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Abstract

Since argumentation is an inherently dynamic process, it is
of great importance to understand the effect of incorporating
new information into given argumentation frameworks. In
this work, we address this issue by analyzing equivalence be-
tween argumentation frameworks under the assumption that
the frameworks in question are incomplete, i.e. further infor-
mation might be added later to both frameworks simultane-
ously. In other words, instead of the standard notion of equiv-
alence (which holds between two frameworks, if they pos-
sess the same extensions), we require here that frameworks
F andG are also equivalent when conjoined with any further
frameworkH . Due to the nonmonotonicity of argumentation
semantics, this concept is different to (but obviously implies)
the standard notion of equivalence. We thus call our new no-
tion strong equivalence and study how strong equivalence can
be decided with respect to the most important semantics for
abstract argumentation frameworks. We also consider vari-
ants of strong equivalence in which we define equivalence
with respect to the sets of arguments credulously (or skepti-
cally) accepted, and restrict strong equivalence to augmenta-
tionsH where no new arguments are raised.

Introduction
In Artificial Intelligence, the area of argumentation (see
(Bench-Capon and Dunne 2007) for an excellent summary)
has become one of the central issues during the last decade
with abstract argumentation frameworks (AFs, for short)
as introduced by Dung (1995) being the most popular for-
malization on the conceptual level of argumentation. In a
nutshell, such frameworks formalize statements (in general,
such statements can be inferential structures themselves)to-
gether with a relation denoting conflicts between them, and
the semantics gives an abstract handle to solve these inherent
conflicts between statements by selecting admissible subsets
of them. A number of papers compared and investigated
properties of the different semantics which have been pro-
posed for such frameworks (see, e.g. (Baroni and Giacomin
2009) and the references therein). However, the concept of
equivalence between two frameworks has not received that
much attention yet, although the inherent nonmonotonicity
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of argumentation makes equivalence a subtle property. Let
us have some motivating examples to illustrate this.

To start with, consider the following two frame-
works1 F = ({a, b, c}, {(a, b), (b, c), (c, a)}) and G =
({a, b, c}, {(b, a), (a, c), (c, b)})

a b c a b c

which are equivalent under most of the known seman-
tics. Let us use the preferred semantics here, which selects
maximal conflict-free and self-defending sets of arguments
(a formal definition is given in the next section). Then,
both frameworks have the same unique preferred extension,
namely the empty set. However, if we add a new argument
which attacksb, the situation becomes different:

a b c a b c

d d

If we let H = ({b, d}, {(d, b)}), the AF on the left can be
considered as the “union” ofF andH which we will denote
F ∪H , slightly abusing notation. The AF on the right is then
G ∪H . However,F ∪H andG ∪H are not equivalent. In
fact,{c, d} is the unique preferred extension ofF ∪H and
{a, d} is the unique preferred extension ofG∪H . However,
it is not even necessary to add a new argument to make this
implicit difference betweenF andG explicit. Consider now
H ′ = ({a, b}, {(a, b)}). ThenF ∪H ′ andG ∪H ′ are

a b c a b c

and we obtain thatF∪H ′ = F has the empty set as preferred
extension, while{a} is the preferred extension ofG ∪H ′.

This leads us towards definitions for stronger variants of
equivalence. As the central notion we want to study in this
paper, we definestrong equivalence2 between two AFsF
andG as the problem of deciding whetherF andG remain

1We assume a bijective relation between statements and their
names.

2We follow terminology as used in other KR formalisms, in par-
ticular, logic programming (Lifschitz, Pearce, and Valverde 2001).



equivalent under any extensions of the two AFs, i.e., whether
for each further AFH , F ∪ H andG ∪ H are equivalent.
The study of such an equivalence notion is motivated by the
following observations:

• Implicit vs. explicit information:as we have seen in the
example above, the two frameworks store different informa-
tion. However, the semantics do not make this difference
visible, unless the AFs are suitably extended, i.e. some new
information is added. Strong equivalence can thus be under-
stood as a property which decides whether two argumenta-
tion frameworks provide the same implicit information.

• Replacement property:in classical logics, the replacement
theorem states that a subformulaφ can be faithfully replaced
in any theoryT by a subformulaψ, in caseφ andψ are
equivalent. By a faithful replacement we mean here, that the
models ofT are not changed by this replacement, i.e.T is
equivalent toT [φ/ψ]. Again, our example shows that ar-
gumentation does not satisfy the replacement property (the
same holds for other nonmonotonic formalisms). However,
the replacement property is a central condition for simpli-
fications. If we consider strong equivalence, we obtain a
replacement property for argumentation frameworks. Note
that strong equivalence thus gives us a handle on local sim-
plifications, i.e. simplifying parts of a framework without
looking at the entire framework.

• Dynamics of argumentation:the process of argumentation
is dynamic and evolving with time (Rotstein et al. 2008b).
In other words, during an argumentation process it is natu-
ral that new arguments are raised, which then attack or are
attacked by already existing arguments. As well, it might be
the case that we learn that two existing arguments are in an
attack-relation, which we were not aware of before. This all
leads to the necessity to understand the semantics also for
incomplete argumentation frameworks. Strong equivalence
provides new theoretical insight wrt. this aspect, which,
we believe, complements results about the revision of AFs
(Cayrol, Dupin de Saint-Cyr, and Lagasquie-Schiex 2008;
Falappa, Kern-Isberner, and Simari 2009).

Indeed, these observations are not exclusive to argumen-
tation; the study of different equivalence notions has already
received attention in other (nonmonotonic) formalisms for
knowledge representation (Lifschitz, Pearce, and Valverde
2001; Turner 2004; Truszczynski 2006). However, for ab-
stract argumentation we are not aware of such results.

Our main contributions are summarized as follows:

• We provide characterizations how to decide strong
equivalence with respect to the semantics as defined by
Dung (1995), as well as semi-stable (Caminada 2006) and
ideal semantics (Dung, Mancarella, and Toni 2007). Our
results show that strong equivalence wrt. admissible, pre-
ferred, ideal, and respectively, semi-stable semantics coin-
cides, while the remaining semantics (stable, grounded, and
complete) yield different notions of strong equivalence. In
the case of self-loop free AFs, our results are even stronger;
here, strong equivalence for all considered semantics re-
duces to syntactical equivalence (i.e., the compared AFs
have to be exactly the same).

• We then study some variants of strong equivalence. In
particular, we consider strong equivalence when defined
over credulously and respectively skeptically accepted argu-
ments. Interestingly, in nearly all semantics this conceptre-
duces to the corresponding standard notion of strong equiv-
alence.

• Finally, we weaken the concept of strong equivalence by
considering only augmentation of frameworks which do not
add any new arguments to the compared frameworks. While
this restriction (which we call local equivalence) has no ef-
fect for admissible, preferred, ideal, and semi-stable seman-
tics, it leads to some subtleties for the other semantics.

The paper is organized as follows. First, we introduce
the necessary background for abstract argumentation frame-
works and the semantics we consider here. The third section,
which is the main part of this work, contains our characteri-
zation theorems for strong equivalence.Then, we look at the
notion of strong equivalence when defined with respect to
acceptability, and introduce the aforementioned concept of
local equivalence. We conclude the paper with a discussion
of related work and give pointers to open problems.

Preliminaries
We consider a fixed countable setU of arguments. An ar-
gumentation framework (AF) is a pair(A,R) whereA ⊆ U
is a finite set of arguments andR ⊆ A × A represents the
attack-relation. For an AFF = (B,S) we useA(F ) to
refer toB andR(F ) to refer toS. When clear from the
context, we often writea ∈ F (instead ofa ∈ A(F )) and
(a, b) ∈ F (instead of(a, b) ∈ R(F )). For two AFsF and
G, we define the unionF ∪ G and intersectionF ∩ G as
expected, i.e.F ∪G = (A(F ) ∪A(G), R(F ) ∪R(G)) and
F ∩G = (A(F )∩A(G), R(F )∩R(G)). We writeF \G to
denote(A(F ), R(F ) \ R(G)). Likewise, we writeF ⊆ G
in caseA(F ) ⊆ A(G) andR(F ) ⊆ R(G).

For an AFF = (A,R) andS ⊆ A, we say that (i)S is
conflict-freein F if there are noa, b ∈ S such that(a, b) ∈
R; (ii) a ∈ A is defeatedby S in F if there isb ∈ S such
that(b, a) ∈ R; and (iii) a ∈ A is defendedby S in F if for
eachb ∈ A with (b, a) ∈ R, b is defeated byS in F . Note
that an argumenta with (a, a) ∈ F cannot be defended by a
conflict-free set.

Semantics for argumentation frameworks are given via a
functionσ which assigns to each AFF = (A,R) a setS ⊆
2A of extensions. We consider hereσ ∈ {s, a, p, c, g, i, ss}
for stable, admissible, preferred, complete, grounded, ideal,
and respectively, semi-stable extensions (Dung 1995; Dung,
Mancarella, and Toni 2007; Caminada 2006).

Definition 1 LetF = (A,R) be an AF andS ⊆ A.

• S is astableextension ofF , i.e.,S ∈ s(F ), if S is conflict-
free inF and eacha ∈ A \ S is defeated byS in F .

• S is anadmissibleextension ofF , i.e.,S ∈ a(F ), if S is
conflict-free inF and eacha ∈ S is defended byS in F .

• S is a preferredextension ofF , i.e., S ∈ p(F ), if S ∈
a(F ) and for eachT ∈ a(F ), S 6⊂ T .

• S is a completeextension ofF , i.e., S ∈ c(F ), if S ∈
a(F ) and for eacha ∈ A defended byS in F , a∈S holds.



• S is a groundedextension ofF , i.e., S ∈ g(F ), if S ∈
c(F ), and for eachT ∈ c(F ), T 6⊂ S.

• S is an idealextension ofF , i.e.,S ∈ i(F ), if S ∈ a(F ),
S ⊆

⋂

T∈p(F ) T , and for eachU ∈ a(F ), such thatU ⊆
⋂

T∈p(F ) T , S 6⊂ U .

• S is a semi-stableextension ofF , i.e.,S ∈ ss(F ), if S ∈
a(F ), and for eachT ∈ a(F ), R+(S) 6⊂ R+(T ), where
R+(U) = U ∪ {b | (a, b) ∈ R, a ∈ U}.

It is well known that forσ ∈ {a, p, c, g, i, ss}, and any AFF ,
σ(F ) 6= ∅ (recall that we deal with finite AFs); only stable
semantics may yield an empty set of extensions. Moreover,
for σ ∈ {g, i}, and any AFF , σ(F ) contains exactly one
extension. The grounded extensions of an AFF = (A,R),
is given by the least fixed point of the operatorΓF : 2A →
2A, whereΓF (S) = {a ∈ A | a is defended byS in F}.
Also the following relations hold, for each AFF :

s(F ) ⊆ ss(F ) ⊆ p(F ) ⊆ c(F ) ⊆ a(F ). (1)

In cases(F ) 6= ∅, s(F ) = ss(F ) holds (Caminada 2006)
for finite AFs. Moreover, the ideal extension ofF is also a
complete one (Dung, Mancarella, and Toni 2007).

When comparing frameworks, the picture becomes more
opaque. Interestingly, we only have a few relations between
the different semantics.

Proposition 1 For any AFsF,G, we have
(1) a(F ) = a(G) =⇒ θ(F ) = θ(G), for θ ∈ {p, i};
(2) c(F ) = c(G) =⇒ θ(F ) = θ(G), for θ ∈ {p, i, g}.

Proof We show the claim forθ = p; the other cases are
similar. Let σ ∈ {a, c} and assumeσ(F ) = σ(G) but
p(F ) 6= p(G). Wlog. letS ∈ p(F )\p(G). Then,S ∈ σ(F )
(p(F ) ⊆ σ(F ) holds for all AFsF ), andS ∈ σ(G) (by as-
sumption). Since preferred extensions are maximal, for all
S ∈ σ(G) there isS′ ∈ p(G) such thatS ⊆ S′. Since
S /∈ p(G), there isS′ ∈ p(G) such thatS ⊂ S′. Recall that
p(G) ⊆ σ(G), and henceS′ ∈ σ(G). Sinceσ(F ) = σ(G),
S′ ∈ σ(F ). But this is in contradiction withS ∈ p(F ). �

None of the other relations hold (even if we restrict to
comparisons between AFs which are given over the same ar-
guments) as witnessed by the following collection of counter
examples.

The first example shows that there exist AFsF andG,
such thatσ(F ) = σ(G) 6=⇒ θ(F ) = θ(G), whereσ ∈
{s, ss, a, p, i} andθ ∈ {g, c}.

Example 1 LetF andG be the following AFs:

a b a b

We havea(F ) = a(G) = {∅, {b}} and s(F ) = ss(F ) =
s(G) = ss(G) = {{b}}. However,∅ is a complete extension
of F (since each argument faces at least one attack), while
this is not the case forG (whereb is thus defended by the
empty set), i.e.{b} is the only complete extension ofG. As
well, we observe that∅ is the grounded extension ofF and
{b} is the grounded extension ofG. Thus, we haveσ′(F ) =
σ′(G) 6=⇒ θ(F ) = θ(G) for σ′ ∈ {s, ss, a} andθ ∈ {g, c}.
By Proposition 1, we can extend this observation to cover
ideal and preferred semantics, as well.

The next example presents AFsF and G, for which
σ(F ) = σ(G) 6=⇒ a(F ) = a(G), σ ∈ {s, p, i, c, g, ss}.
Example 2 LetF andG be the following AFs:

a b

c d e

a b

c d e

Since bothF andG are acyclic, we haveσ(F ) = σ(G) =
{a, c, e} for σ ∈ {s, p, i, c, g, ss}. However,{a, c} ∈ a(F ),
but{a, c} /∈ a(G). Thus,σ(F ) = σ(G) 6=⇒ a(F ) = a(G).

We now show that forσ ∈ {a, p, c, g, i} andθ ∈ {s, ss},
σ(F ) = σ(G) =⇒ θ(F ) = θ(G) does not hold in general.
Example 3 LetF andG be as follows:

a b c a b c

We havea(F ) = c(F ) = a(G) = c(G) = {∅, {a}, {b}}.
However,s(F ) = {{b}} and s(G) = {{a}, {b}}. Hence,
via Proposition 1, we thus obtainσ(F ) = σ(G) 6=⇒
s(F ) = s(G), for σ ∈ {a, c, p, g, i}. Sinces(F ) 6= ∅ 6=
s(G), our observations immediately extend to semi-stable
semantics.

Next, we present an example due to Dunne (2009) to show
σ(F ) = σ(G) 6=⇒ θ(F ) = θ(G), for σ ∈ {p, g, s, ss} and
θ ∈ {a, c, i}.
Example 4 Let nowF andG be as follows:

a c d

b

a c d

b

We haveg(F ) = g(G) = {∅}, p(F ) = p(G) = s(F ) =
s(G) = ss(F ) = ss(G) = {{a, d}, {b, d}}. However,
i(F ) = {∅} and i(G) = {{d}} since{d} is admissible for
G, and not forF . Thus{d} is not a complete extension of
F , but it is a complete extension ofG (recall that the ideal
extension is always a complete extension as well).

We now provide an example which showsσ(F ) =
σ(G) 6=⇒ p(F ) = p(G), for σ ∈ {s, ss, g, i}.
Example 5 Consider hereF andG are given as follows:

a b c a b c

We havess(F ) = s(F ) = ss(G) = s(G) = {{b}},
but different preferred extensions, viz.p(F ) = {{a}, {b}},
p(G) = {{b}, {c}}. In turn, i(F ) = i(G) = {∅}, and also
g(F ) = g(G) = {∅} is evident. Thus, the desired relations
follow.

The final example shows that stable equivalence and semi-
stable equivalence are incomparable.
Example 6 LetF ,G, andH be as follows

a b a b a b

We havess(F ) = ss(G) = {{b}} and ss(H) = {∅};
moreover,s(F ) = s(H) = ∅ and s(G) = {{b}}. Hence,
ss(F ) = ss(G) 6=⇒ s(F ) = s(G) and s(F ) = s(H) 6=⇒
ss(F ) = ss(H).



Strong Equivalence
As a first novel notion to compare AFs we consider the fol-
lowing concept which we call strong equivalence (wrt. a
given semanticsσ).

Definition 2 Two AFsF andG are strongly equivalentto
each other wrt. a semanticsσ, in symbolsF ≡σ

s G, iff for
each AFH , σ(F ∪H) = σ(G ∪H) holds.

By definition, we have thatF ≡σ
s G implies σ(F ) =

σ(G), i.e. standard equivalence between wrt.σ. However,
the converse direction does not hold in general.

Example 7 Recall the frameworks from the introduction

F =
(

{a, b, c}, {(a, b), (b, c), (c, a)}
)

and

G =
(

{a, b, c}, {(a, c), (c, b), (b, a)}
)

.

Thenσ(F ) = σ(G) = {∅}, for σ ∈ {a, p, c, g, i, ss}. More-
over, s(F ) = s(G) = ∅. ConsiderH = ({b, d}, {(d, b)}),
with d being a fresh argument different froma, b, c. Then,
{c, d} is the only stable extension ofF ∪H , while{c, d} /∈
a(G ∪ H). Inspecting the relations in(1), we can con-
cludeσ′(F ∪ H) 6= σ′(G ∪ H), for σ′ ∈ {s, ss, p, c, a}.
By definition,F 6≡σ′

s G. It remains to check ideal strong-
equivalence and grounded strong-equivalence. In fact, we
havei(F ∪ H) = p(F ∪ H) = {{c, d}} 6= {{a, d}} =
p(G∪H) = i(G∪H), as well asg(F ∪H) = c(F ∪H) =
{{c, d}} 6= {{a, d}} = c(G ∪H) = g(G ∪H).

Let us mention at this point, that the notion of conflict-
freeness is not responsible for the behavior observed above.
In fact, for AFsF ,H , and a setS of arguments, the follow-
ing propositions are equivalent: (i)S is conflict-free in both
F andH ; (ii) S is conflict-free inF ∪H . We thus can imme-
diately conclude that for AFsF,G with A(F ) = A(G), the
following holds:F andG have the same set of conflict-free
sets iffF ∪H andG ∪H have the same set of conflict-free
sets, for any AFH .

In the subsequent sections, we provide characterizations
for strong equivalence wrt. the different semantics we con-
sider. For all cases we will provide syntactical criteria which
we callkernels. The idea is that (syntactical) equivalence of
kernels characterizes strong equivalence wrt. the considered
semantics.

Strong Equivalence wrt. Stable Semantics
Our first goal is to identify attacks which do not contribute
when computing stable extensions of an AFF . Indeed, we
need to find attacks which do not contribute in the evaluation
of F , no matter howF is extended. Since stable semantics
are solely based on conflict-free sets and attacks, a good can-
didate for such “useless” attacks are pairs(a, b) where also
(a, a) is contained in the attack-relation.

Definition 3 For an AFF = (A,R), we define thes-kernel
ofF asF sκ = (A,Rsκ) where

Rsκ = R \ {(a, b) | a 6= b, (a, a) ∈ R}.

A few properties are clear by definition and are implicitly
used later on: for each AFF and eacha ∈ A(F ), A(F ) =
A(F sκ), R(F ) ⊇ R(F sκ), and(a, a) ∈ F iff (a, a) ∈ F sκ .

Example 8 Let F = ({a, b}, {(a, a), (a, b)}). We have
s(F ) = ∅. However, also forF sκ = ({a, b}, {(a, a)}),
we haves(F sκ) = ∅. As another example, considerG =
({a, b}, {(a, a), (a, b), (b, a)}). Here,s(G) = {{b}}. Note
that alsoGsκ = ({a, b}, {(a, a), (b, a)}) possesses{b} as
its only stable extension.

Indeed, the above observation follows a general principle,
which we show next.

Lemma 1 For any AFF , s(F ) = s(F sκ).

Proof First observe that, for each setS, S is conflict-free
in F iff S is conflict-free inF sκ. Moreover, for each such
conflict-free setS and eacha ∈ A, a is defeated byS in
F iff a is defeated byS in F sκ (if a is defeated byS in F ,
there existsb ∈ S, such that(b, a) ∈ F . Sinceb ∈ S and
S is conflict-free inF , we get(b, b) /∈ F . By definition,
(b, a) ∈ F sκ. The if-direction follows from the observation
thatR(F sκ) ⊆ R(F )). The claim follows now easily. �

The next technical lemma shows that the notion of ans-
kernel is robust wrt. composition of AFs.

Lemma 2 LetF andG be AFs, such thatF sκ = Gsκ. Then,
(F ∪H)sκ = (G ∪H)sκ for all AFsH .

Proof SupposeF sκ = Gsκ and let(a, b) ∈ (F ∪H)sκ. We
show(a, b) ∈ (G ∪ H)sκ. Since(a, b) ∈ (F ∪ H)sκ we
know that(a, a) /∈ F ∪ H . Thus,(a, a) /∈ F sκ, (a, a) /∈
Gsκ (by assumptionF sκ = Gsκ), and(a, a) /∈ Hsκ. Now,
since(a, b) ∈ (F ∪ H)sκ, (a, b) ∈ F sκ or (a, b) ∈ Hsκ.
In case(a, b) ∈ Hsκ, (a, b) ∈ (G ∪ H)sκ follows since
(a, a) /∈ Gsκ (thus,(a, a) /∈ G ∪H). In case(a, b) ∈ F sκ,
we get by assumptionF sκ = Gsκ, that (a, b) ∈ Gsκ, and
since(a, a) /∈ Hsκ, (a, b) ∈ (G ∪H)sκ follows. The other
direction is symmetric. �

We proceed with our first main theorem and show that
syntactical equivalence ofs-kernels characterizes strong
equivalence betweenF andG wrt. stable semantics.

Theorem 1 For any AFsF andG: F sκ = Gsκ iff F ≡s
s G.

Proof SupposeF sκ = Gsκ and letH,S s.t.S ∈ s(F ∪H).
We showS ∈ s(G ∪H). By Lemma 1,S ∈ s((F ∪H)sκ)
and we get from Lemma 2,S ∈ s((G ∪ H)sκ). Thus,S ∈
s(G ∪H), again by Lemma 1. By symmetry and definition
of strong equivalence, we getF sκ = Gsκ impliesF ≡s

s G.

For the converse direction, supposeF sκ 6= Gsκ. We show
F 6≡s

s G. First, we consider the caseA(F sκ) 6= A(Gsκ).
This impliesA(F ) 6= A(G) by the definition of ans-kernel.
Wlog. leta ∈ A(F ) \A(G). We useB = (A(F )∪A(G)) \
{a}, andc as a fresh argument. Consider

H =
(

B ∪ {c}, {(c, b) | b ∈ B}
)

.

Suppose now,a is contained in someS ∈ s(F ∪H). Then,
we are done sincea cannot be contained in anyS′ ∈ s(G ∪
H), sincea /∈ A(G∪H). Otherwise, we extendH toH ′ =
H ∪ ({a}, ∅). Then,{a, c} is the unique stable extension of
G ∪H ′. On the other hand, observe thatF ∪H ′ = F ∪H ,
hence by assumption,a is not contained in anyS ∈ s(F ∪
H ′) or s(F ∪H ′) is empty. In both cases, we getF 6≡s

s G.



Now supposeA(F sκ) = A(Gsκ). Then, we have
R(F sκ) 6= R(Gsκ). Wlog. assume there exists some
(a, b) ∈ R(F sκ) \R(Gsκ). We define

H = (A(F ), {(a, c) | c ∈ A(F ) \ {a, b}}).

Let a = b (thus(a, a) ∈ R(F ) and(a, a) 6∈ R(G)). Then,
{a} 6∈ s(F ∪ H) (since{a} is not conflict-free inF ∪ H)
and{a} ∈ s(G ∪ H) (sincea attacks all other arguments
in G ∪H). Hence, in what follows we can assume that any
self-loop is either contained in bothR(F sκ) andR(Gsκ) or
in none of them. Let us thus now considera 6= b. Since
(a, b) ∈ F sκ, it holds that(a, b) ∈ F , (a, a) 6∈ F , and,
furthermore, we now can assume that(a, a) 6∈ G. Now,
{a} ∈ s(F ∪ H) (sincea attacks all other arguments) and
{a} 6∈ s(G ∪H) (sinceb is not defeated by{a} in G ∪H ;
recall that(a, b) 6∈ R(Gsκ) and since(a, a) 6∈ R(G), we
also have(a, b) 6∈ R(G)). Thus,F 6≡s

s G follows. �

Strong Equivalence wrt. Admissible, Preferred,
Ideal and Semi-Stable Semantics
We now provide a slightly more restrictive notion of a ker-
nel, which turns out to serve as a uniform characterization
for strong equivalence wrt. four different semantics

Definition 4 For an AFF = (A,R), we define thea-kernel
ofF asF aκ = (A,Raκ) whereRaκ is given as

R \ {(a, b) | a 6= b, (a, a) ∈ R, {(b, a), (b, b)} ∩R 6= ∅}.

The following properties also hold for the notion of an
a-kernel: For each AFF and each argumenta, A(F ) =
A(F aκ), R(F ) ⊇ R(F aκ), and(a, a) ∈ F iff (a, a) ∈ F aκ.

Example 9 We first show that the notion ofs-kernels
following Definition 3 is too weak to capture equiv-
alence wrt. admissible extensions. Recall AFF =
({a, b}, {(a, a), (a, b)}) from Example 8. We clearly have
a(F ) = {∅}. However, forF sκ = ({a, b}, {(a, a)}), we
now havea(F sκ) = {∅, {b}}. For another example, con-
siderG = ({a, b}, {(a, a), (a, b), (b, a)}), which has as an
a-kernelGaκ = ({a, b}, {(a, a), (b, a)}). One can check
thata(G) = {∅, {b}} = a(Gaκ).

Concerning the relationship between ans-kernel and an
a-kernel, we obviously haveF sκ ⊆ F aκ for each AFF . A
stronger relation between the two notions is as follows:3

Lemma 3 For any AFsF,G, F aκ=Gaκ impliesF sκ=Gsκ.

We now give the two important properties a notion of a
kernel has to fulfill (cf. Lemmas 1 and 2 for the stable case).

Lemma 4 For any AFF , σ(F )=σ(F aκ) (σ ∈ {a, p, i, ss}).

Lemma 5 If F aκ = Gaκ, then(F ∪H)aκ = (G∪H)aκ for
all AFsH .

Interestingly, syntactical equivalence ofa-kernels cap-
tures strong equivalence wrt. four different semantics.

Theorem 2 The following propositions are equivalent for
all AFsF andG:

3From now on, we will omit some proofs due to limited space.

(a) F aκ = Gaκ

(b) F ≡a
s G

(c) F ≡ss
s G

(d) F ≡p
s G

(e) F ≡i
s G

Proof (a)⇒(b) and (a)⇒(c): Similar as in the proof of The-
orem 1 using Lemmas 4 and 5.

(b)⇒(d) and (b)⇒(e): SupposeF ≡a
s G, and letH be any

AF. By definition,a(F ∪H) = a(G ∪H), and by Proposi-
tion 1,θ(F ∪H) = θ(G∪H), for θ ∈ {p, i}. ThusF ≡θ

s G
follows.

(c)⇒(a), (d)⇒(a), and (e)⇒(a): Letθ ∈ {p, i, ss}. Suppose
F aκ 6= Gaκ. We showF 6≡θ

s G. In caseθ(F aκ) 6= θ(Gaκ)
we are done (by Lemma 4, we getθ(F ) 6= θ(G) and thus
F 6≡θ

s G). In what follows, we thus assumeθ(F ) = θ(G).
First consider the caseA(F aκ) 6= A(Gaκ). By definition

of ana-kernel thenA(F ) 6= A(G). Wlog. leta ∈ A(F ) \
A(G). Sincea /∈ A(G), we havea /∈ S for eachS ∈ θ(G),
and thus, sinceθ(F ) = θ(G), a /∈ S′ for eachS′ ∈ θ(F ).
LetH = ({a}, ∅). Clearly,F∪H = F and thusθ(F∪H) =
θ(F ). On the other hand,a ∈ S for anyS ∈ θ(G∪H). This
can be seen as follows: First,a ∈ S for anyS ∈ p(G ∪H),
sincea is not attacked inG ∪H . Hence,a ∈ S for anyS ∈
ss(G ∪ H) (sincess(I) ⊆ p(I), for any AFI). Moreover,
we have{a} ∈ a(G ∪ H) anda ∈

⋂

S∈p(G∪H) S. Thusa
has to be contained in the ideal extension ofG∪H , as well.

Now supposeA(F aκ) = A(Gaκ), i.e.A(F ) = A(G).
Thus wlog. there exists some(a, b) ∈ R(F aκ) \ R(Gaκ).
LetB = A(F ) \ {a, b}. First, assumea = b. We define

H =
(

A(F ), {(a, c), (c, c) | c ∈ B}
)

and obtain(F ∪H)aκ = (A(F ), {(a, a)}∪{(c, c) | c ∈ B})
and(G ∪ H)aκ = (A(F ), {(a, c), (c, c) | c ∈ B}). Thus,
∅ is the only preferred extension of(F ∪ H)aκ (since it
is the only conflict-free set here) and{a} is the only pre-
ferred extension ofG ∪ H (sincea attacks all its attack-
ers anda does not attack itself by the assumption). We ob-
tain p((F ∪ H)aκ) 6= p((G ∪ H)aκ). Note that for an AF
which possesses a unique preferred extensionS, S has to
be also the unique semi-stable extension (in case, the AF
is finite, which is the case here), and the ideal extension.
Hence,θ((F ∪ H)aκ) 6= θ((G ∪ H)aκ), and by Lemma 4,
θ(F ∪H) 6= θ(G ∪H) (for θ ∈ {p, i, ss}).

Hence, in what follows we can assume that any self-loop
is either contained in bothR(F aκ) andR(Gaκ) or in none
of them. Let us thus now considera 6= b. We continue our
proof by different cases for the presence of attack(a, a). If
(a, a) /∈ R(F aκ), we define

H = (A(F ), {(b, a), (b, b)} ∪ {(a, c), (c, c) | c ∈ B}).

It can be checked thatp(F ∪H) = {{a}} andp(G ∪H) =
{∅}. By the same observation as above,θ(F ∪H) 6= θ(G ∪
H), for θ ∈ {p, i, ss}. If (a, a) ∈ R(F aκ), we proceed as
follows. Since(a, b) ∈ F aκ, it holds that(b, b) /∈ R(F aκ)
and(b, a) /∈ R(F aκ). We define

H = (A(F ), {(b, c), (c, c) | c ∈ B})



and obtainθ(F ∪ H) = {∅} while θ(G ∪ H) = {{b}}.
Hence, in all cases there is an AFH , such thatθ(F ∪H) 6=
θ(G ∪H). By definition of strong equivalence, we arrive at
F 6=θ

s G (for θ ∈ {p, i, ss}). �

Strong Equivalence wrt. Grounded Semantics
We next consider the grounded semantics and require a fur-
ther kernel.

Definition 5 For an AFF = (A,R), we define theg-kernel
ofF asF gκ = (A,Rgκ) whereRgκ is defined as

R \ {(a, b) | a 6= b, (b, b) ∈ R, {(a, a), (b, a)} ∩R 6= ∅}.

As for our previous kernels, these properties also hold forg-
kernels:A(F ) = A(F gκ), R(F ) ⊇ R(F gκ), and,(a, a) ∈
F iff (a, a) ∈ F gκ, for each AFF and each argumenta.

As regards to the relation of theg-kernel to our
other kernels, we notice thatF gκ is incomparable
with both F aκ and F sκ in general. For instance,
for AF G = ({a, b}, {(a, a), (a, b), (b, a)}), we have
Ggκ = ({a, b}, {(a, a), (a, b)}) and Gaκ = Gsκ =
({a, b}, {(a, a), (b, a)}). Thus bothGgκ 6⊆ Gaκ = Gsκ and
Gaκ = Gsκ 6⊆ Ggκ.

However, we observe an interesting symmetry betweena-
kernels andg-kernels. In fact, for any AFF anda, b which
are not both self-attacking,(a, b) ∈ F \ F aκ iff (b, a) ∈
F \ F gκ. However, in case botha andb are self-attacking,
(a, b) ∈ F \ F aκ iff (a, b) ∈ F \ F gκ.

Also g-kernels satisfy similar properties as we have
shown for other kernels before.

Lemma 6 For any AFF , g(F ) = g(F gκ).

Lemma 7 If F gκ = Ggκ, then(F ∪H)gκ = (G∪H)gκ for
all AFsH .

We proceed to show thatg-kernels characterize strong
equivalence wrt. the grounded extensions.

Theorem 3 For any AFsF andG: F gκ = Ggκ iff F ≡g
s G.

Proof The only if-direction is similar as in the proof of
Theorem 1 using Lemmas 6 and 7.

For the if-direction, supposeF gκ 6= Ggκ. In case
g(F gκ) 6= g(Ggκ) we are done since, by Lemma 6,g(F ) 6=
g(G) which obviously impliesF 6≡g

s G. In what follows,
we thus assumeg(F ) = g(G).

First consider the caseA(F gκ) 6= A(Ggκ). By definition
this holds, iff,A(F ) 6= A(G). Wlog. leta ∈ A(F ) \ A(G).
Sincea /∈ A(G), we havea /∈ S for S ∈ g(G) = g(F ). Let
H = ({a}, ∅). Clearly,F ∪H = F and thusg(F ∪H) =
g(F ). On the other hand,a ∈ S′ for S′ ∈ g(G ∪H), since
there is no attack ona in G ∪H . Consequently,F 6≡g

s G.
Now supposeA(F gκ) = A(Ggκ), i.e.A(F ) = A(G).

Thus wlog. there exists some(a, b) ∈ R(F gκ) \ R(Ggκ).
Let c ∈ U be a new argument not contained inA(F ) and
B = A(F ) \ {a, b}. Assuminga = b, i.e., (a, a) ∈ F
and (a, a) 6∈ G, let H =

(

B ∪ {c}, {(c, d) | d ∈ B}
)

.
Then,{c} ∈ g(F ∪H) (c is defended by∅ in F ∪H ; no other
argument is defended by{c} in F ∪H) and{c} /∈ g(G∪H)
(c is defended by∅ in G ∪ H anda is defended by{c} in

G ∪H). Hence, we can assume that any self-loop is either
contained in bothF andG or in none of them.

Let a 6= b. Since(a, b) ∈ R(F gκ), (a, b) ∈ R(F ) and
(b, b) /∈ R(F ); or (a, a) /∈ R(F ) and (b, a) /∈ R(F ). If
(b, b) /∈ R(F ), then also(b, b) /∈ R(G). Moreover, since
(a, b) /∈ R(Ggκ), also(a, b) /∈ R(G). Again, letc ∈ U be
a new argument not contained inA(F ) andB = A(F ) \
{a, b}. We take

H =
(

A(F ) ∪ {c}, {(a, a), (b, a)} ∪ {(c, d) | d ∈ B}
)

.

Now, {c} ∈ c(F ∪H) and∅ 6∈ c(F ∪H). Thus,g(F ∪
H) = {{c}}. On the other hand,{c} /∈ c(G ∪H) and thus
{c} /∈ g(G ∪ H). If (b, b) ∈ R(F ), then(b, b) ∈ R(G),
(a, a) /∈ R(F ), (a, a) /∈ R(G), and(b, a) /∈ R(F ). We take

H =
(

A(F ) ∪ {c, e}, {(c, d) | d ∈ B} ∪ {(b, e)}
)

,

wheree is a new argument not contained inA(F ) ∪ {c}.
Now, g(F ∪H) = {{a, c, e}} while g(G ∪H) = {{a, c}}
if (b, a) /∈ G, andg(G ∪ H) = {{c}} if (b, a) ∈ G. Thus
F 6≡g

s G follows. �

Strong Equivalence wrt. Complete Semantics
Finally, we introduce a kernel characterizing strong equiva-
lence wrt. complete semantics. We notice that wrt. complete
extensions, attacks(a, b) for which both arguments are self-
attacking are irrelevant, since neithera nor b can ever be
defended with any conflict-freeS.

Definition 6 For an AFF = (A,R), we define thec-kernel
ofF asF cκ = (A,Rcκ) where

Rcκ = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R}

Concerning the relationship between ac-kernel and the other
notions of kernels introduced,F sκ ⊆ F aκ ⊆ F cκ and
F gκ ⊆ F cκ hold for anyF (recall thatF gκ is incompa-
rable with bothF sκ andF aκ). Similarly to Lemma 3 there
is also a stronger relation between the notions.

Lemma 8 For any AFsF andG, F cκ = Gcκ impliesF τ =
Gτ for τ ∈ {sκ, aκ, gκ}.

In fact, there is stronger relationship betweena-, g- andc-
kernels.

Lemma 9 For any AFsF andG: F cκ = Gcκ iff jointly
F aκ = Gaκ andF gκ = Ggκ.

Proof The only-if direction is by Lemma 8. For the other
direction, supposeF cκ 6= Gcκ. Wlog. let (a, b) ∈ F cκ \
Gcκ. Hence,(a, b) ∈ F and(a, a) /∈ F or (b, b) /∈ F . If
(a, a) /∈ F , (a, b) ∈ F aκ by construction. Moreover, we
haveGaκ ⊆ Gcκ and thus(a, b) /∈ Gaκ. Hence,F aκ 6=
Gaκ. For the other case, i.e. if(b, b) /∈ F , (a, b) ∈ F gκ

follows by construction. We also haveGgκ ⊆ Gcκ and thus
(a, b) /∈ Ggκ. Therefore in this case,F gκ 6= Ggκ. �

We continue with properties ofc-kernels which we then
use to show thatc-kernels characterize strong equivalence
wrt. complete semantics.

Lemma 10 For any AFF , c(F ) = c(F cκ).



Lemma 11 If F cκ = Gcκ, then(F ∪ H)cκ = (G ∪ H)cκ

for all AFsH .

Theorem 4 For any AFsF andG: F cκ = Gcκ iff F ≡c
s G.

Proof The only-if direction can be shown via Lemmas 10
and 11 and we just sketch the if-direction. SupposeF cκ 6=
Gcκ. By Lemma 9, we haveF aκ 6= Gaκ or F gκ 6= Ggκ. In
caseF aκ 6= Gaκ, we get by Theorem 2,F 6≡p

s G, i.e. there
exists an AFH , such thatp(F ∪H) 6= p(G ∪H). In case,
F gκ 6= Ggκ we get by Theorem 3,F 6≡g

s G, i.e. there exists
an AFH , such thatg(F ∪H) 6= g(G ∪H). In both cases,
Proposition 1 yieldsc(F ∪H) 6= c(G∪H), i.e.F 6≡c

s G. �

Summary of Results for Strong Equivalence

We summarize our results for strong equivalence.

Theorem 5 The following relations holds for all AFsF ,G,
andσ ∈ {a, p, i, ss},

(1) F ≡σ
s G =⇒ F ≡s

s G

(2) F ≡c
s G⇐⇒ (F ≡σ

s G andF ≡g
s G)

Proof Relation (1) is by Lemma 3 and Theorems 1 and 2.
Relation (2) is by Lemma 9 and Theorems 2, 3 and 4.�

None of the other relations hold, as we sketch next.

Example 10 Consider the following frameworks:

F : a b G : a b

H : a b I : a b

We haveF aκ = F sκ = Gaκ = Gsκ = Ggκ = G while
F gκ = H . Thus,F aκ = Gaκ (similarly for F sκ = Gsκ)
does not implyF gκ = Ggκ, i.e.,F ≡σ

s G does not imply
F ≡g

s G for σ ∈ {s, a, p, i, ss} (Theorems 1–3). On the other
hand,F cκ = F andGcκ = G, and thereforeF ≡σ

s G does
not implyF ≡c

s G for σ ∈ {s, a, p, i, ss} (Theorems 1, 2 and
4). Moreover,Hgκ = Haκ = Hcκ = H andHsκ = I. Us-
ing our observations on kernels ofF , we get thatF ≡g

s H
does not implyF ≡σ

s H for σ ∈ {s, a, p, i, ss, c} (Theo-
rems 1–4). Finally, observe thatIsκ = Iaκ = I and recall
thatHaκ = H andHsκ = I. Thus,H ≡s

s I does not imply
H ≡σ

s I for σ ∈ {a, p, i, ss} (Theorems 1 and 2).

An inspection of the definition of kernels shows that self-
loops play a crucial role. In fact, the following observation
is quite straightforward:

Lemma 12 For any self-loop free AFF , F = F sκ =
F aκ = F cκ = F gκ.

Thus for self-loop free AFs the concept of strong equiva-
lence collapses to syntactic equivalence for all semantics.

Theorem 6 For any self-loop free AFsF andG, we have
F = G iff F ≡σ

s G, σ ∈ {s, a, p, c, g, i, ss}.

Strong Equivalence in Terms of Consequences
An alternative approach to “strong” notions of equivalence
between argumentation frameworks is to define such a con-
cept in terms of consequences. To this end, let for an
AF F , cred

σ(F ) =
⋃

S∈σ(F ) S be the set of credulous
consequences ofF (wrt. semanticsσ), andskept

σ(F ) =
⋂

S∈σ(F ) S the set of skeptical consequences ofF (wrt. σ).

In cases(F ) = ∅, we define4 skept
s(F ) = A(F ).

Definition 7 Let ρ ∈ {cred , skept}. We call AFsF andG
stronglyρ-equivalent wrt. semanticsσ, in symbolsF ≡σ

s;ρ

G, iff for each AFH , ρσ(F ∪H) = ρσ(G ∪H) holds.

We observe that for admissible semantics strongskept -
equivalence is trivial, i.e.skepta(F ) = skept

a(G) holds for
any AFsF , G (basically since∅ ∈ a(H), for every AFH).
In all remaining cases, the concepts from Definition 7 coin-
cide with strong equivalence as defined in Definition 2.

Theorem 7 For any AFsF , G, andσ ∈ {s, p, c, g, i, ss},
the following propositions are equivalent:

(1) F ≡σ
s G;

(2) F ≡σ
s;cred G;

(3) F ≡σ
s;skept G.

Also, (1) iff (2) forσ = a.

Proof The assertion holds forσ ∈ {g, i}, since each AF
possesses a unique grounded, respectively ideal, extension.
Also, it is clear that (1) implies (2), and (1) implies (3),
for any of the considered semantics. We now show (2)
implies (1) forσ ∈ {s, a, p, c, ss}, and (3) implies (1) for
σ ∈ {s, p, c, ss}.

For the caseA(F ) 6= A(G) we can use similar arguments
as in previous proofs. In what follows, let us thus assume
A(F ) = A(G). Moreover, letθ ∈ {s, a} andF 6≡θ

s G, i.e.
there exists an AFH , such thatθ(F ∪ H) 6= θ(G ∪ H).
Wlog. letS ∈ θ(F ∪H) \ θ(G ∪H). Observe thatS 6= ∅
holds: for θ = a, this is obvious; forθ = s, this would
yield thatF ∪ H is the empty AF, i.e.A(F ∪ H) = ∅.
But by the assumptionA(F ) = A(G), we getA(F ∪H) =
A(G∪H), and thusG∪H had to be the empty AF, as well;
a contradiction to our assumptionF 6≡s

s G.
Consider now the following AFK
(

A(F∪H)∪S′,
⋃

a∈S

{(a, a′), (a′, a′), (a′, b) | b ∈ S\{a}}

∪ {(b, b) | b ∈ A(F ∪H) \ S}
)

whereS′ = {a′ | a ∈ S} is a set of disjoint fresh arguments.
LetF † = F ∪H ∪K andG† = G ∪H ∪K.

For the caseθ = s, i.e. where we hadS andH such
that S ∈ s(F ∪ H) \ s(G ∪ H), one can now show
s(F †) = {S} ands(G†) = ∅. We obtaincred s(F †) = S 6=
∅ = cred

s(G†). F 6≡s
s;cred G follows by definition (since

F † = F ∪ (H ∪K) andG† = G ∪ (H ∪K)). This shows
that (2) implies (1) for stable semantics. Moreover, we have
skept

s(F †) = S 6= A(G†) = skept
s(G†) sinceS ⊂ A(G†)

4Another reasonable definition for this case would be
skept s(F ) = ∅.



holds by definition ofK, which contains at least one fresh
argumenta′ /∈ S. Thus, we also haveF 6≡s

s;skept G. This
shows that (3) implies (1) for stable semantics.

In the caseθ = a, we havea(F †) = {S, ∅} anda(G†) =
{∅}. Therefore, we also havep(F †) = ss(F †) = {S} and
S ∈ c(F †), while p(G†) = ss(G†) = c(G†) = {∅}. Thus,
for σ′ ∈ {a, p, c, ss}, we havecredσ′

(F †) = S 6= ∅ =

cred
σ′

(G†), and thusF 6≡σ′

s;cred G. This shows that (2)
implies (1) for those semantics; in fact, since we assumed
F 6≡a

s G, we had implicitly assumed alsoF 6≡p
s G and

F 6≡ss
s G (by Theorem 2) as well asF 6≡c

s G (by rela-
tion (2) in Theorem 5). Moreover, we haveskept ss(F †) =
skept

p(F †) = S 6= ∅ = skept
p(G†) = skept

ss(G†), and
thusF 6≡σ′′

s;skept G, forσ′′ ∈ {p, ss} showing that (3) implies
(1) for those two semantics. It remains to showF 6≡c

s;skept

G. For the moment, our construction does not guarantee
∅ /∈ c(F †) and thusskept c(F †) = skept

c(G†) still might
hold. Consider a further AFL = (S ∪ {c, d}, {(c, d)} ∪
{(d, s) | s ∈ S}). Then, a(G† ∪ L) = {∅, {c}}, and
sincec is not attacked,c(G† ∪ L) = {{c}}. On the other
hand,c(F † ∪ L) = {S ∪ {c}}, sincec defends all elements
from S andS remains admissible inF † ∪ L. We obtain
skept

c(F † ∪ L) = S ∪ {c} 6= {c} = skept
c(G† ∪ L). �

Local Equivalence
So far, we have considered an arbitrarycontextfor equiv-
alence, i.e. we put no restriction on the AFsH which are
considered to be conjoined with the AFsF andG under
comparison. Now we weaken this requirement by consider-
ing only AFsH which do not introduce any new arguments.
We call the resulting equivalence notion local equivalence.

Definition 8 Two AFsF andG are calledlocally (strong)
equivalentto each other wrt. a semanticsσ, in symbols
F ≡σ

l G, iff for eachH with A(H) ⊆ A(F ) ∪ A(G),
σ(F ∪H) = σ(G ∪H).

For some semantics, strong and local equivalence coincide.

Theorem 8 For any AFsF,G: F ≡σ
l G iff F ≡σ

s G for
σ ∈ {a, p, i, ss}.

Proof If F ≡σ
s G, thenF ≡σ

l G. Assume thatF 6≡σ
s G.

Then, there is an AFH such thatσ(F ∪H) 6= σ(G ∪H).
By inspecting the proof of Theorem 2 we notice that we can
always findH such thatA(H) ⊆ A(F ) ∪ A(G) holds, and
thereforeF 6≡σ

l G, for σ ∈ {a, p, i, ss}. �

For the other semantics, we observe certain differences.
We start with the case of stable semantics in which strong
and local equivalence almost coincide. The following exam-
ple illustrates the case in which two AFs are locally equiva-
lent, but not strongly equivalent wrt. stable semantics.

Example 11 ConsiderF = ({a, b}, {(b, b), (b, a)}) and
G = ({b}, {(b, b)}). Here, s(F ) = s(G) = ∅, but from
A(F ) 6= A(G), we haveF sκ 6= Gsκ, i.e.,F 6≡s

s G. On the
other hand, we observe that allH such thatA(H) ⊆ {a, b}
yield s(F ∪H) = s(G ∪H). F ≡s

l G follows.

Theorem 9 For any AFsF,G: F ≡s
l G iff F ≡s

s G or
boths(F ) = s(G) = ∅ and there isa ∈ (A(F ) \ A(G)) ∪

(A(G) \ A(F )) such that(a, a) /∈ F ∪ G and for all b ∈
(A(F ) ∪A(G)) \ {a}, (a, b) /∈ F ∪G and(b, b) ∈ F ∩G.

Proof By definition F ≡s
s G implies F ≡s

l G for all
AFsF andG. Let us assumes(F ) = s(G) = ∅ and there is
a ∈ (A(F )\A(G))∪(A(G)\A(F )) such that(a, a) /∈ F∪G
and for allb ∈ (A(F )∪A(G))\ {a} it holds(a, b) /∈ F ∪G
and(b, b) ∈ F ∩ G. Wlog. let a ∈ A(F ) \ A(G). Thus
A(F ) = A(G)∪{a}. Consider an arbitrary AFH such that
A(H) ⊆ A(F ). Since(b, b) ∈ F ∩G for all b ∈ A(G) and
H can only involve arguments fromA(F ), the only possible
conflict-free sets forF ∪H andG ∪H are∅ and{a}.

If there is b ∈ A(G) not defeated by{a} in H , thenb
is not defeated by{a} in neitherF ∪ H norG ∪ H , and
s(F ∪ H) = s(G ∪ H) = ∅. On the other hand, if each
b ∈ A(G) is defeated by{a} in H , then eachb ∈ A(G) is
defeated by{a} in bothF ∪H andG∪H , ands(F ∪H) =
s(G ∪H) = {{a}} follows.

For the other direction, assume firstA(F ) = A(G) and
F 6≡s

s G. Wlog. let (a, b) ∈ F sκ \ Gsκ. We notice that
for H = (A(F ), {(a, c) | c ∈ A(F ) \ {a, b}}) used in the
proof of Theorem 1 it holdsA(H) ⊆ A(F ) ands(F ∪H) 6=
s(G ∪H).

Assume thenA(F ) 6= A(G) Wlog. leta ∈ A(F )\A(G).
If s(F ) 6= s(G), thenF 6≡s

l G follows by definition. Thus,
we can assumes(F ) = s(G). Consider first the cases(F ) 6=
∅. Sincea /∈ A(G), a 6∈ S′ for eachS′ ∈ s(G) = s(F ).
Similarly to the proof of Theorem 1, we takeH = ({a}, ∅)
and notices(F ∪H) 6= s(G ∪H).

Thus, let us assumes(F ) = s(G) = ∅. We denoteB =
(A(F ) ∪A(G)) \ {a}. If (a, a) ∈ F , we consider

H = (B ∪ {a}, {(a, b) | b ∈ B}).

Now {a} ∈ s(G ∪H) while {a} 6∈ s(F ∪H). If (a, a) 6∈ F
and there isb ∈ B such(b, b) 6∈ F or (b, b) 6∈ G, let

H = (B, {(b, c) | c ∈ B \ {b}}).

If (b, b) 6∈ R(F ), then{a, b} ∈ s(F ∪ H) while {a, b} 6∈
s(G ∪H). If (b, b) ∈ R(F ) and(b, b) 6∈ R(G), then{b} ∈
s(G ∪H) while {b} 6∈ s(F ∪H). Finally, if (a, a) 6∈ F and
(b, b) ∈ F ∩G for eachb ∈ (A(F ) ∪A(G)) \ {a}. Assume
there isb ∈ B such that(a, b) ∈ F . We take

H = (A(F ) ∪A(G), {(a, c) | c ∈ (A(F ) ∪A(G)) \ {b}}).

Now, {a} ∈ s(F ∪H) and{a} 6∈ s(G ∪H) (sinceb is not
defeated by{a} in G ∪H).

Thus in each case we have found an AFH such that
A(H) ⊆ A(F ) ∪ A(G) and s(F ∪ H) 6= s(G ∪ H) and
F 6≡s

l G follows. �

We proceed with the complete semantics. Our first obser-
vation hereby is: for any AFsF andG (i) F ≡c

l G implies
F ≡p

s G; and (ii) F ≡c
s G impliesF ≡c

l G. While (ii)
is clear from definition, (i) follows from Proposition 1 and
Theorem 8. Moreover, both implications can be shown to be
strict.

Example 12 Let F = ({a, b}, {(a, a), (a, b), (b, a)}) and
G = ({a, b}, {(a, a), (b, a)}). We haveF aκ = Gaκ and
thus, by Theorems 2 and 8,F ≡p

l G. On the other hand,
c(F ) = {∅, {b}} 6= {{b}} = c(G), and hence,F 6≡c

l G.



For the other implication, letA = {a, b, c} and
R = {(a, a), {(a, a), (b, a), (b, c), (c, b), (c, c)}, and con-
sider AFsF = (A,R ∪ {(a, b)}) andG = (A,R). We
haveF cκ 6= Gcκ and thus, by Theorem 4,F 6≡c

s G. On
the other hand,F ≡c

l G can be verified as follows. First,
we havec(F ) = {{b}} = c(G). Since we are interested in
local strong equivalence, there are only two attacks,(b, b)
and(a, b), we can properly add via an AFH with A(H) ⊆
A(F ) ∪A(G). If (b, b) ∈ H , c(F ∪H) = {∅} = c(G ∪H)
is clear. If (a, b) ∈ H , F ∪H = G ∪H . In both cases, we
havec(F ∪H) = c(G ∪H) andF ≡c

l G follows.

These observations suggest that we require a kernel which
lies inbetween the notions ofa-kernel andc-kernel.

Definition 9 For an AFF = (A,R), we define thec-local-
kernelof F asF clκ = (A,Rclκ) where

Rclκ = R \
{

(a, b) | a 6= b, (a, a) ∈ R,
(

(b, b) ∈ R or

(b, a), (c, b) ∈ R for somec 6= a
)}

.

We observe thatF aκ ⊆ F clκ ⊆ F cκ holds for any AFF ,
and provide a few lemmata along the lines as we did for
other kernels.

Lemma 13 For any AFF , c(F ) = c(F clκ).

Lemma 14 If F clκ = Gclκ, then(F ∪H)clκ = (G∪H)clκ

for all AFsH withA(H) ⊆ A(F ) ∪A(G).

As it was the case for local equivalence wrt. stable seman-
tics, there is also a certain pattern of frameworks here, which
has to be taken into account additionally.

Example 13 LetA = {a, b, c} and consider AFs

F = (A, {(a, a), (a, b), (b, a), (b, c), (c, c)}) and

G = (A, {(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)}).

First, we note thatF clκ 6= Gclκ and c(F ) = c(G) =
{∅, {b}}. LetH be arbitrary AF such thatA(H) ⊆ {a, b, c}.
Sinceb is the only self-loop free argument, and it is at-
tacked by at least one argument in bothF and G,
c(F ∪ H) = c(G ∪ H) is either {∅, {b}} or {∅} and
F ≡c

l G follows.

Definition 10 An AFF is calledb-saturated iff there exists
an argumentb ∈ A(F ) such that(b, b) /∈ F , (a, b) ∈ F
for somea 6= b, and for eacha ∈ A(F ) \ (ΓF (∅) ∪ {b}),
(a, a) ∈ F and(b, a), (d, a) ∈ F for all d ∈ ΓF (∅) when-
ever(a, b) ∈ F .

Now we are ready to state the characterization theorem
for the complete semantics.

Theorem 10 For any AFsF,G: F ≡c
l G iff eitherF clκ =

Gclκ or F andG are bothb-saturated withA(F ) = A(G),
ΓF (∅) = ΓG(∅), and(d, a) ∈ F iff (d, a) ∈ G holds, for
eacha ∈ A(F ) andd ∈ {b} ∪ ΓF (∅).

Finally, we consider the grounded semantics. As with sta-
ble and complete semantics, local equivalence wrt. grounded
semantics is close to strong equivalence, but in addition
there are certain frameworks which have to be taken into
account. For instance, consider AFsF andG such that
A(F ) = A(G) andg(F ) = g(G) = ∅. Now, g(F ∪H) =

g(G ∪ H) = ∅ always holds for any AFH such that
A(H) ⊆ A(F ) and thusF ≡g

l follows.
We start with additional notation. Given an argument

a and an AFF , F ∗
a is the framework resulting fromF

by deleting argumenta, all arguments attacked bya and
by deleting all attacks adjacent to some of the deleted ar-
guments. Note that, in particular, ifΓF (∅) = S, then
g(F ) = S ∪ g(

⋂

a∈S F
∗
a ). Also note that arguments de-

fended bya in F are unattacked inF ∗
a .

Example 14 Consider AFs

F = ({a, b, c, d}, {(a, b), (b, c), (c, d), (d, c)}) and

G = ({a, b, c, d}, {(a, b), (c, d), (d, c)}).

Now, F gκ = F 6= G = Ggκ and thusF 6≡g
s G. We

notice thatΓF (∅) = ΓG(∅) = {a} and F ∗
a = G∗

a =
({c, d}, {(c, d), (d, c)}). One can now check that given any
AF H such thatA(H) ⊆ A(F ), g(F ∪ H) = g(G ∪ H)
holds, and thusF ≡g

l G holds.

There are also other special cases, which we call patho-
logical based on their structure containing self-loops forall
arguments (except potentially one).

Definition 11 An AFF is self-loop pathologicalif (a, a) ∈
F for all a ∈ A(F ), and b-pathologicalif b ∈ A(F ) is
unattacked inF and(a, a) ∈ F for all a 6= b.

Finally, we are ready to state the characterization theorem
for local equivalence wrt. grounded semantics. In additionto
strongly equivalent AFs, we have to take into account frame-
works similar to those in Example 14 and the pathological
cases.

Theorem 11 For AFsF,G: F ≡g

l G iff

• F ≡g
s G; or

• jointly A(F ) = A(G), ΓF (∅) = ΓG(∅) = S, and
– in caseS 6= ∅: (F ∗

a )cκ = (G∗
a)cκ for all a ∈ S; or

– in caseS = {a}: bothF ∗
a andG∗

a are self-loop patho-
logical, orA(F ∗

a ) = A(G∗
a) and bothF ∗

a andG∗
a are

b-pathological for someb.

Summary of Results for Local Equivalence
In the following we give a summary of our results for local
equivalence.

Theorem 12 The following relations holds for all AFsF ,
G, andσ ∈ {a, p, i, ss},

(1) F ≡σ
l G =⇒ F ≡s

l G

(2) F ≡c
l G =⇒ (F ≡σ

l G andF ≡g

l G)

Proof First, assumeF ≡σ
l G. ThenF ≡σ

s G by The-
orem 8, andF ≡s

s G by Theorem 5. ThusF ≡s
l G

follows. Secondly, assumeF ≡c
l G. Consider an ar-

bitrary AF H such thatA(H) ⊆ A(F ) ∪ A(G). Since
F ≡c

l G, we havec(F ∪ H) = c(G ∪ H). By Proposi-
tion 1, g(F ∪ H) = g(G ∪ H) and sinceH was arbitrary,
F ≡g

l G follows. Also,p(F ∪H) = p(G ∪H) by Proposi-
tion 1, andF ≡p

l G follows. By Theorems 8 and 2,F ≡σ
l G

for σ ∈ {a, p, i, ss} follows. �

We sketch next that none of the other relations hold.



Example 15 Recall AFsF ,G,H , andI from Example 10:

F : a b G : a b

H : a b I : a b

By recalling thatF ≡σ
s G andF ≡s

s G, and noticing that
A(F ) = A(G), we getF ≡σ

l G andF ≡s
l G. On the other

hand,F 6≡g

l G sinceg(F ) = {∅} 6= {{b}} = g(G). Since
all arguments inF andH are attacked,g(F ) = g(H) =
{∅} andF ≡g

l H follows. However,F 6≡c
l H sincec(F ) 6=

c(H), F 6≡σ
l H sinceF 6≡σ

s H , andF 6≡s
l H sinceF 6≡s

s

H andA(F ) = A(H). Finally H ≡s
l I sinceH ≡s

s I
andA(H) = A(I), whereasH 6≡σ

l I sinceH 6≡σ
s I. The

observationH 6≡c
l I follows by Theorem 12.

Similarly to strong equivalence, self-loops are in a cru-
cial role with local equivalence. In fact, for self-loop free
AFs, the concept of local equivalence collapses to syntactic
equivalence for all but grounded semantics (see Example 14
for AFsF andG such thatF 6= G andF ≡g

l G).

Theorem 13 For any self-loop free AFsF andG, F = G
iff F ≡σ

l G for σ ∈ {s, a, p, c, i, ss}.

Discussion
We studied strong equivalence in the context of abstract
argumentation and provided characterizations how to de-
cide strong equivalence with respect to the most impor-
tant semantics for argumentation frameworks. In particu-
lar, we showed that strong equivalence wrt. admissible, pre-
ferred, ideal, and respectively, semi-stable semantics coin-
cides, while stable, grounded, and complete semantics yield
different notions of strong equivalence. This is, however,
only true for argumentation frameworks which possess self
loops. For self-loop free frameworks we could show that
strong equivalence wrt. all considered semantics amounts
to syntactical equivalence. This strengthens the assump-
tion that abstract argumentation frameworks provide a very
“compact” KR formalism. In other words, in terms of strong
equivalence there is no room for redundancy in such (self-
loop free) frameworks.

We also considered strong equivalence when defined
over credulously and respectively skeptically accepted ar-
guments, and showed that in all but admissible semantics
these concepts reduce to the corresponding standard notion
of strong equivalence. Finally, we weakened the concept
of strong equivalence by considering only augmentation of
AFs which do not add any new arguments to the compared
frameworks.

Understanding dynamics in argumentation is essential
for revising argumentation theories (Falappa, Kern-Isberner,
and Simari 2009). Indeed, we provided here a somewhat
orthogonal access for understanding the semantics of dy-
namically evolving AFs (neither arguments nor attacks are
withdrawn). Our results indicate that dynamically equiv-
alent knowledge is very close to symbolic equivalence in
terms of AFs. In our setting, “evolving” refers to the union

of a given AF by a further AF which carries the additional
information. It is argued in (Coste-Marquis et al. 2007)
that a union of AFs does not necessarily take into account
the implicit knowledge of its parts, and thus union is not
considered as a suitable operation for merging AFs seen as
individual agents. However, strongly equivalent AFs have
the same extensions regardless of the additional knowledge
provided, and thus strong equivalence can indeed be under-
stood as a property deciding whether two AFs provide the
same implicit information.

There is further work which is related to our investiga-
tions. Rotstein et al. (2008a) add dynamics to abstract ar-
gumentation via so-called dynamic argumentation frame-
works (DAFs). Given an associated set of evidence, DAFs
are reduced to AFs in the classical sense. Evidence up-
date and erasure are used to change the instance of the
DAF. Attack refinement and abstraction (Boella, Kaci, and
van der Torre 2009a; 2009b) is viewed as an addition or
respectively removal of a single attack from the set of ar-
guments of the original AF. Cayrol, Dupin de Saint-Cyr,
and Lagasquie-Schiex (2008) carefully analyzed the situa-
tion when a new argumenta is introduced, limiting to cases
in which this argument only has a single interaction with the
original AF. In other words, given an AFF it can be com-
bined withH such thatA(H) = A(F ) ∪ {a}, a /∈ A(F ),
R(H) ∈ {{(a, b)}, {(b, a)}}. Under these assumptions, the
relationship between the set of extensions of the original AF
F and its revisionF ∪ H is then analyzed. Note, however,
that in our proofs we mostly used more involved AFsH to
show that two AFs are not strongly equivalent. Nonetheless,
there might be certain common aspects in revising AFs and
strong equivalence between AFs; this analysis is ongoing
work.

Recent work by Lonc and Truszczyński (2010) investi-
gates equivalence relations on graphs in a very general set-
ting. Their methods could provide an alternative way to de-
rive some of the results provided here, in particular Theo-
rem 6. For other results in this paper, the techniques pro-
vided in (Lonc and Truszczyński 2010) seem not to be ap-
plicable, since these techniques rely on self-loop free graphs
and deal with unrestricted extensions of graphs.

Our future goal is to obtain deeper insight to the dynam-
ics of AFs by considering further variants of equivalence ob-
tained by parameterizing the augmented AFs. A general pa-
rameterization scheme would cover the cases studied in this
work as special cases. Other interesting special cases can
be seen to arise. For instance, one could consider general-
izations of the setting as Cayrol, Dupin de Saint-Cyr, and
Lagasquie-Schiex (2008), i.e., allow the context AFH to
attackF through new arguments only, orH to contain new
arguments which can be attacked by arguments fromF only.
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In Lifschitz, V., and Niemelä, I., eds.,Proceedings of the
7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’04), volume 2923 of
Lecture Notes in Computer Science, 289–301. Springer.


