
Modeling and Solving Staff Scheduling with Partial
Weighted maxSAT

Emir Demirović · Nysret Musliu ·
Felix Winter∗

Abstract Employee scheduling is a well known problem that appears in a
wide range of different areas including health care, air lines, transportation
services, and basically any organization that has to deal with workforces. In
this paper we model a collection of challenging staff scheduling instances as
a weighted partial Boolean maximum satisfiability (maxSAT) problem. Using
our formulation we conduct a comparison of four different cardinality con-
straint encodings and analyze their applicability on this problem. Addition-
ally, we measure the performance of two leading solvers from the maxSAT
evaluation 2015 in a series of benchmark experiments and compare their re-
sults to state of the art solutions. In the process we also generate a number of
challenging maxSAT instances that are publicly available and can be used as
benchmarks for the development and verification of modern SAT solvers.

Keywords Employee Scheduling · maxSAT · SAT encodings · cardinality
constraints

1 Introduction

Staff scheduling problems arise whenever there is the need for efficient man-
agement and distribution of workforce over periods of time. Therefore, a wide
range of different institutions can benefit from an optimized staff schedule,
including hospitals, airlines, security personnel, transportation services, and
basically any organization that has to deal with a large number of employees.
Finding the ideal workforce roster however is not an easy task, and the general
problem belongs to the class of NP-hard problems.

∗ corresponding author

Vienna University of Technology
Database and Artificial Intelligence group
E-mail: {demirovic,musliu,winter}@dbai.tuwien.ac.at

2 Emir Demirović et al.

A variety of different staff scheduling problems are described in the litera-
ture and many solving methods have been proposed in the past. Correspond-
ing surveys regarding employee scheduling can be found in [11] and [3]. While
a lot of approaches are based on mathematical programming and heuristic
methods, the application of solution strategies which model the problem as a
maximum Boolean satisfiability problem (maxSAT) has not been considered.
The intuitive way of working with propositional formulas, as well as growing
developments in the SAT community motivate the investigation of such an
approach.

In this paper we concentrate on the employee scheduling instances intro-
duced in [9]. According to the authors those instances were designed to describe
realistic and challenging staff scheduling problems while still being straight-
forward to use. The included scheduling periods range from one week up to
one year, requiring up to 180 employees and 32 shift types to be assigned.

Recent publications provided an integer programming (IP) model as well
as a metaheuristic approach to this problem. The best known solutions using
these techniques as well as a description of the IP formulation can be found in
[9]. A detailed description of the used algorithms, namely a branch and price
method and a metaheuristic based on ejection chains can be found in [7] and
[8]. With the use of the branch and price algorithm and ejection chains, optimal
solutions could be found for most of the smaller instances and new lower/upper
bounds could be determined for many instances. However, optimal solutions
for a number of instances are still unknown.

In this paper we want to investigate a new solving paradigm for this prob-
lem based on maxSAT. Modeling a problem with a maximum propositional
satisfiability formulation has shown to perform well on a variety of different
applications in the past, including the scheduling of B2B meetings [6] and
High School Timetabling [10]. However, to the best of our knowledge, such an
approach has not been considered for the employee scheduling problem.

The main contributions of this paper are:

– We provide the first maxSAT formulation for the variant of the employee
scheduling problem introduced in [9].

– We experiment with different encodings for cardinality constraints and
compare two leading solvers from the maxSAT evaluation 2015. Addition-
ally, we experiment with a simplification of the problem and provide a
comparison with the state of the art solutions.

– We provide challenging instances which can be used by the maxSAT com-
munity to test and improve results of maxSAT solvers.

In Section 2 we first give a problem description to provide a deeper insight
into the problem. We provide a brief introduction into the maximum satisfia-
bility problem (maxSAT) and give the details of our maxSAT model in Section
3. In Section 4 we then present our experimental environment as well as the
experiments which have been conducted. At the end of the paper in Section 5
we make final conclusions and provide an outlook on future work.

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 3

2 Problem description

In our work we deal with a variant of the employee scheduling problem as it is
described in [9]. We chose to focus on this specific problem formulation as it
provides a number instances that include challenging and realistic scheduling
problems, while still being intuitive and straightforward to use.

The overall goal is to find an optimal roster for a number of given employees
and shift types, where every employee may either work a single shift or have a
day off on each day of a given scheduling period. For this problem the schedul-
ing period is stated as a number of weeks and therefore the number of days is
always a multitude of seven. Another property concerning the scheduling hori-
zon ensures that the first day of the roster is always a Monday, while the last
day is always a Sunday. The employees and shift types which are considered
in this problem are specified by a list of unique names which are connected
with a number of constraints that restrict all possible shift assignments. Some
employees might for example be only allowed to work in certain shifts and
patterns of consecutive working shifts might be prohibited or requested. Each
problem instance specifies hard- and soft-constraints to set up a corresponding
rule set. Hard constraints on the one hand are always strict and have to be
fulfilled in order to generate a feasible solution. Soft constraints on the other
hand may be violated, but will in case of a violation lead to an integer valued
penalty. For example a hard constraint in our problem could restrict the min-
imum and maximum amount of time that an employee has to work in total
over the whole scheduling horizon. Personal shift requests that employees can
state are formulated as soft constraints in our problem instances.

Finally, the objective function of a candidate solution is defined as the
sum of all violated soft constraints. We therefore deal with an optimization
problem, where the optimal solution is the schedule with the lowest possible
objective value. We have a deeper look on all of the constraints in next section.

3 Modeling Employee Scheduling as Partial Weighted maxSAT

3.1 The Maximum Satisfiability problem

The Satisfiability problem (SAT) is a decision problem which asks whether
there exist assignments of truth values to variables, such that a propositional
logic formula is evaluated true (that is, the formula is satisfied). A proposi-
tional logic formula is built from Boolean variables using logic operators and
parentheses. The formula is usually given in Conjunctive Normal Form (CNF),
meaning that the formula is a conjunction of clauses, where a clause is a dis-
junction of literals, where a literal is a variable or its negation. For example,
the formula (X1 ∨ X2) ∧ (¬X1 ∨ ¬X3) is said to be satisfiable, because the
assignment (X1, X2, X3) = (true, false, false) satisfies the formula. However,
had we inserted the clause (¬X1 ∨X2 ∨X3), the same assignment would no
longer satisfy the formula.

4 Emir Demirović et al.

An extension to SAT that we consider in this work is Partial Weighted
maxSAT, in which clauses are partitioned into two types: hard and soft clauses.
Each soft clause is given a weight. The goal is to find an assignment which
satisfies the hard clauses and minimizes the sum of weights of the unsatisfied
soft clauses. For more in depth information about SAT and maxSAT, we direct
the interested reader to [5].

In the following sections we will formulate our problems as maxSAT. The
obtained maxSAT formulas which model the problem are called encodings.

3.2 Decision variables

In order to model the assignment of shifts to employees, we define variables
Si,d,t,∀i ∈ I, d ∈ D, t ∈ T , where I denotes the set of all employees, D refers
to the set of days in the planning horizon, and T is the set of all shift types in
the problem. Each variable Si,d,t will be set to true if and only if employee i
gets the shift type t assigned on the d-th day in the roster, otherwise it will be
set to false. Additionally, we define helper variables Xi,d,∀i ∈ I, d ∈ D which
are set to true if employee i has no shift assigned on day d. So Xi,d is set to
true if and only if employee i is considered to have a day off on this day.

To connect the X variables with the decision variables S we include the
following equivalences in our formulation:

Xi,d ↔
∧
t∈T
¬Si,d,t ∀i ∈ I, d ∈ D (1)

In the following sections we give a description of all the constraints in
our employee scheduling problem and additionally specify how each of them
is encoded in our partial weighted maxSAT formulation. Clauses which are
generated from soft constraints will also have weights assigned.

Since many of the constraints contain properties of cardinality constraints,
we continue by shortly introducing the notion of them.

3.3 Cardinality Constraints

In order to be able to formulate all of the constraints for the problem, it is
necessary to make use of cardinality constraints. Such constraints define limits
on the number of truth assignments on a set of given Boolean variables. There
are three different types of cardinality constraints: atLeastk(xi : xi ∈ X),
exactlyk(xi : xi ∈ X), and atMostk(xi : xi ∈ X) which are defined on sets
of variables that should have at least, exactly, or at most k variables hav-
ing their truth value assigned. For example if a cardinality constraint lim-
its the number of true valued variables of the set x1, x2, x3 to at most two
atMost2({x1, x2, x3}), the assignment (x1, x2, x3) = (1, 1, 0) is considered to
be feasible, while the assignment (x1, x2, x3) = (1, 1, 1) would be considered
as infeasible.

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 5

Additionally, we have to distinguish between hard- and soft cardinality
constraints. While hard cardinality constraints decide whether or not the over-
all solution will become feasible, soft cardinality constraints will only penal-
ize the objective function if violated. In our problem we assign a weight to
a cardinality constraint and calculate the total penalty linearly depending
on the difference to the violated limit. For example if we consider the con-
straint atLeast2({x1, x2, x3}) with a weight of 40, the assignment (x1, x2, x3) =
(0, 0, 0) would lead to a penalty of 40 · 2 = 80.

Different variants of dealing with cardinality constraints in Boolean satisfi-
ability problems have been studied in the literature ([14],[2]). In this paper we
investigate four different encoding types: combinatorial encoding, sequential
encoding, bit adder encoding, and cardinality networks.

The combinatorial encoding enumerates all possible undesired truth as-
signments and forbids them explicitly by generating corresponding clauses.
While this approach may provide an efficient encoding for small cardinality
constraints (for example atMost2({x1, x2, x3}) would be encoded into the sin-
gle clause (¬x1 ∨ ¬x2 ∨ ¬x3)), the number of generated clauses will grow
exponentially with the number of variables. An alternative approach would be
to explicitly enumerate all desired truth assignments.

The idea behind the sequential and bit adder encoding is to capture the
sum of the considered variables and then forbid certain output values. For ex-
ample, if we have the assignment (x1, x2, x3) = (1, 1, 1), both encodings would
calculate the sum 3, but the difference lies in the way how this is encoded.
The sequential encoding represents the sums as a unary number (number with
base 1, e.g. 310 = 1111), while the bit adder encoding represents the sum as a
binary number (number with base 2, e.g. 310 = 112). The choice of the number
representations has an impact on the number of generated clauses, variables,
and some other maxSAT properties. Clearly, by restricting certain outputs,
the desired cardinality constraint can be captured.

Cardinality networks generate helper variables that are used to sort all
the considered truth assignments and then insert clauses which forbid certain
outputs. The sorting is performed in a similar way as a simple merge sort
algorithm would work. For example, considering an assignment (x1 = 0, x2 =
1, x3 = 0, x3 = 1), the helper variables a1−4 would represented the sorted
version of this assignment (a1 = 1, a2 = 1, a3 = 0, a4 = 0). Similarly as before,
additional clauses are then inserted to forbid undesired assignments of the
helper variables.

In the experiments covered in later sections of this paper we compare the
performance of those four encodings on two maxSAT solvers.

3.4 Modeling of Hard Constraints

An employee cannot be assigned more than one shift on a single day. Since no
employee should work two shifts on the same day, we have to ensure that no
two variables Si,d,t and Si,d,x may be set to true at the same time if t 6= x and

6 Emir Demirović et al.

i ∈ I, d ∈ D, t, x ∈ T where I is the set of all employees, D is the set of all
days in the scheduling horizon and T is the set of all possible shift types.

We model this constraint with an atMost1 cardinality constraint.

atMost1({Si,d,1, Si,d,2, ..., Si,d,|T |}) ∀i ∈ I, d ∈ D (2)

Disallowed shift sequences. It is required that each employee needs to rest for
a minimum amount of time after he has worked in a shift. The length of the
necessary rest period varies for each shift type. Because each shift has fixed
starting and ending times during the day, the set of shift types that cannot
follow a certain shift type t can be determined easily by considering all pairs of
shift types and comparing their difference in start and ending times with the
minimum rest time. We refer to the set of all shift types that are not allowed
to follow a shift t as Rt.

The constraints can therefore also be thought of as a number of disallowed
shift sequences which consist of two consecutive shifts and can be included in
our formulation by inserting a clause for each sequence.

|D|−1∧
d=1

(Si,d,t → ¬Si,d+1,x) ∀t ∈ T, x ∈ Rt (3)

The maximum numbers of shifts for each type that can be assigned to an em-
ployee. In our problem some of the employees can have contracts which only
allow them to work in specific shift types for a maximum number of days.
For example such a limit could restrict the number of night shifts an em-
ployee may work during the schedule to four, making any roster which assigns
five night shifts to a single employee infeasible. The maximum numbers for
each employee and shift type are given as parameters mmax

it with the problem
instances, where i ∈ I and t ∈ T .

Since this constraint can be seen as the basic case for a cardinality con-
straint, we do not discuss the detailed encoding into Boolean satisfiability
clauses here, but simply state it as an atMost cardinality constraint instead:

atMostmmax
it

({Si,1,t, Si,2,t, ..., Si,|D|,t}) ∀i ∈ I, t ∈ T (4)

Minimum and maximum working time. Each shift type assigns a certain amount
of working time in minutes to its associated employees. Moreover the total
number of the working time in minutes is restricted for each employee and
must lie between a minimum and maximum bound. Those limits are given to
the problem in form of the parameters bmin

i and bmax
i for each i ∈ I.

In order to formulate this constraint efficiently, we introduce additional
helper variables which help us to count the total number of minutes worked by
an employee. For their definition we consider the shift lengths lt,∀t ∈ T which
are given as parameters to the problem and specify the number of working time
in minutes required for shift t. Furthermore we define their greatest common

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 7

divisor g = gcd(lt : t ∈ T). If we have three different shift types, with the first
one lasting for 480, the second one lasting 620, and the third one lasting 120
minutes, g would then be 20 for example.

With g, we can then calculate simplified lengths for all shifts slt = lt
g

∀t ∈ T . Additionally, we define the maximum simplified shift length slmax =
max{slt : t ∈ T}. Now we are able to introduce our variable set U , which
counts the units of time an employee i works on day d.

For each employee and day, we introduce helper variables Ui,d,x,∀i ∈ I, d ∈
D,x ∈ 1, ..., slmax and set up a number of equivalences in order to correctly
connect them with our decision variables S:

Si,d,t ↔
slt∧
x=1

Ui,d,x

slmax∧
y=slt

¬Ui,d,y (5)

All of the U variables can now be used to count the overall units of time
an employee works and we can use them in order to set up two cardinality
constraints that ensure the minimum and maximum working time constraint.
Note that since we are using simplified lengths, we also have to divide the
given limits by the common divisor g and round appropriately:

atMostbbmax
i

/gc({Ui,d,x|d ∈ D,x ∈ {1, ..., slmax}}) ∀i ∈ I (6)

atLeastdbmin
i

/ge({Ui,d,x|d ∈ D,x ∈ {1, ..., slmax}}) ∀i ∈ I (7)

Maximum consecutive shifts. Each employee is only allowed to work for a
maximum number of consecutive days before he must have a day off. This
maximum limit is given to the problem as cmax

i for each i ∈ I. In our for-
mulation we state this constraint by introducing clauses that require a day
off during all possible sequences of length cmax

i . Since this constraint assumes
that the last day before the scheduling horizon sets a day off and the first day
after the scheduling horizon also sets a day off, we do not need to consider any
corner cases.

cmax
i∨
x=0

Xi,d+x ∀i ∈ I, d ∈ {1, ..., |D| − cmax
i } (8)

Minimum consecutive shifts. Our problem requires that each employee works
at least for a minimum of consecutive days. In other words there is a minimum
for the number of consecutive shifts, which is given as parameter cmin

i for all
i ∈ I, before an employee is allowed to have a day off.

Again we do not have to consider corner cases, since this constraint always
assumes an infinite number of consecutive working days before and after the
scheduling horizon. For all the other cases, we formulate this constraint by
implicating the minimum length shift sequence whenever a new shift sequence
starts after a day off:

8 Emir Demirović et al.

(Xi,d ∧ ¬Xi,d+1)→ (

cmin
i∧
x=2

¬Xi,j+x) ∀i ∈ I, d ∈ {1, ..., |D| − 3} (9)

Minimum consecutive days off. This can be formulated similarly to the mini-
mum consecutive shifts constraint. No corner cases have to be considered, as
this constraint assumes an infinite sequence of days off before and after the
scheduling horizon. The minimum limit of consecutive days off is given to the
problem as parameter omin

i for each employee i ∈ I.

We again use a formulation variant which applies an implication of a mini-
mum length day off sequence, similar as described for the minimum consecutive
shifts constraint which we described previously:

(¬Xi,d ∧Xi,d+1)→ (

omin
i∧
x=2

Xi,d+x) ∀i ∈ I, d ∈ {1, ..., |D| − 3} (10)

Maximum number of weekends. Whenever an employee has to work a shift
on a Saturday or a Sunday in the schedule, the corresponding weekend is
considered as a working weekend for this employee. The problem restricts the
number of such working weekends for each employee i as parameter amax

i .
Because the scheduling always starts on Monday and ends on Sunday, the

number of weekends can be easily calculated as w = |D|
7 . We can now introduce

additional helper variables Wi,x to state if an employee i works on the x-th
weekend. We introduce the following equivalences to connect the W variables
with the existing X variables in our formulation. Note that the x variables are
multiplied with 7 in order to determine the day index of the x-th Sunday.

Wi,x ↔ (¬Xi,(x·7)−1 ∨ ¬Xi,x·7) ∀i ∈ I, x ∈ {1, ..., w} (11)

With the help of those variables we can then construct the following cardi-
nality constraints to formulate the maximum number of weekends constraint:

atMostamax
i

({Wi,1,Wi,2, ...,Wi,w}) ∀i ∈ I (12)

Days off. An employee may have certain days on which it is strictly required
that he has a day off. Those are given to the problem as sets of day indices
Ni for each employee i. We can introduce this in our formulation by simply
generating the corresponding unit clauses:

Xi,d ∀i ∈ I, d ∈ Ni (13)

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 9

3.5 Modeling of Soft Constraints

Requested shift types. Each employee may have some days where a certain
shift type is requested for them to work in. Since this is not a hard constraint,
a violation will be penalized with a given weight. The corresponding penalties
are given to the problem as parameters qi,d,t, where i ∈ I, d ∈ D and t ∈ T .
We handle this constraint by inserting simple weighted unit clauses for all shift
requests into our formulation:

Si,d,t · qi,d,t ∀(i, d, t) where ∃qi,d,t (14)

Unpreferred shift types. Similar to the requested shifts constraint, our problem
may contain requests that require an employee to not work a particular shift
on a certain day. Our formulation is again based on weighted unit clauses
depending on problem parameters pi,d,t that set the weight of an unpreferred
shift, where i ∈ I, d ∈ D and t ∈ T :

¬Si,d,t · pi,d,t ∀(i, d, t) where ∃pi,d,t (15)

Cover requirements. A preferred number of employees that should be working
in a shift type is defined for each day. This preferred value of working employees
for shift t on day d is given to the problem in form of parameters udt for all
d ∈ D and t ∈ T . Furthermore for each of these values two penalty parameters
vmin
dt and vmax

dt are used to penalize a possible under- or over-coverage of the
preferred value.

We introduce two cardinality constraints per cover requirement to formu-
late this constraint. One for the over-coverage, which is penalized linearly
depending on the weight vmax

dt , and the second one for the under-coverage also
penalized linearly depending on the weight vmin

dt :

atMostudt
({S1,d,t, S2,d,t, ..., S|I|,d,t}) · vmax

dt ∀d ∈ D, t ∈ T (16)

atLeastudt
({S1,d,t;S2,d,t; ...;S|I|,d,t}) · vmin

dt ∀d ∈ D, t ∈ T (17)

4 Computational Results

We now give an overview of our experimental environment and describe how
our benchmark tests were executed and evaluated.

4.1 Experimental environment

We conducted a large number of experiments with generated maxSAT encod-
ings for the 24 instances described in [9]. The planning horizon of the instances
ranges from two weeks to 52 weeks, while the number of considered employees
ranges from 8 to 150. As this dataset contains very large instances it provides

10 Emir Demirović et al.

challenging benchmarks for solution techniques. If not noted otherwise we ran
all of our experiments on an Intel Xeon E5345 2.33GHz machine with a total of
48GB RAM. The encoded maxSAT instances are available online in DIMACS
format and can be downloaded at 1.

In our benchmarks we used two solvers which performed well on timetabling
instances in the maxSAT evaluation 2015: WPM3 [1] and Optiriss using the
default configuration. The latter uses the riss framework [12] in combination
with the publicly available OpenWBO solver [13]. Both solvers were ranked
first and second in the industrial category for partial weighted maxSAT prob-
lems. Besides being the leaders in their category, both solvers have also shown
to provide good results for high school timetabling and timetabling instances,
which share similarities with the considered employee scheduling problem.

4.2 Comparison of different cardinality constraint encodings

Because our model utilizes a number of cardinality constraints, a crucial point
in the configuration of our experiments turned out to be the determination of
which cardinality constraint encodings we should use in order to get good re-
sults with the maxSAT solvers. There are five constraints which are affected in
our formulation: The cover requirement constraint, the workload requirement
constraint, the maximum number of shifts constraint, the maximum number
of weekends, and the One shift per day constraint. For those, we applied four
different encoding variants: combinatorial encoding, sequential encoding, cardi-
nality networks encoding, and bit adder encoding. We used the implementation
from [10] to encode those constraints.

If we would consider all possible combinations for encoding the cardinality
constraints in our model, we would have to generate and compare a total
of 45 = 1024 different formulations for each problem instance. In order to
reduce this large amount of possibilities, we decided to investigate the number
of generated variables and clauses for all constraint/encoding pairs in order
to gather a first insight on their importance. We can see the results for one
instance in Table 1.

The combinatorial encoding turned out to be impractical in most cases
and we were often not able to generate maxSAT encodings for many of the
instances when using it. The huge amount of produced clauses required by
this encoding forced our model generator to run out of memory when dealing
with larger instances. When looking at the numbers displayed in Table 1, we
can also see that the maximum number of weekends and the one shift per day
constraints have a relatively low impact when compared with the other con-
straints. As this behavior appeared also in other instances, we decided to use
only the sequential encoding for the maximum number of weekends constraint
and only the combinatorial encoding for the one shift per day constraint in
the remainder of our experiments. With the elimination of the combinatorial

1http://www.dbai.tuwien.ac.at/research/project/arte/maxsat employeescheduling/

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 11

Table 1 Overview on the number of generated variables (vars.) as well as the hard- and
soft-clauses (h.c. and s.c.) for all the cardinality constraint/encoding pairs for instance 5.

Combinatorial Sequential Cardinality N. Bit adders

Cover Req.
vars. 10192 7616 7056 5096
h.c. 35616 28672 21168 17808
s.c. 896 896 896 896

Workload Req.
vars. Out of memory 6176 8032 5088
h.c. Out of memory 20240 21760 14864
s.c. Out of memory 0 0 0

Max shifts
vars. Out of memory 3010 3520 6374
h.c. Out of memory 11928 10658 22646
s.c. Out of memory 0 0 0

Max weekends
vars. 0 124 160 176
h.c. 46 420 496 602
s.c. 0 0 0 0

One shift per day
vars. 0 896 896 1344
h.c. 448 2688 3136 4480
s.c. 0 0 0 0

encoding in our configuration options because of the caused inconveniences
with larger instances, and only three constraints remaining, we now have to
examine only 33 = 27 possible combinations.

In order to determine the best configuration for both WPM3 and Optiriss,
we selected nine instances of different sizes and ran experiments with all the
27 possible encoding variants under a time limit of 30 minutes. The results of
those experiments can be seen in Table 2 and Table 3 for Optiriss and WPM3
respectively.

A comparison of those results reveals that there is no general best com-
bination of cardinality constraint encodings and good encodings are highly
dependent on the solver which is used. While Optiriss prefers the adder en-
coding for the cover requirements constraint, the sequential encoding shows
the best results for WPM3. We selected the best candidates for each solver
by considering the sums of the results over all instances for each combina-
tion of cardinality encodings. The encodings which led to the minimum of
all those sums were then taken to generate the instances for our final exper-
iments. Therefore, the combinations of cardinality constraint encodings used
for Optiriss were as follows: bit adder encoding for the cover requirements con-
straint, cardinality networks for the workload requirements constraint, and the
sequential encoding for the maximum number of shifts constraint. The combi-
nations of cardinality constraint encodings for WPM3 on the other hand were:
The sequential encoding for the cover requirements constraint, the workload
requirements constraint, and the encoding which uses cardinality networks for
the maximum number of shifts constraint.

4.3 Final experiments and comparison of solvers

By using the encodings mentioned above, we were able to create maxSAT
instances for the original problems 1-21. Although our formulation can be
used to encode Instances 22-24, unfortunately we could not generate maxSAT

12 Emir Demirović et al.

Table 2 Best results found by Optiriss using different combinations of cardinality en-
codings. The first column describes the cardinality encodings used for the cover require-
ment/workload requirement/maximum number of shifts constraints. Encoding names have
been abbreviated: seq. = sequential encoding, card. = cardinality networks, adder = bit
adders. In each column the best result is formatted in boldface.

Optiriss Best solutions found in 30 minutes time limit
Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 837 5626 13333 12655 40435
seq./seq./card. 837 5626 12000 11659 40435
seq./seq./adder 839 5122 10078 11533 23720
seq./card./seq. 840 6002 15318 12460 32768
seq./card./card. 840 6002 12111 12242 32768
seq./card./adder 838 5215 11474 12758 24905
seq./adder/seq. 841 5407 14319 11044 34612
seq./adder/card. 841 5407 15148 11662 34612
seq./adder/adder 840 5331 11785 12752 25633
card./seq./seq. 841 5609 13813 14353 32281
card./seq./card. 841 5609 15211 11423 32281
card./seq./adder 834 5723 11987 13250 25631
card./card./seq. 834 6210 14080 12156 37028
card./card./card. 834 6210 13779 13154 37028
card./card./adder 841 5316 10682 10641 22130
card./adder/seq. 837 5711 13002 12570 32618
card./adder/card. 837 5711 13492 12785 32618
card./adder/adder 838 5504 9689 12976 24844
adder/seq./seq. 844 3900 5762 7729 15916
adder/seq./card. 844 3900 5741 7526 15916
adder/seq./adder 852 3720 5228 7437 16624
adder/card./seq. 853 3608 5421 6394 15420
adder/card./card. 853 3608 5852 6804 15420
adder/card./adder 847 3918 5452 7239 16464
adder/adder/seq. 845 3907 5411 7716 16627
adder/adder/card. 845 3907 5746 7422 16627
adder/adder/adder 850 3798 5040 7215 16436

Optiriss Best solutions found in 30 minutes time limit
Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 57680 17959 15584 35073
seq./seq./card. 58369 16665 15584 39555
seq./seq./adder 34964 17549 13263 25829
seq./card./seq. 57575 16761 15635 37084
seq./card./card. 54138 16630 15635 37641
seq./card./adder 33939 18362 14544 23932
seq./adder/seq. 61229 17454 16013 34284
seq./adder/card. 52854 16043 16013 28074
seq./adder/adder 36632 15555 13937 27604
card./seq./seq. 72062 19358 16093 37501
card./seq./card. 49699 18247 16093 38147
card./seq./adder 32074 17934 14776 28188
card./card./seq. 56279 19044 16903 37778
card./card./card. 50404 15546 16903 35638
card./card./adder 32239 16918 14880 26855
card./adder/seq. 62154 18980 17419 38269
card./adder/card. 49096 18565 17419 30601
card./adder/adder 33340 18593 15990 29781
adder/seq./seq. 28602 10076 12546 21039
adder/seq./card. 31000 9875 12546 22548
adder/seq./adder 28694 8777 12223 21095
adder/card./seq. 28598 9776 13026 20710
adder/card./card. 30324 9144 13026 20225
adder/card./adder 29596 9555 13049 20280
adder/adder/seq. 27193 9758 11939 20462
adder/adder/card. 29606 9931 11939 20504
adder/adder/adder 29417 9756 11707 20996

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 13

Table 3 Best results found by WPM3 using different combinations of cardinality encodings.
The first column describes the cardinality encodings used for the cover requirement/workload
requirement/maximum number of shifts constraints. Encoding names have been abbrevi-
ated: seq. = sequential encoding, card. = cardinality networks, adder = bit adders. In each
column the best result is formatted in boldface.

WPM3 Best solution found in 30 minutes time limit
Cardinality encoding Inst. 2 Inst. 4 Inst. 7 Inst. 9 Inst. 11

seq./seq./seq. 828 3189 5510 10631 12183
seq./seq./card. 828 3189 4596 10949 12183
seq./seq./adder 828 3494 8959 10248 23420
seq./card./seq. 828 3090 7446 11132 11516
seq./card./card. 828 3090 6545 11405 11516
seq./card./adder 828 2688 8351 12154 24114
seq./adder/seq. 828 2784 7712 12178 12478
seq./adder/card. 828 2784 8553 10033 12478
seq./adder/adder 828 2893 9364 10964 24195
card./seq./seq. 835 3394 5230 10605 17224
card./seq./card. 835 3394 6815 11037 17224
card./seq./adder 828 4082 7562 11062 25444
card./card./seq. 828 3087 7143 10240 13888
card./card./card. 828 3087 8147 10942 13888
card./card./adder 839 3704 9670 10531 25626
card./adder/seq. 840 3695 7543 11871 15393
card./adder/card. 840 3695 7760 11235 15393
card./adder/adder 828 3103 9287 12374 22719
adder/seq./seq. 1550 3718 10502 13982 29673
adder/seq./card. 1550 3718 11315 12780 29673
adder/seq./adder 1159 3198 9478 14674 26133
adder/card./seq. 1563 3994 9365 11256 31595
adder/card./card. 1563 3994 9253 12773 31595
adder/card./adder 856 4212 9791 12693 25827
adder/adder/seq. 1469 4108 10292 10771 29083
adder/adder/card. 1469 4108 9476 11963 29083
adder/adder/adder 1359 3702 10100 10935 26467

WPM3 Best solution found in 30 minutes time limit
Cardinality encoding Inst. 12 Inst. 14 Inst. 16 Inst. 18

seq./seq./seq. 23937 18045 10292 19771
seq./seq./card. 18770 16303 10292 18498
seq./seq./adder 1697590 15297 12738 21408
seq./card./seq. 22010 15419 12528 19191
seq./card./card. 19845 16285 12528 19241
seq./card./adder 1697590 16654 16099 22100
seq./adder/seq. 22536 17130 12550 17277
seq./adder/card. 22734 16330 12550 20139
seq./adder/adder 1697590 15155 15031 20793
card./seq./seq. 24142 18272 12015 21095
card./seq./card. 23726 18948 12015 22605
card./seq./adder 32150 18455 14126 29910
card./card./seq. 24206 16321 12848 25567
card./card./card. 23716 16864 12848 21097
card./card./adder 1697590 14915 16176 24417
card./adder/seq 25331 17055 13360 24620
card./adder/card. 26272 18104 13360 25051
card./adder/adder 1697590 17490 16998 30144
adder/seq./seq. 48422 18356 18064 31426
adder/seq./card. 44948 19731 18064 29955
adder/seq./adder 38822 18376 16497 27336
adder/card./seq. 42744 19131 16259 28860
adder/card./card. 44272 18959 16259 31694
adder/card./adder 37582 18494 16343 30929
adder/adder/seq. 42648 15723 17590 31791
adder/adder/card. 45583 20184 17590 27403
adder/adder/adder 35857 18143 18593 29081

14 Emir Demirović et al.

instances for those two problems, since our generator ran out of memory due
to their large size (about 20 GB). Our final experiments were conducted using
both solvers, giving them a time limit of four hours for each of the 21 instances.
The results of those benchmark tests can be seen in Table 4.

Table 4 The final results obtained for Instance 1-21 using WPM3 and Optiriss, using the
selected cardinality constraint encodings described in this paper. For comparison, the best
known solutions using the exact methods described in [9] are also included. Results formatted
in bold face denote proven optimal solutions.

Instance WPM3 Optiriss Branch and Price [9] Gurobi [9]
Instance 1 607 607 607 607
Instance 2 828 835 828 828
Instance 3 1009 3475 1001 1001
Instance 4 3102 3608 1716 1716
Instance 5 4037 3645 1160 1143
Instance 6 6150 6941 1952 1950
Instance 7 4596 5421 1058 1056
Instance 8 11018 7617 1308 1323
Instance 9 10949 6394 439 439
Instance 10 16435 15350 4631 4631
Instance 11 12183 15420 3443 3443
Instance 12 18770 28598 4046 4040
Instance 13 6110163 69203 - 3109
Instance 14 16303 9776 - 1280
Instance 15 30833 16506 - 4964
Instance 16 10292 13026 3323 3233
Instance 17 22002 22073 - 5851
Instance 18 18498 14433 - 4760
Instance 19 1698538 50274 - 5420
Instance 20 5519316 147325 - -
Instance 21 14715064 - - -

If we compare the outcomes for WPM3 and Optiriss we are not able to point
out a clear winner which performs better over all the instances. While WPM3
performs significantly better on the smaller instances (Instances 1-7 and 11-
12), it does not produce good solutions for the larger instances (Instances 8-10
and 13-21). Using Optiriss provides better results when it comes to solving the
larger instances, except for the last two instances where the solver could not
find any solution under four hours.

Comparing our approach with another existing exact method based on in-
teger programming, which was provided in [9] (last two columns in the table)
we can conclude that both maxSAT solvers could not find new unknown opti-
mal results. However they could provide optimal solutions for instances 1 and
2. Running the maxSAT solvers for four hours resulted in finding solutions for
two of the instances which could not be solved by the integer programming
approach within one hour on a different environment. Although the integer pro-
gramming method could also possibly find those solutions within four hours,
the results show that maxSAT as an exact method gives promising results for
employee scheduling problems. As many maxSAT solvers are publicly avail-

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 15

able and their performance is consistently improving, this approach could be
useful to find solutions for employee scheduling problems.

4.4 Analyzing the influence of the under-coverage soft-constraint

To further investigate the problem we performed additional experiments by
simplifying the instances. We omitted all soft constraints except under-coverage
(Equation 17). We wanted to investigate this constraint because it shows to
have the highest weight in all instances, and as such contributed to the objec-
tive value significantly more than others.

Optiriss provides the option to experiment with the Linear maxSAT algo-
rithm [4]. The Linear algorithm is an iterative upper bounding algorithm in
which the SAT solver is repeatedly called and in each call clauses are added
which constrain the objective value to be less than in the previous iteration.
Therefore, this process is only repeated until the SAT solver reports unsat-
isfiable, in which case the previously calculated solution is the optimal one.
The Linear algorithm is invoked in Optiriss by supplying the parameter -
algorithm=1. As this algorithm is appropriate to be used in this scenario,
below we report experiments using it.

Every feasible solution for the simplified instances is a feasible solution
for the original problem as well, as removing soft constraints does not impact
feasibility. In Table 5 we provide the results obtained after running experi-
ments for one hour. We compare the performance of Optiriss with the Linear
algorithm on the original and simplified instances (see column 1 and column
2 of Table 5). In the case of the simplified instances, we present the costs ob-
tained after converting the solution to the original instance. We used the same
cardinality constraint encoding as we did previously for Optiriss.

The results obtained in Table 5 are interesting for two reasons. Firstly, in
most cases when a solution could be generated, the obtained results with the
described technique with the simplified instances outperformed the previous
maxSAT experiments even though less time has been allocated. Secondly, the
simplification proved to be a very useful improvement for the Linear maxSAT
algorithm. Instances 19-24 where not included in the table as no solution
could be generated with either encoding technique using the Linear maxSAT
algorithm.

These results indicate that the under-coverage constraint has a high in-
fluence on the objective value, at least for the Linear maxSAT algorithm.
Because of this, leaving the solver all the time to focus on the under-coverage
constraint showed to be valuable. Using this technique new unknown optimal
results could not be found, but the results suggest the importance of the under-
coverage constraint. Focusing only on the under-coverage constraint could also
be applied to other solving techniques, like integer programming methods or
local search.

16 Emir Demirović et al.

Table 5 The results obtained by running Optiriss with the Linear maxSAT algorithm for
one hour on simplified and original instances. For comparison purposes, we provide the
corresponding solution for Optiriss from Table 4 and the best known solutions obtained by
exact methods described in [9]. Optimal solutions are formatted in bold face.

Instance Linear Simplified-Linear Optiriss (Table 4)
Instance 1 607 620 607
Instance 2 847 858 835
Instance 3 1236 1050 3475
Instance 4 1859 1787 3608
Instance 5 2202 1534 3645
Instance 6 5763 2637 6941
Instance 7 6541 1625 5421
Instance 8 15105 2894 7617
Instance 9 13496 1991 6394
Instance 10 - 6649 15350
Instance 11 - 6434 15420
Instance 12 - 22838 28598
Instance 13 - 70242 69203
Instance 14 - 6634 9776
Instance 15 - 24988 16506
Instance 16 18074 4867 13026
Instance 17 - 14315 22073
Instance 18 18498 13143 14433

5 Conclusion

In this paper we have introduced, to our best knowledge, for the first time a
partial weighted Boolean maximum satisfiability model for a variant of the em-
ployee scheduling problem. We further generated maxSAT instances using four
different cardinality encoding methods. Additionally, we compared the effects
of the different cardinality encoding methods on two maxSAT solvers. We have
shown that there is a need to experimentally select an efficient combination
of cardinality encodings for each solver separately. A comparison between the
two solvers could not point out a clear winner for all of the considered bench-
mark tests. While WPM3 performed better on smaller instances, Optiriss was
able to produce better results for many of the larger instances.

Currently an exact approach based on integer programming provides better
results than maxSAT for most of the considered instances. However, maxSAT
could provide optimal solutions for two of the instances and obtained solu-
tions for two very large instances within four hours, which could not be solved
by integer programming within one hour. Therefore, as nowadays different
maxSAT solvers are available and their performance is consistently improv-
ing, exact maxSAT techniques can be useful for solving employee scheduling
problems in the future.

Possible improvements and extensions could be subject of future work when
working with the proposed model. It would be interesting to investigate if we
can break symmetries in our model. Further, given the findings regarding the
under-coverage constraint, developing a lexicographic optimization approach

Modeling and Solving Staff Scheduling with Partial Weighted maxSAT 17

for Employee Scheduling might be valuable. In this approach, one would first
optimize for the under-coverage constraint and then optimize the rest of the
soft constraints. Apart from that, using the results of the simplified instances
as a starting point for local search could be useful. Furthermore, a hybridiza-
tion of maxSAT with heuristic techniques within the framework of very large
neighbourhood search could be considered.

Acknowledgements The work was supported by the Austrian Science Fund (FWF):
P24814-N23 and the Vienna PhD School of Informatics.

References

1. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores
in maxsat. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 283–
289 (2015)

2. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality networks
and their applications. In: Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, pp. 167–180 (2009)

3. den Bergh, J.V., Beliën, J., Bruecker, P.D., Demeulemeester, E., Boeck, L.D.: Personnel
scheduling: A literature review. European Journal of Operational Research (3), 367–385
(2013)

4. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT (2-3), 59–6 (2010)
5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,

Frontiers in Artificial Intelligence and Applications. IOS Press (2009)
6. Bofill, M., Garcia, M., Suy, J., Villaret, M.: Maxsat-based scheduling of B2B meetings.

In: Integration of AI and OR Techniques in Constraint Programming - 12th Interna-
tional Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings, pp.
65–73 (2015)

7. Burke, E.K., Curtois, T.: New approaches to nurse rostering benchmark instances. Eu-
ropean Journal of Operational Research 237(1), 71–81 (2014)

8. Burke, E.K., Curtois, T., Post, G.F., Qu, R., Veltman, B.: A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem. European Journal
of Operational Research (2), 330–341 (2008)

9. Curtois, T., Qu, R.: Computational results on new staff scheduling benchmark instances.
Tech. rep., ASAP Research Group, School of Computer Science, University of Notting-
ham, NG8 1BB, Nottingham, UK (2014)

10. Demirovic, E., Musliu, N.: Modeling high school timetabling as partial weighted maxsat.
Tech. rep., Technical University Vienna (2014)

11. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research
(1), 3–27 (2004)

12. Kahlert, L., Krüger, F., Manthey, N., Stephan, A.: Riss solver framework v5. 05. SAT-
Race (2015)

13. Martins, R., Manquinho, V.M., Lynce, I.: Open-wbo: A modular maxsat solver,. In:
Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Con-
ference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings, pp. 438–445 (2014)

14. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
Principles and Practice of Constraint Programming - CP 2005, 11th International Con-
ference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, pp. 827–831 (2005)

