Manifold Answer-Set Programs for Meta-Reasoning*

Wolfgang Faber
University of Calabria, Italy
wf@wfaber.com

Abstract

In answer-set programming (ASP), the main focus
usually is on computing answer sets which corre-
spond to solutions to the problem represented by a
logic program. Simple reasoning over answer sets
is sometimes supported by ASP systems (usually
in the form of computing brave or cautious con-
sequences), but slightly more involved reasoning
problems require external postprocessing. Gener-
ally speaking, it is often desirable to use (a subset
of) brave or cautious consequences of a program P;
as input to another program P, in order to provide
the desired solutions to the problem to be solved.
So far, the evaluation of the program P, has to be
decoupled from the evaluation of P, using an in-
termediate step which collects the desired conse-
quences of P; and provides them as input to P». In
this work, we present a novel method for represent-
ing such a procedure within a single program, and
thus within the realm of ASP itself. Our technique
relies on rewriting P, into a so-called manifold pro-
gram, which allows for accessing all desired conse-
quences of P; within a single answer set. Then, this
manifold program can be evaluated jointly with P,
avoiding any intermediate computation step. For
determining the consequences within the manifold
program we use weak constraints, which is strongly
motivated by complexity considerations. As an ap-
plication, we present an encoding for computing
the ideal extension of an abstract argumentation
framework.

1 Introduction

In the last decade, Answer Set Programming (ASP) [Marek
and Truszczyfiski, 1999; Niemeld, 1999], also known as
A-Prolog [Baral, 2002; Gelfond, 2002], has emerged as a
declarative programming paradigm which combines tech-
niques stemming from databases, logic programming and
non-monotonic reasoning. ASP is well suited for modelling
and solving problems which involve common sense reason-
ing, and has been fruitfully applied to a wide variety of ap-

*This work was supported by the Vienna Science and Technol-
ogy Fund (WWTF) under grant ICT08-028 and by M.I.U.R. within
the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche
di ottimizzazione.”.

Stefan Woltran
Vienna University of Technology, Austria
woltran @dbai.tuwien.ac.at

plications including diagnosis, data integration, configura-
tion, and many others. Moreover, the efficiency of the latest
tools for processing ASP programs (so-called ASP solvers)
reached a state that makes them applicable for problems of
practical importance [Gebser e al., 2007].

The basic idea of ASP is to obtain solutions to a problem
as the answer sets (usually stable models) of a logic program,
which consists of rules and constraints that define necessary
and sufficient properties of the solutions. The program is then
input into an ASP solver, which computes the answer set(s)
of the program, from which the solutions of the problem can
be read.

However, frequently one is interested less in the solutions
per se, but rather in reasoning tasks that have to take some
or even all solutions into account. As an example, consider
the problem of database repair, in which a given database in-
stance does not satisfy some of the constraints imposed in
the database. One can attempt to modify the data in order to
obtain a consistent database by changing as little as possible.
This will in general yield multiple possibilities and can be en-
coded conveniently using ASP (see, e.g., [Bravo and Bertossi,
2003]). However, usually one is not interested in the repairs
themselves, but in the data which is present in all repairs. For
the ASP encoding, this means that one is interested in the ele-
ments which occur in all answer sets; these are also known as
cautious consequences. Indeed, ASP systems provide special
interfaces for computing cautious consequences by means of
query answering. But sometimes one has to do more, such as
answering a complex query over the cautious consequences
or simply counting them. So far, ASP solvers provide no sup-
port for such tasks, which therefore have to be done outside
ASP systems, which hampers usability and limits the poten-
tial of ASP.

In this work, we tackle this limitation by providing a tech-
nique, which transforms an ASP program P into a manifold
program Mp which we use to identify all consequences of
a certain type! within a single answer set. The main advan-
tage of the manifold approach is that the resulting program
can be extended by additional rules representing a query over
the brave (or cautious, definite) consequences of the original
program P, thereby using ASP itself for this additional rea-
soning. In order to identify the consequences, we use weak
constraints [Buccafurri et al., 2000], which are supported by
the ASP-solver DLV [Leone et al., 2006]. Weak constraints
have been introduced to prefer a certain subset of answer sets

"We consider here the aforementioned concepts of brave and
cautious consequence, and definite consequence [Sacca, 1996].

via penalization. Their use for computing consequences is
justified by a complexity-theoretic argument: One can show
that computing consequences is complete for the complex-

P
ity classes FPﬁIP or FP|2|2 (depending on the presence of

disjunction), for which also computing answer sets for pro-
grams with weak constraints is complete?, which means that
an equivalent compact ASP program without these extra con-
structs most likely does not exist. In principle, other prefer-
ential constructs similar to weak constraints could be used as
well for our purposes, as long as they meet these complexity
requirements.

We discuss two particular applications of the manifold ap-
proach. First, we specify an encoding which decides the SAT-
related unique minimal model problem, which is closely re-
lated to closed-world reasoning [Reiter, 1978]. The second
problem stems from the area of argumentation (cf. [Bench-
Capon and Dunne, 2007] for an overview) and concerns the
computation of the ideal extension [Dung er al., 2007] of an
argumentation framework. For both problems we make use of
manifold programs of well-known encodings (computing all
models of a CNF-formula for the former application, comput-
ing all admissible extensions of an argumentation framework
for the latter) in order to compute consequences. Extensions
by a few more rules then directly provide the desired solu-
tions, requiring little effort in total.

Organization and Main Results. After introducing the nec-
essary background in the next section, we

¢ introduce in Section 3 the concept of a manifold program
for rewriting propositional programs in such a way that
all brave (resp. cautious, definite) consequences of the
original program are collected into a single answer set;

e lift the results to the non-ground case (Section 4); and

e present applications for our technique in Section 5. In
particular, we provide an ASP encoding for computing
the ideal extension of an argumentation framework.

The paper concludes with a brief discussion of related and
further work.

2 Preliminaries

In this section, we review the basic syntax and semantics of
ASP with weak constraints, following [Leone et al., 20061, to
which we refer for a more detailed definition.

An atom is an expression p(ty, . ..,t,), where p is a predi-
cate of arity a(p) = n > 0 and each ¢; is either a variable or
a constant. A literal is either an atom a or its negation not a.
A (disjunctive) rule r is of the form

ap V -V oay = by,...,bg, not byy1,..., not by,
The first of these results is fairly easy to see, for the second,
Buccafurri e al. [2000] have shown that the related decision prob-

lem is complete for the class ©F or ©F, from which the FPﬁIP

P
and FPﬁ2 results can be obtained. Also note that frequently cited

NP, 25 , and co-NP, Hg completeness results hold for brave and
cautious query answering, respectively, but not for computing brave
and cautious consequences.

withn > 0,0m > k > 0, n+m > 0, and where
A1y 0pn,b1,..., by, are atoms.

The head of r is the set H(r) ={ay, ..
of ris B(r) = {b1,..., bk, not bgy1,...
more, BT (r) = {b1,...,b;} and B~ (r) = {bxy1,. .-
We will sometimes denote a rule as H(r) - B(r).

A weak constraint [Buccafurri er al., 2000] is an expression
wc of the form

., Gy }, and the body
, not b, }. Further-

v}

+ oy b, ot by, ..., not by, [w:]

where m > k > 0 and by,...,b,, are literals, while
weight(we) = w (the weight) and [(the level) are positive
integer constants or variables. For convenience, w and/or [
may be omitted and are set to 1 in this case. The sets B(wc),
BT (wc), and B~ (wc) are defined as for rules. We will some-
times denote a weak constraint wc as :~ B(wc).

A program P is a finite set of rules and weak constraints.
Rules(P) denotes the set of rules and WC/(P) the set of
weak constraints in P. w} and [F denote the maximum
weight and maximum level over WC'/(P), respectively. A
program (rule, atom) is propositional or ground if it does not
contain variables. A program is called strong if WC (P) = 0,
and weak otherwise.

For any program P, let Up be the set of all constants ap-
pearing in P (if no constant appears in P, an arbitrary con-
stant is added to Up); let Bp be the set of all ground literals
constructible from the predicate symbols appearing in P and
the constants of Up; and let Ground(P) be the set of rules
and weak constraints obtained by applying, to each rule and
weak constraint » € P, all possible substitutions from the
variables in P to elements of Up. Up is usually called the
Herbrand Universe of P and Bp the Herbrand Base of P.

A ground rule r is satisfied by a set I of ground atoms iff
H(r)Nn I # (0 whenever BY(r) C I and B~ (r)NI = 0.
I satisfies a ground program P, if each r € P is satis-
fied by I. For non-ground P, I satisfies P iff I satisfies
Rules(Ground(P)). A ground weak constraint wc is vio-
lated by I, iff BY(wec) C I and B~ (we) NI = B, it is
satisfied otherwise.

Following [Gelfond and Lifschitz, 19911, a set I C Bp
of atoms is an answer set for a strong program P with
WC(P) = 0 iff it is a subset-minimal set that satisfies the
reduct

Pl ={H(r)-B*(r) | INB~(r) = 0,r € Ground(P)}.

i~ bl,.

A set of atoms I C Bp is an answer set for a weak pro-
gram P with WC(P) # 0 iff I is an answer set of Rules(P)
and HEund(P)(T) is minimal among all the answer sets of
Rules(P), where the penalization function H¥ (I) for weak
constraint violation of a ground program P is defined as fol-
lows:

P
HP(I) = S5 (f(i) - Lenr o) weight(w))
fp(1) =1, and /
fp(n) = fp(n—1)-|WC(P)|-wk . +1 forn > 1.
where N7 (I) denotes the set of weak constraints of P in level
1 violated by I. For any program P, we denote the set of
its answer sets by AS(P). In this paper, we use only weak

constraints with weight and level 1, for which H&mound(P)(T)
amounts to the number of weak constraints violated in /.

A ground atom a is a brave (sometimes also called cred-
ulous or possible) consequence of a program P, denoted
P = a, if a € A holds for at least one A € AS(P). A
ground atom a is a cautious (sometimes also called skeptical
or certain) consequence of a program P, denoted P =, a, if
a € Aholds forall A € AS(P). A ground atom a is a definite
consequence [Sacca, 1996] of a program P, denoted P =4 a,
if AS(P) # () and a € A holds for all A € AS(P). The sets
of all brave, cautious, definite consequences of a program P
are denoted as BC(P), CC(P), DC(P), respectively.

3 Propositional Manifold Programs

In this section, we present a translation which essentially cre-
ates a copy of a given strong propositional program for each
of (resp. for a subset of) its atoms. Thus, we require several
copies of the alphabet used by the given program.

Definition 3.1 Given a set I of literals, a collection T of sets
of literals, and an atom a, define I* = {p® | atomp € I} U
{not p* |not p € I't andZ* = {I* | I € I}.

The actual transformation to a manifold is given in the next
definition. We copy a given program P for each atom a in a
given set S, whereby the transformation guarantees the exis-
tence of an answer set by enabling the copies conditionally.

Definition 3.2 For a strong propositional program P and a
set S C Bp, define its manifold as

Pfgr _ U Tg' U{c:—noti ; i:—notc}
repP
where
r = {H(r)*:={c} UB(r)*|a € S}

and without loss of generality Bp N B pir = 0, so all symbols
in P& are assumed to be fresh.

Example 3.3 Consider ® = {pVq:- ; r:=p ; r:—q} for
which AS(®) = {{p.r}. {a,}}, BO(®) = {p.q.r} and
CC(®) = DC(®) = {r}. When forming the manifold for
B = {p,q,r}, we obtain

PPV GPi—c ; rPi—c,p? ; rPi-c,qP
piVvagl:—c; rl:—c,p? ; r9:-c,q?
pr\/qr'.ic; TT.'*C,pT : ’I"T.'*C,qr
c:-noti ; t:-notc

tr
¢Bq> -

Note that given a strong program P and set S C Bp, the
construction of P& can be done in polynomial time (w.r.t.
the size of P). The answer sets of the transformed program
consist of all combinations (of size |S|) of answer sets of the
original program (augmented by c) plus the special answer
set {7} which we shall use to indicate inconsistency of P.

Proposition 3.4 For a strong propositional program P and
aset S C Bp, AS(PY) = AU {{i}}, where

S|

{(JAiu{e} | (Ar,..., Ag) € [T AS(P).

i=1 a€sS

A:

Note that [] denotes the Cartesian product in Proposi-
tion 3.4.

Example 3.5 For ® of Example 3.3, we obtain that
AS(®%,) consists of {i} plus

{e,pP,r?, pa, e, p" v} {e, qP rP pd e, pT e,
{e,pP 1P g% r p" v} {e, pP 1P pl,rd g7, ")
{e. @ r? gt r p" v} {e, ¢ rP, pt,rd, g7 e
{e,pP,rP,q?,r,q",r"},{c,q?,rP,q%, 9, q",r"}.

The underlined parts are used to highlight the copies of the
original answer sets {q,r} compared to the copies of the
other original answer sets {p,r}.

Using this transformation, each answer set encodes an as-
sociation of an atom with some answer set of the original pro-
gram. If an atom a is a brave consequence of the original
program, then a witnessing answer set exists, which contains
the atom a®. The idea is now to prefer those atom-answer
set associations where the answer set is a witness. We do
this by means of weak constraints and penalize each asso-
ciation where the atom is not in the associated answer set,
that is, where a® is not in the answer set of the transformed
program. Doing this for each atom means that an optimal an-
swer set will not contain a® only if there is no answer set of
the original program that contains a, so each a® contained in
an optimal answer set is a brave consequence of the original
program.

Definition 3.6 Given a strong propositional program P and
aset S C Bp, let

P = Py U{:~nota®|ac S}U{:~i}

Observe that all weak constraints are violated in the special
answer set {i}, while in the answer set {c} (which occurs if
the original program has an empty answer set) all but :~ ¢ are
violated. The following result would also hold without :~ 3
being included.

Proposition 3.7 Given a strong propositional program P
and a set S C Bp, we have, for any A € AS(PgC),
{a]a® € A} =BC(P)NS.

Example 3.8 For the program ® as given Example 3.3, @ljgc@
is given by

fI)tBT<I> U{:~notp? ; :~mnotq? ; :~notr" ; :~i}.
We obtain that AS(®Y) = {A1, Ay}, where

— P P 44 29 7 T
Al - {C7p 47, TP T }7

— P P 44 9 AT 2T
A2 - {C,p ,T,q, T, q T }7

as these two answer sets are the only ones that violate no
weak constraint. We can observe that {a | a® € A1} = {a |
a® € As} = {p,q,r} = BC(®).

Concerning cautious consequences, we first observe that if
a program is inconsistent (in the sense that it does not have
any answer set), each atom is a cautious consequence. But if
P is inconsistent, then P& will have only {i} as an answer
set, so we will need to find a suitable modification in order to

deal with this in the correct way. In fact, we can use a sim-
ilar approach as for brave consequences, but penalize those
associations where an atom is contained in its associated an-
swer set. Any optimal answer set will thus contain a® for an
atom only if a is contained in each answer set. If an answer
set containing ¢ exists, it is augmented by all atoms a®, which
also causes all weak constraints to be violated.

Definition 3.9 Given a strong propositional program P and
aset S C Bp, let

P¢ =Pl u{i~a®|ae Stu{a®-ilaec S}uU{i~i}
As for ch, the following result also holds without includ-
ing :~ 1.

Proposition 3.10 Given a strong propositional program P
and a set S C Bp, we have, for any A € AS(P§),
{a|a®* € A} =CC(P)NS.

Example 3.11 Recall program ® from Example 3.3. We have
B = PB,U{~p"
pPo=i oy qle—i ;o rTi—i gy i~

We obtain that AS(®%,) = {As, As}, where

. o,
i~

. q .
~qr

roor.

A3 = {Caqp7rpapq7rq7p , T }'a
_ T

A4 - {Caqp7rp7pquq7q , T }7

as these two answer sets are the only ones that violate only
one weak constraint, namely :~ r". We observe that {a |
a® € Az} ={a|a* € Ay} = {r} = CC(D).

We next consider the notion of definite consequences. Dif-
ferent to cautious consequences, we do not add the annotated
atoms to the answer set containing ¢. However, this answer set
should never be among the optimal ones unless it is the only
one. Therefore we inflate it by new atoms %, all of which
incur a penalty, as does ¢ itself. This guarantees that this an-
swer set will incur a higher penalty (| Bp| + 1) than any other
(< [Bp).

Definition 3.12 Given a strong propositional program P and
aset S C Bp, let
P = PEuU{i~a% i%:-i; i~i% o€ SPU i~}

Proposition 3.13 Given a strong propositional program P
and a set S C Bp, we have, for any A € AS(PgC),
{a|a® € A} =DC(P)NS.
Example 3.14 Recall program ® from Example 3.3. We have
‘I)dBC(I) = @gq) U{i~p? 5 g 5 i
iPo—ioy i%-0 0 A" —d
B N ARV A R
We obtain that AS(®%.) = {As, A4}, where as in Exam-
ple 3.11
A3 = {C’qp7,rp’pq7rq,p7“’r7’};
Ay = e, ¢ r?pt 1% q" 1"}
as these two answer sets are the only ones that violate only

one weak constraint, namely :~ r". We observe that {a |
a® € Az} ={a|a® € Ay} = {r} = DC(D).

Obviously, one can compute all brave, cautious, or defi-
nite consequences of a program by choosing S = Bp. We
also note that the programs from Definitions 3.6, 3.9 and 3.12
yield multiple answer sets. However each of these yields the
same atoms a“, so it is sufficient to compute one of these. The
programs could be extended in order to admit only one an-
swer set by suitably penalizing all atoms a’ (a # b). To avoid
interference with the weak constraints already used, these ad-
ditional weak constraints would have to pertain to a different
level.

4 Non-Ground Manifold Programs

We will now generalize the techniques introduced in Sec-
tion 3 to non-ground strong programs. In principle, one
could annotate each predicate (rather than atom as in
Section 3) with ground atoms of a subset of the Her-
brand Base. However, one can also move the annota-
tions to the non-ground level: For example, instead of
annotating a rule p(X,Y):-¢(X,Y) by a set of ground
atoms {7(a),(b)} to yield p"(®(X,Y) - ¢"(®(X,Y) and
p"®(X,Y) = ¢"®(X,Y) we will annotate using only the
predicate r and extend the arguments of p, yielding the com-
pact rule d7(X, Y, Z) .= dj(X,Y, Z) (we use predicate sym-
bols d; and dj, rather than p” and ¢" just for pointing out the
difference between annotation by predicates versus annota-
tion by ground atoms). In this particular example we have
assumed that the program is to be annotated by all ground
instances of r(Z); we will use this assumption also in the
following for simplifying the presentation. In practice, one
can clearly add atoms to the rule body for restricting the in-
stances of the predicate by which we annotate, in the example
this would yield p"(X,Y, Z) = ¢"(X,Y, Z),dom(Z) where
the predicate dom should be defined appropriately. In the
following definition, recall that «(p) denotes the arity of a
predicate p.

Definition 4.1 Given an atom a = p(ty,...,t,) and a
predicate g, let a be di(t1,... tn, X1,..., Xq()) where
Xi,..., Xa(q) are fresh variables and d is a new predicate

symbol with a(d]) = a(p) + a(q).

Furthermore, given a set L of literals, and a predicate q,
let LI be {al" | atom a € L} U {not a} | not a € L}.

Note that we assume that even though the variables
X1,..., Xqo(q are fresh, they will be the same for each af".
One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection of
defining rules, from which we refrain here for the ease of
presentation. We define the manifold program in analogy to
Definition 3.2, the only difference being the different way of
annotating.

Definition 4.2 Given a strong program P and a set S of
predicates, define its manifold as

P = U r% U{c:-noti ; i:-mnotc}
reP
where
= {H()T (S} UB()Y | g € 5}
and wl.o.g. Bp N Bpir = (.

Example 4.3 Consider

U= {p(X)Ve(X):=r(X) 5 r(a)= 5 r(b) -}
for which
AS(Y) = {{p(a),p(b),r(a),r(b)},{p(a),q(b),r(a),r(b)}
{q(a), p(b),r(a),r(b)}, {q(a), q(b), r(a),r(b)}
BC() = {p(a)p(b),CJ(a),Q() r(a),r(b)} and CC(V) =
DC (V) = {r(a),r(b)}. When forming the manifold for S =

{p}, we obtain

dB(X, X)) V dP(X, Xy) -
d?(a, X1) = dR(b, X1):-

c:—not ¢ ; 1.:-notc

—dB(X, X))
wl =

AS(VY) consists of {i} plus 16 answer sets, corresponding
to all combinations of the 4 answer sets in AS().

Now we can generalize the encodings for brave, cau-
tious, and definite consequences. These definitions are
direct extensions of Definitions 3.6, 3.9, and 3.12, the
differences are only due to the non-ground annotations.
In particular, the diagonalization atoms a® should now be
written as db(Xy,..., Xo@p), X1, .-, Xa(p)) which rep-
resent the set of ground instances of p(Xi,..., Xo0)),

each annotated by itself. So a weak constraint
i~ dB(X, e Xy X1y, Xa(p)) gives rise to
{i~ db(c1y - Cap)s Cls- s Ca(p)) | ClyivvvsCap) € U}

where U is the Herbrand base of the program in question, that
is one weak constraint for each ground instance annotated by
itself.

Definition 4.4 Given a strong program P and a set S of

predicate symbols, let

P¥ = PYuU{i~mnotA,|qeStu{i~i}

PE = PYU{i~Ay; Ayi-i|ge STu{i~i}

Pl = PruU{~Ay I—i; i~ | g€ SYU{i~i}
where Ay = dd(X1,..., Xa(g) X1, -+, Xa(g)) and 1, =
iq(X1,. .., Xa(q)-

Proposition 4.5 Given a strong program P and a set S of

predicates, for an arbitrary A € AS(PY), (resp., A €
AS(P§), A € AS(Pge)), the set

{p(cl, . ,Ca(p)) | dg(cl, <3 Ca(p)y Cly - .,Ca(p)) S A}

is the set of brave (resp., cautious, definite) consequences of

P with a predicate in S.

Example 4.6 Consider again V and S = {p} from Exam-
ple 4.3. We obtain

Uy = U U{i~notdb(X1,Xy) 3 i~}
and we can check that
AS(TY) =

{RU{dl(a,a),dp(b,b),dl(a,b),d](b,a)},
RuU{db(a,a),db(b,b),dP(a,b),db (b, a)},
RU{dl(a,a),db(b,b),d"(a,b),db(b,a)},
RU {d2(a,a), d2(b,), (b, 0), d2(b, a)}}

}

where R = {d®(a,a),d?(a,b),d2(b,a),
A of these answer sets we obtain

{p(t) | d5(t,t) € A} = {p(a),p(b)}

which corresponds exactly to the brave consequences of W
with a predicate of S = {p}.
For cautious consequences,

\I/gvc = \I’?U{N dg(leXl) 3
dP(X1, X1) =i 5

d2(b,b)}. For each

and we can check that

AS(VE) = {RU{d}(a,a),d}(b,b),d}(a,b),d}(b,a)},
Ru{d¥(a,a),d?(b,b),dP(a,b),d?(b,a)},
RU {dg’(a,a),dé’(b, b),dfl’(a, b),dg(b, a)},
RU {dg(a7 a),db(b,b),db(b,a),db(b, a)}}

where R = {dP(a,a),dP(a,b),dE(b,a),
A of these answer sets we obtain

{p(t) [dj(t,t) € A} =0

and indeed there are no cautious consequences of V with a
predicate of S = {p}.
Finally, for definite consequences,

\I/%c = \I/tSTU{N dg(Xla—Xl) ; Zp(Xl)_Z 5
i~ (X)) 5 i~
It is easy to see that AS(VE) = AS(VE) and so
{p(t) [d}(t,t) € A} =10

for each answer set A of Ve, and indeed there is also no
definite consequence of U with a predicate of S = {p}.

d2(b,b)}. For each

These definitions exploit the fact that the semantics of non-
ground programs is defined via their grounding with respect
to their Herbrand Universe. So the fresh variables introduced
in the manifold will give rise to one copy of a rule for each
ground atom in question.

In practice, ASP systems usually require rules to be safe,
that is, that each variable occurs (also) in the positive body.
The manifold for a set of predicates may therefore contain un-
safe rules (because of the fresh variables). But this can be re-
paired by adding a domain atom domy(X, ..., X,,) toarule
which is to be annotated with ¢g. This predicate can in turn be
defined by a rule domy(X1,..., Xnm) —u(X1),...,u(Xy)
where u is defined using {u(c) | ¢ € Up}. One can also pro-
vide smarter definitions for dom, by using a relaxation of the
definition for q.

We also observe that ground atoms that are contained in
all answer sets of a program need not be annotated in the
manifold. Note that these are essentially the cautious conse-
quences of a program and therefore determining all of those
before rewriting does not make sense. But for some atoms
this property can be determined only by the structure of the
program. For instance, facts will be in all answer sets. In the
sequel we will not annotate extensional atoms (those defined

only by facts) in order to obtain more concise programs. One
could also go further and omit the annotation of atoms which
are defined using stratified programs.

As an example, we present an ASP encoding for boolean
satisfiability and then create its manifold program for resolv-
ing the following problem: Given a propositional formula in
CNF ¢, compute all atoms which are true in all models of ¢.
We provide a fixed program which takes a representation of ¢
as facts as input. To apply our method we first require a pro-
gram whose answer sets are in a one-to-one correspondence
to the models of . To start with, we fix the representation of
CNFs. Let ¢ (over atoms A) be of the form A, ¢;. Then,

D, = {at(a)|acA}u{cl(®) |1 <i<n}U
{pos(a, i) | atom a occurs positively in ¢; } U
{neg(a,?) | atom a occurs negatively in ¢; }.

We construct program SAT as set of the following rules

true(X) = not false(X),at(X)
false(X) := not true(X), at(X)
ok(C) = true(X), pos(C, X)
ok(C) = false(X), neg(C, X)

= not ok(C), cl(C).

It can be checked that the answer sets of SAT U Dy, are in a
one-to-one correspondence to the models (over A) of ¢. In
particular, for any model I C A of ¢ there exists an answer
set M of SAT U D, such that I = {a | true(a) € M}.
We now consider SATY{j,,.} which consists of the following
rules.

c - nots

1 -~ notc
dirue(X,Y) = ¢,not d}g}fe(X, Y), at(X)
d}%ee(X, Y) = ¢,not d7U¢(X,Y), at(X)
dgne(C,Y) = ¢, difie (X, Y), pos(C, X)
dé@“e(C’, Y) - ¢, d};ﬁee(X, Y),neg(C, X)

= ¢,not d¢(C,Y), cl(C)
~ dtrue (X, X)

true

dtrue (X, X) i

true

i~

Given Proposition 4.5, it is easy to see that, given some
answer set A of SAT(},,., U Dy, {a | dijiit(a,a) € A} is

true
precisely the set of atoms which are true in all models of .

S Applications

In this section, we put our technique to work and show how
to use meta-reasoning over answer sets for two application
scenarios. The first one is a well-known problem from propo-
sitional logic, and we will reuse the example from above. The
second example takes a bit more background, but presents a
novel method to compute ideal extensions for argumentation
frameworks.

5.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of de-
ciding whether a given propositional formula ¢ has a unique
minimal model. This problem is known to be in ©" and to be
co-NP-hard (the exact complexity is an open problem). The
following relation is quite obvious. Let I be the intersection
of all models of (. Then ¢ has a unique minimal model iff 1
is also a model of . We thus use our example from the pre-
vious section, and define UNIQUE as SAT(j,,.; augmented
by the following rules:
ok(C) = dirie (X, X), pos(C, X)

true

0k(C') = not A% (X, X),neg(C, X)

true

= not 0k(C), cl(C)
We immediately obtain the following result

Theorem 5.1 For any CNF formula o, it holds that ¢ has a
unique minimal model, if and only if program UNIQUEUD,,
has at least one answer set.

A slight adaption of this encoding allows us to formalize
CWA-reasoning [Reiter, 1978] over a propositional knowl-
edge base ¢, since the atoms a in ¢, for which the corre-
sponding atoms d!"“¢(a, a) are not contained in an answer

set of SATY,,.y U Dy, are exactly those which are added
negated to ¢ for CWA-reasoning.

5.2 Computing the Ideal Extension

Our second example is from the area of argumentation, where
the problem of computing the ideal extension [Dung erf al.,
2007] of an abstract argumentation framework was recently
shown to be complete for F‘PﬂIP by Dunne [2008]. Thus,
this task cannot be compactly encoded via normal programs
(under usual complexity theoretic assumptions). On the other
hand, the complexity shows that employing disjunction is not
necessary, if one instead uses weak constraints.

We first give the basic definitions for argumentation frame-
works following Dung [1995].

Definition 5.2 An argumentation framework (AF) is a pair
F = (A,R) where A C U is a set of arguments and R C
A x A. (a,b) € R means that a attacks b. An argument
a € Aisdefended by S C A (in F) if, for each b € A such
that (b,a) € R, there exists a ¢ € S, such that (c,b) € R.
An argument a is admissible (in F') w.rt. a set S C A if each
b € A which attacks a is defended by S.

Semantics for argumentation frameworks are given in
terms of so-called extensions. The next definitions introduces
two such notions which also underly the concept of an ideal
extension.

Definition 5.3 Let F = (A, R) be an AF. A set S C A is
said to be conflict-free (in F'), if there are no a,b € S, such
that (a,b) € R. A set S is an admissible extension of F, if
S is conflict-free in F and each a € S is admissible in F
w.r.t. S. The collection of admissible extensions is denoted by
adm(F). An admissible extension S of F is a preferred ex-
tension of F, if for each T € adm(F'), S ¢ T. The collection
of preferred extensions of F is denoted by pref (F).

The original definition of ideal extensions is as fol-
lows [Dung et al., 2007].
Definition 5.4 Let F be an AF. A set S is called ideal for F,
ifS € adm(F) and S C (\peprepry I+ A maximal (w.rt.
set-inclusion) ideal set of F' is called an ideal extension of F'.
It was shown that for each AF F', a unique ideal exten-
sion exists. Dunne [2008] gave the following algorithm to
compute the ideal extension of an AF F' = (A, R). Let
XE == A \ USEadm(F)S and X; = {CL S A | Vb,C .
(b,a),(a,c) € R=b,c € X} \ Xz, and define an AF
F* = (X} UXj,R"), where
R* = Rn{(a,b),(ba)|ac X} be Xz}
F* is a bipartite AF in the sense that R* is a bipartite graph.

Proposition 5.5 The ideal extension of an AF F' is given by
USGadm(F*)(S n X;)

The set of all admissible atoms for a bipartite AF F' can be
computed in polynomial time using Algorithm 1 of [Dunne,
2007]. This is basically a fixpoint iteration identifying argu-
ments in X ;5 that cannot be in an admissible extension: First,
arguments in Xg = X ;f are excluded, which are attacked by
unattacked arguments (which are necessarily in X), yield-
ing X;. Now, arguments in X may be unattacked by X,
and all arguments in X attacked by such newly unattacked
arguments should be excluded. This process is iterated until
either no arguments are left or no more argument can be ex-
cluded. There may be at most | X /- | iterations in this process.

We exploit this technique to formulate an ASP-encoding
IDEAL. We first report a program the answer sets of which
characterize admissible extensions. Then, we use the brave
manifold of this program in order to determine all arguments
contained in some admissible extension. Finally, we extend
this manifold program in order to identify F'* and to simulate
Algorithm 1 of [Dunne, 2007].

The argumentation frameworks will be given to IDEAL as
sets of input facts. Given an AF F' = (A, R), let

Dp = {a(z) |z € A} U{r(z,y) | (z,y) € R}.

Program ADM, given by the rules below, computes admis-
sible extensions (cf. [Osorio et al., 2005; Egly et al., 2008]):

in(X) := not out(X), a(X)
out(X) - not in(X), a(X)
in(X),in(Y),r(X,Y)
in(Y), (¥, X)
= in(X), (Y, X),not def(Y)

Indeed one can show that, given an AF F' the answer sets
of ADM U Dp are in a one-to-one correspondence to the ad-
missible extensions of F' via the in(-) predicate. In order
to determine the brave consequences of ADM for predicate
in, we form ADMY¢ {in}> and extend it by collecting all brave
consequences of ADM U Dp (for a given AF F' = (A, R))
in predicate in(-), from which we can determine X . (repre-
sented by in™ (+)), X (represented by in™ (-), using auxiliary
predicate not_in™ (-)), and R* (represented by q(-, -)).

def(X)

in(X) - din(X, X)
in™(X) - a(X),not in(X)
not_in™(X) - in(Y),r(X,Y)
not_in™(X) - in(Y), (Y, X)
in*(X) - in(X), not not_in™ (X)
a(X,Y) = 1(X,Y),in*(X),in" (V)
a(X,Y) = 1(X,Y),in" (X),in"(Y)

In order to simulate Algorithm 1 of [Dunne, 20071, we use
the elements in X}r for marking the iteration steps. To this
end, we use an arbitrary order < on ASP constants (all ASP
systems provide such a predefined order) and define succes-
sor, infimum and supremum among the constants represent-
ing X+ w.r.t. the order <.

nsucc(X,7) - in™(X),in"(Y),in"(2), X<Y,Y<Z
suce(X,Y) == in™(X),in(Y), X<V, not nsucc(X,Y)
ninf(Y) :— inT(X),in"(YV), X<Y
inf(X) - in*(X), not ninf(X)
nsup(X) - in*(X),in"T(YV), X<Y
sup(X) - in™(X), not nsup(X)

We now use this to iteratively determine arguments that are
not in the ideal extension, using nideal(-, -), where the first ar-
gument is the iteration step. In the first iteration (identified by
the infimum) all arguments in lef which are attacked by an
unattacked argument are collected. In subsequent iterations,
all arguments from the previous steps are included and aug-
mented by arguments that are attacked by an argument not at-
tacked by arguments in X ; that were not yet excluded in the
previous iteration. Finally, arguments in the ideal extension
are those that are not excluded from X ;: in the final iteration
(identified by the supremum).

atto(X) - q(V,X)
nideal(1,Y) = inf(I),q(Z,Y),in" (Y, not atty(2)
nideal(1,Y") = succ(J, I),nldeal(J Y)
nideal(1,Y) = succ(J,I),q(Z,Y),in*(Y), not att;(J,Z)
att;(J,Z) = q(Y,Z),in"(Y), not nideal(J,Y),in™ (.J)
ideal(X) =~ in(X),sup(I), not nideal(I,X)

—_ — — —

If we put ADM?‘-fn} and all of these additional rules to-

gether to form the program IDEAL, we obtain the following
result:

Theorem 5.6 Let F' be an AF and A € AS(IDEAL U Dp).
Then, the ideal extension of F is given by {a | ideal(a) € A}.

6 Conclusion

In this paper, we provided a novel method to rewrite ASP-
programs in such a way that reasoning over all answer sets of
the original program can be formulated within the same pro-
gram. Our method exploits the well-known concept of weak
constraints. We illustrated the impact of our method by en-
coding the problems of (i) deciding whether a propositional

formula in CNF has a unique minimal model, and (ii) com-
puting the ideal extension of an argumentation framework.
Known complexity results witness that our encodings are ad-
equate in the sense that efficient ASP encodings without weak
constraints or similar constructs are assumed to be infeasible.

The manifold program for cautious consequences is also
closely related to the concept of data disjunctions [Eiter and
Veith, 2002] (this paper also contains a detailed discussion
about the complexity class ©f" and related classes for func-
tional problems). Related work has also been done in the
area of default logic, where Delgrande and Schaub [2002]
proposed a method for reasoning within a single extension.
Their method uses set-variables which characterize the set of
generating defaults of the original extensions. Thus, their ap-
proach differs considerably from ours as it encodes certain
aspects of the semantics (which ours does not), which puts it
closer to meta-programming (cf. [Eiter et al., 2003]).

Future work includes studying how alternative preferen-
tial constructs can be used in place of weak constraints for
obtaining manifold programs. Another issue is to general-
ize the presented methodology in such a way that different
manifold programs are combined within a single program.
Note that this would amount to an ASP programming lan-
guage which allows to call several oracles (which compute
brave/skeptical/definite consequences of different modules)
either in parallel or one after each other. We believe that (be-
sides a more careful renaming technique) such a generaliza-
tion is, in principle, rather straightforward. The main issue is
to devise a suitable extension of ASP syntax for denoting the
interfaces among different manifold programs in an intuitive
and succinct manner. A frontend would then compile such a
specification into a standard program with weak constraints.
Using such an advanced framework, we would like to employ
manifold programs for encoding various further problems in

P
complexity classes @5, er, FPﬂIP, and FPﬁ2 .

References

[Baral, 2002] C. Baral. Knowledge Representation, Reason-
ing and Declarative Problem Solving. Cambridge Univer-
sity Press, 2002.

[Bench-Capon and Dunne, 2007] T. J. M. Bench-Capon and
P. E. Dunne. Argumentation in artificial intelligence. Artif.
Intell., 171(10-15):619-641, 2007.

[Bravo and Bertossi, 2003] L. Bravo and L. E. Bertossi.
Logic programs for consistently querying data integration
systems. In Proc. IJCAI’03, pages 10-15. Morgan Kauf-
mann, 2003.

[Buccafurri et al., 2000] F. Buccafurri, N. Leone, and P.
Rullo. Enhancing disjunctive datalog by constraints. /EEE
Trans. Knowl. Data Eng., 12(5):845-860, 2000.

[Delgrande and Schaub, 2002] J. P. Delgrande and T.
Schaub. Reasoning credulously and skeptically within
a single extension. Journal of Applied Non-Classical
Logics, 12(2):259-285, 2002.

[Dung et al., 2007] P. M. Dung, P. Mancarella, and F. Toni.

Computing ideal sceptical argumentation. Artif. Intell.,
171(10-15):642-674, 2007.

[Dung, 1995] P. M. Dung. On the acceptability of argu-
ments and its fundamental role in nonmonotonic reason-

ing, logic programming and n-person games. Artif. Intell.,
77(2):321-358, 1995.

[Dunne, 2007] P. E. Dunne. Computational properties of ar-
gument systems satisfying graph-theoretic constraints. Ar-
tif. Intell., 171(10-15):701-729, 2007.

[Dunne, 2008] P. E. Dunne. The computational complexity
of ideal semantics I: Abstract argumentation frameworks.
In Proc. COMMA’08, pages 147-158. 10S Press, 2008.

[Egly et al., 2008] U. Egly, S. Gaggl, and S. Woltran.
Answer-set programming encodings for argumentation
frameworks. In Proc. ASPOCP’08, 2008.

[Eiter and Veith, 2002] T. Eiter and H. Veith. On the
complexity of data disjunctions. Theor. Comput. Sci.,
288(1):101-128, 2002.

[Eiter et al., 2003] T. Eiter, W. Faber, N. Leone, and G.
Pfeifer. ~ Computing preferred answer sets by meta-
interpretation in answer set programming. TPLP, 3(4-
5):463-498, 2003.

[Gebser et al., 20071 M. Gebser, L. Liu, G. Namasivayam,
A. Neumann, T. Schaub, and M. Truszczyniski. The first
answer set programming system competition. In Proc. LP-
NMR’07, vol. 4483 of LNCS, pages 3—17. Springer, 2007.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz.
Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9(3/4):365-386,
1991.

[Gelfond, 2002] M. Gelfond. Representing knowledge in A-
Prolog. In A. Kakas and F. Sadri, editors, Computational
Logic: From Logic Programming into the Future, vol.
2408 of LNCS/LNALI, pages 413-451. Springer, 2002.

[Leone et al., 2006] N. Leone, G. Pfeifer, W. Faber, T. Eiter,
G. Gottlob, S. Perri, and F. Scarcello. The dlv system
for knowledge representation and reasoning. ACM Trans.
Comput. Log., 7(3):499-562, 2006.

[Marek and Truszczyfiski, 19991 V. W. Marek and M.
Truszczynski. Stable models and an alternative logic
programming paradigm. In The Logic Programming
Paradigm — A 25-Year Perspective, pages 375-398.
Springer, 1999.

[Niemeld, 1999] 1. Niemeli. Logic programming with stable

model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell., 25(3—4):241-273, 1999.

[Osorio et al., 2005] M. Osorio, C. Zepeda, J. C. Nieves, and
U. Cortés. Inferring acceptable arguments with answer set
programming. In Proc. ENC’05, pages 198-205. IEEE,
2005.

[Reiter, 1978] R. Reiter. On closed world data bases. In
Logic and Databases, pages 55-76. Plenum Press, 1978.

[Sacca, 1996] D. Sacca. Multiple total stable models are def-
initely needed to solve unique solution problems. Inf. Pro-
cess. Lett., 58(5):249-254, 1996.

