed cell
containing that value. The problem’s search space can often
be significantly reduced by using this technique.

In this paper we propose to further include a CP approach
based on forward checking (FC) with dynamic variable or-
dering which is applied in between iterated phases of local
search and has the goal to intensify the search of promising
areas in the search space. Whenever this procedure is called
during search, all unfixed cells which cause any conflicts plus
some additional unfixed cells are emptied and the solver tries
to find a solution by filling the missing cells with constraint
programming methods.

CP approaches based on backtracking for the Sudoku prob-
lem have been examined in the literature ([2] and [3]) and
we implemented a variant based on the results presented in

Algorithm 1 Min conflicts heuristic with tabu list for Sudoku
Input: puzzle, iterationLimit, acceptanceProbability
1: initialize tabu list
2:
3: iterationCounter ← 0
4: bestCost ← MAX
5: currentCost ← MAX
6:
7: while bestCost > 0 ∧ iterationCounter < iterationLimit do
8: randomly select cell which is in conflict
9:

10: generate all possible swaps with the selected cell
11:
12: bestSwap ← Find the best swap which minimizes total conflicts
13: bestSwapNotTabu ← Find the best swap which minimizes total

conflicts and is not tabu
14:
15: if bestSwap 6= bestSwapNotTabu then
16: if EVALUATE(bestSwap) < bestCost then
17: currentCost ← EVALUATE(bestSwap)
18: perform swap
19: go to 27
20: end if
21: end if
22: if EVALUATE(bestSwapNotTabu) < currentCost ∨ random() <=

acceptanceProbability then
23: currentCost ← EVALUATE(bestSwapNotTabu)
24: perform swap
25: end if
26:
27: update tabu list
28: if currentCost < bestCost then
29: bestCost← currentCost
30: iterationCount← 0
31: else
32: iterationCount← iterationCount+ 1
33: end if
34: end while
Output: best solution

these two publications for our purpose. It basically performs
a backtracking search using forward checking, makes use of
a minimum domain first variable selection heuristic and a
smallest value first value selection heuristic. Although there
exists work on solving Sudoku with similar CP methods, to
the best of our knowledge a combination with meta-heuristic
methods through a perturbation mechanism for iterated local
search (ILS) has not been applied.

The main idea behind iterated local search is to examine the
search space by iteratively calling an embedded local search.
After a local optimum has been found the best known solution
so far is perturbed to provide a good starting point for the next
run of the meta-heuristic procedure.

We utilize iterated local search in our algorithm as follows:
If local search fails to find the optimal solution after a given
number of iterations, the program then enters its perturbation
phase, where a further examination of the nearby search space
using CP takes place. The perturbation process is conducted
by emptying a number of unfixed cells and then performing
forward checking search. This can lead to three different
outcomes: Firstly, the optimal solution could have been found
using CP. Secondly, FC could detect that there is no possible
solution for this particular candidate instance and thirdly the
FC procedure could run out of time. In the first case, the
algorithm has found the optimal solution and can exit. If
one of the other two cases occurs, the procedure returns a
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6 2 4 9 4 3 8 3 5

Fig. 1. In this figure an example neighborhood move applying the min-conflicts heuristic is illustrated.

partially filled Sudoku grid which also contains a number
of cells that have been filled in the perturbation phase. The
algorithm then will fill all the remaining cells randomly again
and continue with local search from this solution. Iterated local
search keeps repeating this overall process until a given time
limit is reached.

In our perturbation method the cells that should be emptied
additionally to the ones which are causing conflicts influence
the search space by our FC procedure. Therefore we intro-
duced the reset factor parameter in our algorithm. Depending
on the factor (a real value between 0.0 and 1.0) a relative
amount of the puzzle’s unfixed cells will be emptied. For
example if the value is 0.8, 80% of the cells will be emptied
before the FC procedure is started. To change this factor during
the overall search we also decided to iteratively reduce the
reset factor after every perturbation phase. This is done by
multiplication with a parameter α which also lies between 0.0
and 1.0. The idea behind this stepwise reduction of cell resets
is that the search increases the level of intensification with
every processed perturbation phase.

In Algorithm 2 the overall search process based on iterated
local search is described. The configuration of the algorithm’s
parameters is described in section IV.

III. EXPERIMENTAL ENVIRONMENT

In this section we compare our proposed hybrid solver to the
state of the art algorithms for Sudoku. Additionally, we have
a closer look on the effects of using constraint programming
as perturbation mechanism for iterated local search.

We contacted the authors of [8], [9] and [3] for the source
code of their implementations, so that we would be able to
compile the solvers and conduct a fair comparison of the
results. All of them responded to our request and we have
been provided with the sources for the simulated annealing
based programs from [8] and [9]. The CP parts from [8]
had to be reimplemented. Regarding [3], we implemented
the algorithm based on the instructions from the authors.
We first experimented with a set of 9 × 9 Sudoku puzzles
from [11] which are known to be challenging. However, our

Algorithm 2 Iterated local search for Sudoku
Input: puzzle, timeLimit, resetFactor, α
1: FIXCELLSUSINGARCCONSISTENCY(puzzle)
2:
3: FILLREMAININGCELLSRANDOMLY(puzzle)
4:
5: bestPuzzle← puzzle
6: bestCost← EVALUATE(puzzle)
7:
8: while bestCost > 0 ∧ timeLimit not passed do
9: puzzle ← MINCONFLICTSWITHTABULIST(puzzle)

10:
11: cost← EVALUATE(puzzle)
12:
13: if bestCost > cost then
14: bestCost← cost
15: bestPuzzle← puzzle
16: end if
17:
18: if cost > 0 then
19: Empty all unfixed cells in puzzle which are in conflict
20:
21: Additionally empty relative amount of
22: remaining unfixed cells defined by resetFactor
23:
24: FORWARDCHECKINGSEARCH(puzzle)
25:
26: FILLREMAININGCELLSRANDOMLY(puzzle)
27:
28: resetFactor ← resetFactor · α
29: end if
30: end while
Output: bestPuzzle

algorithm could solve each of those within one second and
since those instances have not been shown to be challenging
for our solver we considered the generation of harder instances
with the use of a random instance generator from [7]. This
program creates puzzles of any size by simply removing
some randomly selected cells of a presolved puzzle. We
followed Lewis’ experimental approach (described in [7]) and
created many puzzles in 20 different categories, categorized
by the proportion of fixed cells (p) in the Sudoku grid. Those
categories used values for p starting from 0.0 up to 1.0 using
steps of 0.05. Therefore puzzle instances with 0% fixed cells,
5% fixed cells, 10% fixed cells and so on were generated.
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To provide a large number of problems, 20 instances were
created per category, totaling in a number of 400 instances.
We applied this generation procedure for instances with an
order of three, four and five. With 400 puzzles per order
we generated a sum of 1200 instances for our experiments.
Since most of the discussed algorithms rely on stochastic
search, we performed 20 repeated test runs on each puzzle
instance. Note that for puzzle instances with an order of five,
experiments have been conducted exclusively for the simulated
annealing based algorithm by Lewis and our min-conflicts
based algorithm, since the other considered algorithms did not
produce competitive results even for instances with an order
of four.

All the tests were run on an Intel Xeon E5345 2.33GHz
with 48GB RAM. The instances used in this paper as
well as the sources of our implementation can be found at
http://www.dbai.tuwien.ac.at/research/project/arte/sudoku/.

We used two metrics for the comparison of the algorithms:
The average solving time and the success rate for each
puzzle category. We followed the approach of Lewis in [7]
to determine the required values: The success rate represents
the percentage of successfully solved instances. The average
time taken refers to the average runtime that was necessary
to correctly solve a puzzle over 20 runs. Note that for the
calculation of the average runtime only test runs which were
able to find an optimal solution have been considered. The
time limits differ depending on the order of the given puzzle
instance. We restricted the runtime of our experiments to five
seconds for Sudoku of order three, 30 seconds for order four
and a 350 seconds for order five Sudoku. Time limits were
chosen based on the experiments in [7]. We agree that those
limits fit the experimental environment well, since most of the
puzzles can be solved within this time.

IV. ALGORITHM CONFIGURATION

Parameters for the considered algorithms from the litera-
ture ([8], [3] and [9]) were configured as described in the
corresponding papers. In order to configure our algorithm, we
ran experiments with different values on some of the hardest
puzzles from the benchmark instances. As mentioned in [7],
there is an ’easy-hard-easy’ phase transition depending on the
relative number of prefilled cells. We focused on the hardest
problems (which have between 40 % and 45 % of the cells
fixed initially) when experimenting with different parameter
settings.

Since the iterationLimit parameter limits the number of
trials for swapping two cells during local search, we decided
to set its value relative to the number of cells in the grid. We
experimented multiplying the instance with factors of 10, 20
and 50, with 20 turning out to be the most suitable. Following
this calculation for example for Sudokus with a 25x25 grid, the
iterationLimit was set to 625 ·20 = 12500 in our experiments.

We set the forwardCheckingTimeLimit parameter to a max-
imum of five seconds, so that the algorithm will not spend too
much time in the perturbation phase.

The initial value for the resetFactor was set to 1.0. There-
fore, all of the unfixed cells will be removed in the first

perturbation phase and the algorithm gets a chance to solve
the puzzle solely by forward checking. In later iterations this
value will then be stepwise reduced, so that only conflicting
cells will be perturbed. This will restrict forward checking
search to smaller areas of the search space in later perturbation
phases.

In order to determine good values for the tabuListSize,
the acceptanceProbability and the α parameter we applied
automatic parameter configuration using the irace-package
[12]. We kept all of the irace default settings and limited the
tuning budget (maximum number of runs) for the algorithm
to 1000. 20 of the puzzles that have an order of 5 and
40% of their cells fixed served as tuning instances. The
elite candidates produced by irace suggested a tabuListSize
of around 0.03, an acceptanceProbability of around 75% and
a value for α of around 0.5. A run with the parameters
determined by irace yielded good results, however we were
able to achieve additional improvements by some manual
tuning trials with these parameters on the tuning instances.
By further manual tuning we found out that a tabuListSize of
0.05, an acceptanceProbability of 15% and an α of about 0.8
produced even better results. Therefore those parameter values
were used in our final experiments.

V. RESULTS

We conducted experiments for puzzles of order three and
four using four different algorithms: The simulated annealing
based approach from [8] and its variation from [9], the
constraint programming based solver from [3] and finally our
algorithm proposed in this paper. For Sudoku instances with an
order of five, experiments were only conducted for our solver
and the algorithm from [8], which produced better results
compared to the two other algorithms from the literature for
Sudoku with an order of four.

Figures 2, 3, 4 display a graphical representation of the
results, for Sudoku of order three, four and five respectively.
All of them show the average running times of successful
runs for each category in the form of bars. The corresponding
success rates are shown as punctuated lines.

We can see that the approach from Crawford et. al [3]
produces very good results when it comes to solving 9 ×
9 Sudoku puzzles. However, as soon as the search space
gets larger the constraint programming based algorithm cannot
compete with the other approaches. This shows in the large
drop of the success rate for Sudoku puzzles with an order of
four. It shows that for larger problems the meta-heuristic ap-
proaches using simulated annealing combined with constraint
propagation techniques deliver better results.

This can be seen in Figures 3b and 3c that visualize results
from the algorithms by Lewis [7] and Machado et al. [9].
When comparing those two approaches, Lewis’ implementa-
tion slightly outperforms the algorithm from Machado et al.
regarding the success rate. Therefore, we only compare our
approach to the former when considering benchmark instances
with an order of five.

The hybrid algorithm which is presented in this paper turned
out to provide very good results in all of the tested categories.
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Based on these results we can conclude that our algorithm is
very efficient and provides the best success rates on harder
instances with an order of four and five. This can be seen in 3
and 4. As we can see, for the hardest instances (p = 0.4 and
p = 0.45) the success rates of [8] are 38% and 12%, whereas
our algorithm has success rates of 57% and 13%.

VI. APPLICATION OF OUR METHOD IN SCHEDULING

To the best of our knowledge the hybridization of min-
conflicts with iterated local search using a constraint pro-
gramming based perturbation has not been considered before.
As we have shown, this hybrid algorithm gives very good
results for the Sudoku problem. In order to investigate the
generalizability of the proposed approach, we applied our
method on a practical problem from the employee scheduling
area ([13], [14]).

The overall goal of the considered employee scheduling
problem is to find an optimal roster for a number of given
employees and shift types, where every employee may either
work in a single shift or have a day off on each day of
a given scheduling period spanning over multiple weeks.
The employees and shift types which are considered in this
problem are specified by a list of unique names which are
connected with a number of constraints that restrict all possible
shift assignments. Some employees might for example be
only allowed to work in certain shift types and patterns of
consecutive working shifts might be prohibited or requested.
Each problem instance specifies hard- and soft-constraints to
set up a corresponding rule set. Hard constraints on the one
hand are always strict and have to be fulfilled in order to
generate a feasible solution. Soft constraints on the other
hand may be violated, but will in case of a violation lead
to an integer valued penalty. For example one of the hard
constraints specifies the minimum and maximum amount of
time that an employee can work during the whole scheduling
horizon. Personal shift requests of employees are formulated as
soft constraints. Finally, the objective function of a candidate
solution is defined as the sum of penalties caused by the vio-
lated soft constraints. We therefore deal with an optimization
problem, where the optimal solution is a feasible schedule with
the lowest possible objective value. The complete definition for
this problem is given in [13].

In order to use our approach on this problem we applied
three different search neighborhoods which have been pro-
posed in [14]. Those neighborhoods make local changes to
the schedule by swapping blocks of shifts horizontally and
vertically or by directly reassigning blocks of shifts. We
implemented a local search procedure based on min conflicts
that generates the corresponding neighborhoods by selecting
cells that are causing constraint violations. Additionally, we
devised a constraint programming approach that uses a forward
checking search to solve partial schedules. Both local search as
well as the CP based solution techniques were then combined
within iterated local search to perturb solutions in a similar
way as it has been proposed for the Sudoku problem.

To show the benefits of using CP as a perturbation mech-
anism for iterated local search, we compared our method

with a classical iterated local search that performs a simple
perturbation by randomly reassigning cells that are causing
constraint violations. Experiments were then conducted with
24 different instances using five repeated runs per instance
within a time limit of 10 minutes and two repeated runs per
instance within a time limit of 60 minutes. Table I displays
the best results and also compares them with results obtained
by a state of the art heuristic that is based on ejection chains
[13].

The algorithm that makes use of a CP based perturbation
produces the best schedules for 16 of the 24 instances within
the time limit of 10 minutes and for 17 of the 24 instances
within the time limit of 60 minutes when compared with
existing methods. These results show the robustness of our
method in this domain. The ejection chain based approach,
which also includes a construction method that creates an
initial solution at the start of the algorithm, shows to be
better only for the five largest instances. However, with the
inclusion of a construction heuristic for the generation of initial
solutions, our method was able to reach better results for 23
of the 24 instances (see columns 6 and 7 of Table I).

VII. CONCLUSION

In this paper we proposed a novel iterated local search
algorithm that exploits CP techniques in the perturbation phase
to solve the Sudoku problem. We compared our approach to
state of the art methods from the literature and experimental
results show the robustness of our algorithm on solving puzzles
of different levels of difficulty. To the best of our knowledge
our solver currently delivers the best results for Sudoku
problem instances with an order of four and five.

Additionally, experiments on instances of a well known
scheduling problem have shown the generalizability of our
approach.
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Fig. 2. This figure compares the results for Sudoku puzzles of order 3. 2a shows the outcomes for the algorithm based on our solver which is presented in
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Fig. 3. This figure compares the results for Sudoku puzzles of order 4. 3a shows the outcomes for the algorithm based on our solver which is presented in
this paper, 3b shows the outcomes for the Simulated Annealing based algorithm from [8] and 3c and 3d show the results for the approaches from [9] and the
Constraint Programming based algorithm from [3].
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Fig. 4. This figure compares the results for Sudoku puzzles of order 5. 4a shows the outcomes for the algorithm based on our solver which is presented in
this paper, 4b shows the outcomes for the simulated annealing based algorithm from [8].

TABLE I
THIS TABLE COMPARES THE RESULTS FROM DIFFERENT APPROACHES ON THE EMPLOYEE SCHEDULING PROBLEM. A - MEANS THAT NO FEASIBLE

SOLUTION COULD BE FOUND WITHIN THE GIVEN TIME LIMIT. *COLUMN 6 AND 7 (ILS & CP*) PRESENT THE RESULTS OF ITERATED LOCAL SEARCH
WITH A CP BASED PERTURBATION AND AN ADDITIONAL CONSTRUCTION HEURISTIC FOR THE GENERATION OF AN INITIAL SOLUTION.

Instance ILS ILS & CP ILS & CP* Ejection Chain [13]
10 min 60 min 10 min 60 min 10 min 60 min 10 min 60 min

Instance 1 607 607 607 607 607 607 607 607
Instance 2 828 828 828 828 828 828 923 837
Instance 3 1001 1003 1001 1001 1001 1001 1003 1003
Instance 4 1721 1718 1722 1717 1716 1716 1719 1718
Instance 5 1244 1237 1237 1235 1150 1147 1439 1358
Instance 6 2254 2159 2245 2165 2145 2050 2344 2258
Instance 7 1176 1178 1078 1072 1090 1084 1284 1269
Instance 8 - 1886 1549 1446 1548 1464 2529 2260
Instance 9 466 475 455 455 454 454 474 463
Instance 10 4960 4875 4769 4750 4660 4667 4999 4797
Instance 11 3578 3494 3459 3462 3470 3457 3967 3661
Instance 12 4538 4768 4629 4216 4338 4308 5611 5211
Instance 13 3568 2801 3461 2767 3157 2961 8707 3037
Instance 14 - - 1668 1512 1430 1432 2542 1847
Instance 15 - - 4861 4737 4871 4570 6049 5935
Instance 16 4057 - 3869 3636 3754 3748 4343 4048
Instance 17 6902 6916 7035 6606 6720 6609 7835 7835
Instance 18 5525 5509 5944 5604 5400 5416 6404 6404
Instance 19 6654 4748 6551 4573 4780 4364 6522 5531
Instance 20 - - - - 8763 6654 23531 9750
Instance 21 - 82541 - - 33163 22549 38294 36688
Instance 22 - - - - 192946 48382 - 516686
Instance 23 488156 320788 480064 321094 189850 38337 - 54384
Instance 24 1208465 940803 1202862 942501 519173 177037 - 156858


