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ABSTRACT
We investigate the complexity of evaluating queries in Re-

lational Algebra (RA) over the relations extracted by regex

formulas (i.e., regular expressions with capture variables)

over text documents. Such queries, also known as the regu-

lar document spanners, were shown to have an evaluation

with polynomial delay for every positive RA expression (i.e.,

consisting of only natural joins, projections and unions);

here, the RA expression is fixed and the input consists of

both the regex formulas and the document. In this work, we

explore the implication of two fundamental generalizations.

The first is adopting the “schemaless” semantics for span-

ners, as proposed and studied by Maturana et al. The second

is going beyond the positive RA to allowing the difference

operator.

We show that each of the two generalizations introduces

computational hardness: it is intractable to compute the nat-

ural join of two regex formulas under the schemaless seman-

tics, and the difference between two regex formulas under

both the ordinary and schemaless semantics. Nevertheless,

we propose and analyze syntactic constraints, on the RA

expression and the regex formulas at hand, such that the

expressive power is fully preserved and, yet, evaluation can

be done with polynomial delay. Unlike the previous work on

RA over regex formulas, our technique is not (and provably
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cannot be) based on the static compilation of regex formu-

las, but rather on an ad-hoc compilation into an automaton

that incorporates both the query and the document. This

approach also allows us to include black-box extractors in

the RA expression.
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1 INTRODUCTION
The abundance and availability of valuable textual resources

position text analytics as a standard component in data-

driven workflows. To facilitate the integration with textual

content, a core operation is Information Extraction (IE)—

the extraction of structured data from text. IE arises in a

large variety of domains, including biology and biomedical

analysis, social media analysis, cyber security,
1

system and

network log analysis, and business intelligence, to name a

1
See, e.g., the TA-COS workshop at http://www.ta-cos.org/.
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few [4, 27]. Rules for IE are used in commercial systems and

academic prototypes for text analytics, either as a standalone

extraction language or within machine-learning models.

A common paradigm for rule programming is the one

supported by IBM’s SystemT [5, 18], which exposes a collec-

tion of atomic (sometimes called “primitive”) extractors of

relations from text (e.g., tokenizer, dictionary lookup, part-

of-speech tagger and regular-expression matcher), together

with a relational algebra for manipulating these relations.

In Xlog [29], user-defined functions provide the atomic

extractors, and Datalog is used for relational manipulation.

In DeepDive [26], rules are used for generating features that

are translated into the factors of a statistical model with

machine-learned parameters. Feature declaration combines

atomic extractors alongside relational operators thereof.

Document spanners. In this work, we explore complexity

aspects of IE within the framework of document spanners (or

just spanners for short) [8]. In this framework, a document is

a string over a fixed finite alphabet, and a spanner extracts

from every input document a relation of intervals within

the document. An interval, called span, is represented by its

starting and ending indices in the document.

An example of a spanner is a regex formula, which is a

regular expression with capture variables that correspond to

the relational attributes. The most studied language for spec-

ifying spanners is that of the regular spanners: the closure of

regex formulas under the classic relational algebra: projec-

tion, natural join, union, and difference [8]. Equally expres-

sive formalisms include non-recursive Datalog over regex

formulas [9] and the variable-set automaton (vset-automaton
for short), which is a nondeterministic finite-state automaton

(NFA) that can open and close variables while running.

Since the framing of the spanner framework, there has

been a considerable effort to delineate the computational

complexity of spanner evaluation, with a special focus on the

regular representations (regex formulas and vset-automata)

of the atomic extractors.

Florenzano et al. [10] studied the data complexity (where

the spanner is fixed and the input consists of only the docu-

ment), and so did Peterfreund et al. [25] who showed that the

closure of regex formulas under Datalog characterizes the

class of polynomial-time spanners. Freydenberger et al. [11–

13] studied the combined complexity (where the input con-

sists of both the query and the document) for conjunctive

queries, and unions of conjunctive queries, over spanners.

More recently, Amarilli et al. [1] presented an evaluation al-

gorithm with tractability properties under both data and com-

bined complexity; we further discuss this algorithm later on.

For complexity analysis, there are important advantages

to yardsticks that take the atomic extractors (e.g., regex for-

mulas or vset-automata) as input, rather than regarding them

small or fixed. First, the size of these extractors can be quite

large in practice. Taking examples from RegExLib.com, each

of the regexes for recognizing the RFC 2822 mailbox format

(regexp id 711) and date format (regexp id 969) uses more

than 350 ASCII symbols, and a regex for identifying US ad-

dresses (regexp id 1564) uses more than 2,000 ASCII symbols.

Furthermore, automata may be constructed by automatic

(machine-learning) processes that achieve accuracy through

the granularity of the automaton. The paradigm of Artificial

Neural Networks (ANNs) in natural-language processing has

motivated the conversion of ANN models such as recurrent
neural networks and convolutional neural networks into au-

tomata [21, 22, 33], where the number of states may reach

tens of thousands to match the expressiveness of the numeric

parameters [33]. Another advantage of regarding the atomic

extractors as input is more technical: polynomial-time com-

bined complexity allows to incorporate vset-automata whose

size may depend on the input document. This approach al-

lows to establish tractability even if we join with schemaless

spanners that cannot be represented as RA expressions over

regular spanners, such as string equality [13].

Schema-based functionality vs schemaless sequentiality. As

defined by Fagin et al. [8], the spanners are schema-based
in the sense that every spanner is associated with a fixed

and finite set X of variables, playing the roles of attributes in

relational databases, so that every tuple they extract from a

document assigns a value to each variable ofX . The regex for-

mulas conform to this property in the sense that every parse

tree contains exactly one occurrence of each variable; such

regex formulas are said to be functional. Freydenberger [11]

applied the property of functionality to vset-automata: a

vset-automaton is functional if every accepting path prop-

erly opens and closes every variable exactly once.

The functionality property can be tested in polynomial

time for both regex formulas [8] and vset-automata [12].

Moreover, functional vset-automata generalize functional

regex formulas in the sense that every instance of the former

can be transformed in linear time into an instance of the latter

(but not necessarily the other way around). Beyond that, func-

tional vset-automata (and regex formulas) possess various

desired tractability features [13]. First, they can be evaluated

with polynomial delay under combined complexity. Second,

the natural join of two functional vset-automata can be com-

piled in polynomial time into one functional vset-automaton,

and so can the union of two vset-automata and the projection
of a vset-automaton to a subset of its variables. Consequently,

every combination of functional vset-automata can be evalu-

ated with polynomial delay, as long as this combination is

via the positive operators of the relational algebra.

More recently, Maturana et al. [19] introduced a schemaless
version of spanners that allows for incomplete extraction
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from documents, in the spirit of the SPARQL model [23].

There, two extracted tuples may assign spans to different

sets of variables. The analog of functionality is sequentiality:

a regex formula is sequential is every parse tree includes at
most one occurrence of every variable, and a vset-automaton

is sequential if every accepting path properly opens and

closes every variable at most once. Again, in polynomial

time we can test for sequentiality and transform a sequential

regex formula into a sequential vset-automaton; moreover,

sequential vset-automata can be evaluated with polynomial

delay under combined complexity [19]. In fact, the afore-

mentioned algorithm of Amarilli et al. [1] enumerates with

polynomial delay under combined complexity, and, under

data complexity, with constant delay following a linear pre-

processing of the document.
2

Since functional vset-automata

are also sequential, this algorithm also applies to the schema-

based spanners, and improves upon (and, in fact, generalizes

the applicability of) the constant-delay algorithm of Floren-

zano et al. [10].

Contribution. The state of affairs leaves open two fundamen-

tal questions regarding the combined complexity of query

evaluation.

• Does the tractability for the positive relational algebra

generalize from the schema-based case to the schema-

less case?

• Does the tractability extend beyond the positive oper-

ators (in either the schema-based or schemaless case)?

In particular, can we enumerate with polynomial delay

the difference between two functional vset-automata?

We prove that the answers to both questions are negative.

More specifically, it is NP-complete to determine whether the

natural join of two sequential regex formulas is nonempty

(Theorem 3.1), and it is NP-complete to determine whether

the difference between two given functional regex formulas

is nonempty (Theorem 4.1).

We formulate various syntactic restrictions that allow to

avoid hardness. In particular, we show that polynomial delay

is retained if we bound the number of common variables

between the two operands of the natural join and differ-

ence. For the natural join, we also present a normal form

for schemaless regex formulas and vset-automata, namely

disjunctive functional, that are more restricted than, yet as

expressive as, their sequential counterparts; yet, the natu-

ral join of two disjunctive-functional vset-automata can be

compiled into a disjunctive-functional vset-automaton in

polynomial time (hence, evaluated with polynomial delay).

In contrast to the natural join, the tractability of the dif-

ference between vset-automata with a bounded number of

2
This is the spanner analog of a recent line of work on the enumeration

complexity of database and string queries [2, 3, 20, 28].

common variables cannot be established via compilation into

a single vset-automaton. This is due to the simple reason

that, in the case of Boolean spanners, the problem is the same

as the difference between two NFAs, where the compilation

necessitates an exponential blowup [16]. Nevertheless, we

establish the tractability by transforming the difference into

a natural join with a special vset-automaton that is built

ad-hoc for the input document.

In summary, our complexity upper bounds are established

in two main approaches. The first is based on a document-

independent compilation of the input vset-automata (or regex

formulas) into a new vset-automaton. The second is based

on a compilation of both the input vset-automata and the

input document into a new, ad-hoc vset-automaton. We refer

to the first approach as static compilation and to the second

as ad-hoc compilation.

We compose our tractability results into more general

queries by proposing a new complexity measure that is spe-

cialized to spanners. Recall that the evaluation problem has

three components: the document, the atomic spanners (e.g.,

regex formulas), and the relational algebra that combines

the atomic spanners, which we refer to as the RA tree. Under

combined complexity, all three are given as input; under data
complexity, the document is given as input and the rest are

fixed; there is also the expression complexity [32] where the

document is fixed and the rest are given as input. We propose

the extraction complexity, where the RA tree is fixed, and

the input consists of the document and the atomic spanners

(mapped to their corresponding positions in the RA tree).

We present and discuss conditions that cast the extraction

complexity tractable (polynomial-delay evaluation) and in-

tractable (NP-hard nonemptiness). Interestingly, since the

tractability of an RA tree is based on ad-hoc compilation, we

can incorporate there any polynomial-time spanner, as long

as its dimension is bounded by a constant.

Organization. The rest of the paper is organized as follows.

In Section 2, we present the basic terminology and concepts.

We investigate the complexity of the natural-join operator in

Section 3 and the difference operator in Section 4. We extend

our development to the extraction complexity in Section 5,

and conclude in Section 6. To meet space constraints, some

of the proof are given in the full version of the paper [24].

2 PRELIMINARIES
We first introduce the main definitions and terminology,

mainly from the literature on document spanners [8, 19].

2.1 Document Spanners
Documents and spans. We fix a finite alphabet Σ of symbols.

By a document or string we refer to a finite sequence d =
σ1 · · ·σn over Σ (that is, each σi is in Σ), that is, a member
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of Σ∗. The length n of the document d = σ1 · · ·σn is denoted

by |d|. A span is a pair [i, j⟩ of indices 1 ≤ i ≤ j ≤ n + 1 that

marks a substring of d. The term d[i, j⟩ denotes the substring

σi · · ·σj−1.

Note that d[i,i⟩ is the empty string, and that d[1,n+1⟩ is d.

Note also that the spans [i, i⟩ and [j, j⟩, where i , j, are

different objects, even though the substrings d[i,i⟩ and d[j, j⟩
are equal.

We denote by spans the set of all spans of all strings, that

is, all expressions [i, j⟩ where 1 ≤ i ≤ j. By spans(d) we

denote the set of all spans of d.

Schemaless spanners. We assume a countably infinite set

Vars of variables, and assume that Vars is disjoint from Σ and

Σ∗. A schemaless (document) spanner is a function that maps

each document into a finite collection of tuples (referred to

as mappings) that assign spans to variables.

More formally, a mapping to d is a function µ from a finite

set of variables, called the domain of µ and denoted dom(µ ),
into spans(d). A schemaless spanner is a function P that

maps every document d into a finite set P (d) of mappings.

For a schemaless spanner P and a document d, different

mappings in P (d) may have different domains. This stands

in contrast to the (schema based) spanners of Fagin et al. [8],

where P is such that there exists a set VP of variables where

every document d and mapping µ ∈ P (d) satisfy dom(µ ) =
VP ; in this case, we may refer to P as a schema-based spanner.

Example 2.1. Let Γ be the alphabet consists of lower-

case and uppercase English letters: a, . . . , z, A, . . . , Z; digits:

0, · · · , 9; and symbols: ␣ that stands for whitespace, ‘.’ and

‘@’. Let ∆ = {←↩} where←↩ stands for end of line. The input

document dStudents over Γ ∪ ∆ given in Figure 1 holds per-

sonal information on students. (Some of the positions are

marked underneath for convenience.) Each line in the doc-

ument describes information on a student in the following

format: first name (if applicable), last name, phone number

(if applicable) and email address. There are spaces in between

these elements. The schemaless document spanner PStudInfo
extracts from the input document dStudents the following set

of mappings, given in a table for convenience.

xfirst xlast xmail xphone

µ1 : [1, 7⟩ [8, 19⟩ [20, 29⟩

µ2 : [30, 37⟩ [46, 56⟩ [38, 45⟩

µ3 : [57, 62⟩ [63, 69⟩ [78, 89⟩ [70, 77⟩

Note that the empty cells in the table stand for undefined.

That is, we have xphone < dom(µ1) and xfirst < dom(µ2). □

In the next sections, we discuss different representation

languages for schemaless spanners. Whenever a schemaless

spanner is represented by a description q, we denote by

VqW the actual schemaless spanner that q represents. We are

using the notation V·W in order to clearly distinguish the

schemaless semantics from the schema based semantics of

Fagin et al. [8] who use J·K. This distinction is critical in the

case of the vset-automata that we define later on.

2.2 Regex Formulas
One way of representing a schemaless spanner is by means

of a regex formula, which is a regular expression with capture

variables, as allowed by the grammar

α := ∅ | ϵ | σ | (α ∨ α ) | (α · α ) | α∗ | x {α }

where σ ∈ Σ and x ∈ Vars. For convenience, we sometimes

put regex formulas in parentheses and also omit parentheses,

as long as the meaning remains clear. For operator prece-

dence, we assume that
∗

comes before ·, which comes be-

fore ∨. We denote by Vars(α ) the set of variables that appear

in α . By RGX we denote the class of regex formulas.

Following Maturana et al. [19], we interpret regex formu-

las as schemaless spanners in the following manner. The

following grammar defines the application of a regex for-

mula α on a document d = σ1 · · ·σn , where the result is a

pair (s, µ ) where s is a span of d and µ is a mapping to d.

• [∅](d) := ∅;

• [ϵ](d) := {([i, i⟩, ∅) | i = 1, . . . ,n};
• [σ ](d) := {([i, i + 1⟩, ∅) | σi = σ };
• [x {α }](d) := {([i, j⟩, µ ∪ {x 7→ [i, j⟩}) | ([i, j⟩, µ ) ∈

[α](d) and x < dom(µ )};
• [α1 ∨ α2](d) := [α1](d) ∪ [α2](d);
• [α1 · α2](d) := {([i, j⟩, µ1 ∪ µ2) | ∃i

′
s.t. ([i, i ′⟩, µ1) ∈

[α1](d), ([i ′, j⟩, µ2) ∈ [α2](d), and dom(µ1)∩dom(µ2) =
∅};

• [α∗](d) :=
⋃∞

i=0
[α i ](d) where α i stands for the con-

catenation of i copies of α .

The result of applying α to d is then defined as follows.

VαW(d) = {µ | ([1, |d| + 1⟩, µ ) ∈ [α](d)}

We denote by VRGXW the class of schemaless spanners

that can be expressed using the regex formulas. Similarly,

for every subclass R ⊆ RGX, we denote by VRW the class of

spanners expressible by an expression in R.

Syntactic restrictions. Fagin et al. [8] introduced the class

of regex formulas that are interpreted as schema-based span-

ners, namely the functional regex formulas. To define func-

tional regex formulas, we first use the following inductive

definition. A regex formula α is functional for a setV ⊆ Vars
of variables if:

• α ∈ Σ∗ and V = ∅;
• α = α1 ∨ α2 and each αi is functional for V ;

• α = α1 · α2 and there exists V1 ⊆ V such that α1 is

functional for V1 and α2 is functional for V \V1;
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1
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8

askolnikov␣r
20

r@edu.ru←↩ Z
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osimov␣6
38

222345␣m
46

ov@edu.ru←↩ P
57

yotr␣L
63

uzhin␣6
70

225545␣l
78

uzi@edu.uk←↩ · · ·

Figure 1: The input document dStudents

• α = α∗
0

and α0 is functional for ∅;

• α = x {α0} and α0 is functional for V \ {x }.
Finally, a regex formula α is functional if it is functional for

the set Vars(α ) of its variables.

Maturana et al. [19] pointed at a wider fragment of regex

formulas, namely the sequential regex formula, that has some

desirable properties, as will be discussed later. A regex for-

mula α is sequential if the following conditions hold:

• For every sub-formula α1 · α2, we have Vars(α1) ∩
Vars(α2) = ∅.
• For every sub-formula α∗, we have Vars(α ) = ∅.
• For every sub-formula x {α }, we have x < Vars(α ).3

We denote by funcRGX and seqRGX the classes of functional

and sequential regex formulas, respectively.

As shown by Maturana et al. [19], it holds that funcRGX ⊊
seqRGX. That is, every functional regex formula is sequential,

but some sequential regex formulas are not functional, as

the next example illustrates.

Example 2.2. Let us define the following regex formulas

over the alphabet Γ ∪ ∆ from Example 2.1:

αmail := xmail{γ@γ .γ }

αname := (xfirst{δ }␣xlast{δ }) ∨ (xlast{δ })

αphone := xphone{β
∗}

where γ := (a ∨ · · · ∨ z)+, δ := (A ∨ · · · ∨ Z) · (a ∨ · · · ∨ z)∗,
and β := (0 ∨ · · · ∨ 9)+.

Based on the previous regex formulas, we define the regex

formula that represents the schemaless spanner PStudInfo from

Example 2.1:

αinfo := Γ∗ · (ϵ∨ ←↩) ·αname · ␣ ·

(
(αphone · ␣∨ϵ ) ·αmail

)
· ←↩ ·Γ∗

Note that this is regex formula is sequential but not func-

tional since the variables xfirst and xphone are optional. □

2.3 Vset-Automata
In addition to regex formulas, we use the variable-set au-
tomata (abbreviated vset-automata) for representing schema-

less spanners, as defined by Maturana et al. [19] as a schema-

less adaptation of the vset-automata of Fagin et al. [8].

A vset-automaton, VA for short, is a tuple (Q,q0, F ,δ ),
where Q is set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, 4

and δ is a transition relation

3
We added this restriction to the original definition [19] since it was mis-

takenly omitted, as the authors confirmed.

4
The original definition by Fagin et al. [8] used a single accepting state. We

can extend this definition to multiple accepting states without changing the

consisting of epsilon transitions of the form (q, ϵ,p), letter
transitions of the form (q,σ ,p) and variable transitions of

the form (q,v⊢,p) or (q, ⊣v,p) where q,p ∈ Q , σ ∈ Σ, and

v ∈ Vars.
The symbols v⊢ and ⊣v are special symbols to denote

the opening or closing of a variable v . We define the set

Vars(A) as the set of all variables v that are mentioned in

some transition of A. For every finite setV ⊆ Vars we define

the set ΓV := {v⊢, ⊣v : v ∈ V } of variable operations.
A run ρ over a document d := σ1 · · ·σn is a sequence of

the form

(q0, i0)
o1

→ · · · (qm−1, im−1)
om
→ (qm , im )

where:

• the i j are indexes in {1, . . . ,n + 1} such that i0 = 1 and

im = n + 1;

• each oj is in Σ ∪ {ϵ } ∪ ΓVars(A) ;
• i j+1 = i j whenever oj ∈ ΓVars(A) , and i j+1 = i j + 1

otherwise;

• for all j > 0 we have (qj−1,oj ,qj ) ∈ δ .

A run ρ is called valid if for every variable v the following

hold:

• v is opened (or closed) at most once;

• if v is opened at some position i then it is closed at

some position j with i ≤ j;
• if v is closed at some position j then it is opened at

some position i with i ≤ j.

A run is called accepting if its last state is an accepting

state, i.e., qm ∈ F . For an accepting and valid run ρ, we define

µρ to be the mapping that maps the variable v to the span

[i j , i j′⟩ where oi j = v⊢ and oi j′ = ⊣v .

The result VAW(d) of applying the schemaless spanner

represented by A on a document d is defined as the set of all

assignments µρ for all valid and accepting runs ρ of A on d.

We call a VA sequential if all of its accepting runs are valid,

and it is called functional if each such run also include all of

its variables Vars(A). Note that sequential VAs correspond

to schemaless spanners, whereas functional correspond to

complete.

In what follows, we assume that our VAs are trimmed, that

is, for every state q we have that (1) q is reachable from the

initial state, and (2) there is at least one accepting state that

can be reached from q.

expressive power by simulating a multiple accepting states automaton by a

single accepting state automaton with epsilon transitions.
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Observe that given a VA we can construct an equivalent

trimmed one in linear time.

Example 2.3. Let A be the following sequential VA:

q0 q1 q2

Σ

x⊢

Σ

⊣x

Σ

Σ

Omitting the transition from q0 to q2 results in a functional

VA. The same schemaless spanner as that represented by A
is given by the sequential regex formula α := (Σ∗x {Σ∗}Σ∗) ∨
(Σ+) where Σ+ stands for Σ · Σ∗. □

2.4 Algebraic Operators
Before we define the algebra over schemaless spanners, we

present some basic definitions. Two mappings µ1 and µ2 are

compatible if they agree on every common variable, that is,

µ1 (x ) = µ2 (x ) for all x ∈ dom(µ1)∩dom(µ2). In this case, we

define µ := µ1∪µ2 as the mapping with dom(µ ) = dom(µ1)∪
dom(µ2) such that µ (x ) = µ1 (x ) for all x ∈ dom(µ1) and

µ (x ) = µ2 (x ) for x ∈ dom(µ2).
The correspondents of the relational-algebra operators are

defined similarly to the SPARQL formalism [23]. In particular,

the operators union, projection, natural join, and difference
are defined as follows for all schemaless spanners P1 and P2

and documents d.

• Union: The union P := P1 ∪ P2 is defined by P (d) :=

P1 (d) ∪ P2 (d).
• Projection: The projection P := πYP1 is defined by

P (d) = {µ

↼

Y | µ ∈ P1 (d)} where

↼

stands for the re-

striction of µ to the variables in dom(µ ) ∩ Y .

• Natural join: The (natural) join P := P1 ▷◁ P2 is

defined to be such that P (d) consists of all mappings

µ1 ∪ µ2 such that µ1 ∈ P1 (d), µ2 ∈ P2 (d) and µ1 and µ2

are compatible.

• Difference: The difference P := P1 \ P2 is defined to

be such that P (d) consists of all mappings µ1 ∈ P1 (d)
such that no µ2 ∈ P2 (d) is compatible with µ1.

We allow the use of these operators for spanners represented

by regex formulas or VAs and also for more complex spanner

representations, e.g., VA1W ▷◁ VA2W. In this case, we use the

abbreviated notation VA1 ▷◁ A2W instead of VA1W ▷◁ VA2W.

We make the clear note that when the above operators are

applied on schema-based spanners, they are the same as

those of Fagin et al. [8].

Example 2.4. Let us consider our input document dStudents
from Figure 1. Assume one wants to filter out from the results

obtained by applying the spanner PStudInfo from Example 2.2

on dStudents the mappings that correspond with students from

universities within the UK. It is given that students study in

the UK if and only if their email addresses end with the letters

‘uk’. We phrase the following regex formula that extracts

such email addresses:

αUKm :=

(
ϵ ∨ (Γ∗· ←↩)

)
· Γ∗ · ␣xmail{γ@γ .uk}· ←↩ ·Γ∗

where γ is as defined in Example 2.2. In this case, the desired

output is given by Vαinfo \ αUKmW(dStudents) which consists

of the mappings µ1 and µ2 from Example 2.1. □

2.5 Complexity
Let L be a representation language for schemaless spanners

(e.g., the class of regex formulas or the class of VAs). Given

q ∈ L and a document d, we are interested in the decision

problem that checks whether VqW(d) is not empty. In that

case, we are also interested in evaluating VqW(d). Note that

we study the combined complexity of these problems, as both

q and d are regarded as input.

Under the combined complexity, “polynomial time” is not

a proper yardstick of efficiency for evaluating VqW(d), since

this set can contain exponentially many mappings. We thus

use efficiency yardsticks of enumeration [17]. In particu-

lar, our evaluation algorithm takes q and d as input, and

it outputs all the mappings of VqW(d), one by one, without

duplicates. The algorithm runs in polynomial total time if its

execution time is polynomial in the combined size of q, d
and VqW(d). The delay of the evaluation algorithm refers to

the maximal time that passes between every two consecu-

tive mappings. A well-known observation is that polynomial

total time implies polynomial delay (but not necessarily vice

versa), and that NP-hardness of the nonemptiness problem

implies that no evaluation algorithm runs in polynomial

delay, or else P = NP.

While deciding whether VqW(d) , ∅ is NP-hard whenever

q is given as a VA [11], this is not the case for sequential (and

hence functional) VA:

Theorem 2.5. [1] Given a sequential VA A and a docu-
ment d, one can enumerate VAW(d) with polynomial delay.

We call two schemaless spanner representations q1 and q2

equivalent if Vq1W ≡ Vq2W, that is, Vq1W and Vq2W are iden-

tical. Note that the translation of functional and sequential

regex formulas to equivalent functional and sequential VAs,

respectively, can be done in linear time [13, 19]. Hence, our

lower bounds are usually shown for the nonemptiness of

regex formulas and our upper bounds for the evaluation

of VAs.

3 THE NATURAL-JOIN OPERATOR
To establish complexity upper bounds on the evaluation

of schema-based spanners, Freydenberger et al. [13] used

Session 5: Semistructured Data  
and Knowledge Graphs, Logic, and Verification  PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

325



static compilation to compile the query (where the operands

are regex formulas or VAs) into a single VA. In particular,

they showed that two functional VAs can be compiled in

polynomial time into a single equivalent VA that is also

functional. Consequently, we can enumerate with polyno-

mial delay the mappings of VA1 ▷◁ A2W(d), given functional

VAs A1 and A2. The question is whether it generalizes to

schemaless spanners: can we efficiently enumerate the map-

pings of VA1 ▷◁ A2W(d), given sequential (but not necessarily

functional) A1 and A2? This is no longer the case, as the

next theorem implies, even under the yardstick of expression
complexity [32] in which the document is regarded as fixed.

(Recall that a sequential regex formula can be translated in

polynomial time into an equivalent VA [19].)

Theorem 3.1. The following problem is NP-complete. Given
two sequential regex formulas γ1 and γ2 and an input doc-
ument d, is Vγ1 ▷◁ γ2W(d) nonempty? The problem remains
NP-hard even if d is assumed to be of length one.

Proof. Membership in NP is straightforward, so we fo-

cus on NP-hardness. We show a reduction from 3-CNF-

satisfiability which is also known as 3SAT [15]. The input

for 3SAT is a formula φ with the free variables x1, . . . ,xn
such that φ has the form C1 ∧ · · · ∧ Cm , where each Cj is

a clause. In turn, each clause is a disjunction of three liter-

als, where a literal has the form xi or ¬xi for i = 1, . . . ,n.

The goal is to determine whether there is an assignment

τ : {x1, . . . ,xn } → {t, f} that satisfies φ. Given a 3CNF for-

mula φ, we construct two sequential regex formulas γ1 and

γ2 such that there is a satisfying assignment for φ if and only

if Vγ1 ▷◁ γ2W(d) , ∅, where d is the document that consists

of a single letter a.

To construct γ1 and γ2, we associate every variable xi with

2m corresponding capture variables x j, ℓi for 1 ≤ j ≤ m and

ℓ ∈ {t, f}. We then define γ1 := γx1
· · ·γxn · a, where

γxi := (x1,t
i {ϵ } · · · x

m,t
i {ϵ }) ∨ (x1, f

i {ϵ } · · · x
m, f
i {ϵ }).

Intuitively, γxi verifies that the assignment to xi is consistent

in all of the clauses. We then define

γ2 := a · (δ1 · · · δm )

where δ j is the disjunction of regex formulas β such that

β = x j, fi {ϵ } if ¬xi appears inCj , and β = x j,ti {ϵ } if xi appears

inCj . Intuitively, γ2 verifies that at least one disjunct in each

clause is evaluated true.

Let us consider the following example where

φ := (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z) .

In this case, we have

δ1 = x1,t{ϵ } ∨ y1,t{ϵ } ∨ z1,t{ϵ }

δ2 = x2, f {ϵ } ∨ y2,t{ϵ } ∨ z2, f {ϵ }

and, therefore,

γ2 := a · (x1,t{ϵ } ∨ y1,t{ϵ } ∨ z1,t) {ϵ })

· (x2, f {ϵ } ∨ y2,t{ϵ } ∨ z2, f {ϵ }) .

We also have

γ1 :=
(
x1,t{ϵ }x2,t{ϵ } ∨ x1, f {ϵ }x2, f {ϵ }

)
·
(
y1,t{ϵ }y2,t{ϵ } ∨ y1, f {ϵ }y2, f {ϵ }

)
·
(
z1,t{ϵ }z2,t{ϵ } ∨ z1, f {ϵ }z2, f {ϵ }

)
· a .

It follows directly from the definition that both γ1 and

γ2 are sequential. Moreover, Vγ1 ▷◁ γ2W(d) is nonempty if

and only if there are compatible mappings µ1 ∈ Vγ1W(d) and

µ2 ∈ Vγ2W(d). Sinceγ1 ends with the letter a whereasγ2 starts

with the letter a, it holds that µ1 ∈ Vγ1W(d) and µ2 ∈ Vγ2W(d)
are compatible if and only if dom(µ1) ∩ dom(µ2) = ∅. We

will show that Vγ1 ▷◁ γ2W(d) is nonempty if and only if there

is a satisfying assignment to φ.

The “only if” direction. Suppose that Vγ1 ▷◁ γ2W(d) is non-

empty. In this case, a satisfying assignment τ to φ is encoded

by the domain of γ2 in the following way: if x j, ℓi ∈ dom(µ2)
then τ (xi ) = ℓ. Observe that τ is well defined since dom(µ1)∩
dom(µ2) = ∅.

In our example, the mapping µ1 ∈ Vγ1W(a) with

dom(µ1) = {x
1,t,x2,t,y1, f ,y2, f , z1, f , z2, f }

and the mapping µ2 ∈ Vγ2W(a) with

dom(µ2) = {x
1, f ,x2, f ,y1,t,y2,t, z1,t, z2,t}

are compatible, and the satisfying assignment τ is encoded

by dom(µ2) and is given by τ (x ) = f, τ (y) = t and τ (z) = t.

The “if” direction. If there is a satisfying assignment τ to

φ, then define the mappings µ1 ∈ Vγ1W(d) and µ2 ∈ Vγ2W(d)
by x j, ℓi ∈ dom(µ2) whenever j = τ (xi ) and x j, ℓi ∈ dom(µ1)
whenever j , τ (xi ). These mapping are compatible, since

dom(µ1) ∩ dom(µ2) = ∅. We conclude that Vγ1 ▷◁ γ2W(d) is

nonempty.

We conclude the NP-hardness of the problem of determin-

ing whether Vγ1 ▷◁ γ2W(d) is nonempty, as claimed. □

In what follows, we suggest two different approaches to

deal with this hardness.

3.1 Bounded Number of Shared Variables
We now consider the task of computing VA1 ▷◁ A2W(d), given

sequential VAs A1 and A2 and a document d. Next, we show

that compiling the join into a new sequential VA is Fixed

Parameter Tractable (FPT) when the parameter is the number

of common variables.
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Lemma 3.2. The following problem is FPT when parame-
trized by |Vars(A1) ∩ Vars(A2) |. Given two sequential VAs A1

andA2, construct a sequential VA that is equivalent toA1 ▷◁ A2.

Since we have a polynomial delay algorithm for the eval-

uation of sequential VAs (Theorem 2.5) and the size of the

resulting VA is FPT in |Vars(A1) ∩ Vars(A2) |, we have the

following immediate conclusion.

Theorem 3.3. Given two sequential VAs A1 and A2 and a
document d, one can evaluate VA1 ▷◁ A2W(d) with FPT delay
parameterized by |Vars(A1) ∩ Vars(A2) |.

In the rest of this section, we discuss the proof of Lemma 3.2.

As shown by Freydenberger et al. [13] if A is a functional VA

then for every state q ofA and every variablev ∈ Vars(A), all

of the possible runs from the initial state q0 to q include the

same variable operations. Formally, for every state q there

is a function cq , namely the variable configuration function,

that assigns a label from {o, c,w}, standing for “open,” “close,”

and “wait,” to every variable in Vars(A), as follows. First,

cq (x ) = o if every run from q0 to q opens x but does not

close it. Second, cq (x ) = c if every run from q0 to q opens

and closes x . Third, cq (x ) = w if no run from q0 to q opens

or closes variable x .

In sequential VAs, however, not all of the accepting runs

open and close all of the variables and therefore it makes

more sense to replace the label w with the label u that stands

for “unseen”. In addition, in sequential VAs as opposed to

functional, there might be a state q for which there are two

(different) runs from q0 to q such that the first opens and

closes the variable x whereas the second does not even open

x . For this case, we add to the set of labels the label d that

stands for “done” meaning that variable x cannot be seen

after reaching state q. Hence, “done” can also be understood

as “unseen or closed, depending on what happened before”.

We formalize these notions right after the next example.

Example 3.4. Let us examine the following two accepting

runs of the sequential VA A from Example 2.3 on the input

document d := a:

ρ1 := (q0, 1)
x⊢
→ (q1, 1)

a
→ (q1, 2)

⊣x
→ (q2, 2)

ρ2 := (q0, 1)
a
→ (q2, 2)

The run ρ1 gets to state q2 after opening and closing x while

ρ2 gets to q2 without opening x . Thus, in state q2 the variable

configuration of x is d. □

This “nondeterministic” behavior of sequential VAs is re-

flected in an extended variable configuration function c̃q for

every state q whose co-domain is the set {u, o, c, d}. Since all

of the accepting runs of a sequential VA are valid, given a

state q, exactly one of the following holds:

• all runs from q0 to q open x ; in this case c̃q (x ) = o;

• all runs from q0 to q (open and) close x ; in this case

c̃q (x ) = c;
• all runs from q0 to q do not open x ; in this case c̃q (x ) =
u;

• at least one run from q0 to q (opens and) closes x and

at least one does not open x ; in this case c̃q (x ) = d.

A sequential VA A is semi-functional for x , if for every

state q it holds that c̃q (x ) ∈ {u, o, c}. We say that A is semi-
functional for X if it is semi-functional for every x ∈ X .

Example 3.5. The sequential VA A from Example 2.3 is

not semi-functional for x because c̃q2
(x ) = d, as reflected

from the runs ρ1 and ρ2 presented in the previous example.

However, the following equivalent sequential VA A′ is semi-

functional for x :

q0 q1 qc
2

qu
2

Σ

x⊢

Σ

⊣x

Σ

Σ

Σ

Observe that the ambiguity we had in stateq2 ofA is resolved

since it is replaced with two states, each corresponding to a

unique configuration. □

We show that for every sequential VA A, every state q
of A and every variable v , we can compute c̃q (v ) efficiently,

and based on that we can translate A into an equivalent

sequential VA that is semi-functional for X . We show that

the total runtime is FPT parameterized by |X |.

Lemma 3.6. Given a sequential VAA and X ⊆ Vars(A), one
can construct in O (2 |X | (n +m)) time a sequential VA A′ that
is equivalent to A and semi-functional for X where n is the
number of states of A andm is the number of its transitions.

Example 3.7. The sequential VA A′ from Example 3.5 can

be obtained from the automaton A from Example 2.3 by re-

placing q2 with two states qu
2

and qc
2

such that qu
2

corresponds

with the paths in from q0 to q2 in which variable x was un-

seen and qc
2

corresponds with the paths in from q0 to q2 in

which variable x was closed, and by changing the transi-

tions accordingly. The algorithm from the previous Lemma

generalizes this idea. □

We refer the reader to Footnote 4 in the definition of a VA

and note that, as in the previous example, there are cases

where, to be semi-functional, a VA must have more than a

single accepting state.

If two sequential VAs are semi-functional for their com-

mon variables, their join can be computed efficiently:
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Lemma 3.8. Given two sequential VAs A1 and A2 that are
semi-functional for Vars(A1) ∩ Vars(A2) one can construct in
polynomial time a sequential VA A that is semi-functional for
Vars(A1) ∩ Vars(A2) and equivalent to A1 ▷◁ A2.

The proof of this Lemma uses the same product construc-

tion as that for functional VAs presented by Freydenberger

et al. [13, Lemma 3.10]. What allow us to use the same con-

struction is (a) the fact it ignores the non-common variables

and (b) the fact we can treat both A1 and A2 as functional

VAs over Vars(A1) ∩ Vars(A2).
We can now move to compose the proof of Lemma 3.2:

Given two sequential VAsA1 andA2, we invoke the algorithm

from Lemma 3.6 and obtain two equivalent sequential VAs

Ã1 and Ã2, respectively, such that each Ãi is semi-functional

for Vars(A1) ∩ Vars(A2). Then, we use Lemma 3.8 to join Ã1

and Ã2. Note that the runtime is indeed FPT parametrized

by Vars(A1) ∩ Vars(A2).

3.2 Restricting to Disjunctive Functional
Another approach to obtain a tractable evaluation of the

join is by restricting the syntax of the regex formulas while

preserving expressiveness. A regex formula γ is said to be

disjunctive functional if it is a finite disjunction of functional

regex formula γ1, . . . ,γn . We denote the class of disjunctive

functional regex formulas as dfuncRGX.

Note that every disjunctive functional regex formula is

also sequential. However, the regex formula z{Σ∗} · (x {Σ∗} ∨
y{Σ∗}) is sequential, yet it is not disjunctive functional. It

also holds that every functional regex formula is disjunc-

tive functional regex formula with a single disjunct. We can

therefore conclude that we have the following:

funcRGX ⊊ dfuncRGX ⊊ seqRGX

Note that here we treat the regex formulas as syntactic ob-

jects.

Equivalently, a disjunctive functional VAA is the sequential

VA whose states are the disjoint union of the states of a finite

numbern of functional VAsA1, . . . ,An and whose transitions

are those of A1, . . . ,An , with the addition of a new initial

state q0 that is connected with epsilon transitions to each of

the initial states of the Ai ’s.

We observe that being disjunctive functional is only a

syntactic restriction and not semantic, based on the following

proposition.

Proposition 3.9. The following hold:
(1) For every sequential regex formula there exists an equiv-

alent disjunctive functional regex formula.
(2) For every sequential VA there exists an equivalent dis-

junctive functional VA.

Since funcRGX corresponds with schema-based spanners

whereas seqRGX with schemaless and due to the previous

proposition we can conclude the following:

VfuncRGXW ⊊ VdfuncRGXW = VseqRGXW

Note that here we refer to the schemaless spanners repre-

sented by the regex formulas.

Example 3.10. Consider the following sequential regex

formula:

(x1{Σ
∗} ∨ y1{Σ

∗}) · · · (xn {Σ
∗} ∨ yn {Σ

∗})

Note that if we want to translate it into an equivalent disjunc-

tive functional regex formula then we need at least one dis-

junct for each possible combination z1{Σ
∗} · · · zn {Σ

∗} where

zi ∈ {xi ,yi }. This implies a lower bound on the length of

the shortest equivalent disjunctive functional regex formula.

Similarly, let us consider the following sequential VA:

q0 q1 · · · qn−1
qf

x1⊢

y1⊢

Σ

⊣x1

⊣y1

Σ

xn⊢

yn⊢

Σ

⊣xn

⊣yn

Σ

An equivalent disjunctive functional VA has at least 2
n

ac-

cepting states since the states encode the variable configura-

tions. □

We record this in the following observation.

Observation 3.11. For every natural number n the follow-
ing hold:
(1) There exists a sequential regex formula γ that is the

concatenation of n regex formulas of constant length
such that each of its equivalent disjunctive functional
regex formulas includes at least 2

n disjuncts.
(2) There exists a sequential VA A with 3n + 1 states such

that each of its equivalent disjunctive functional VA has
at least 2

n states.

That is, the translation from sequential to disjunctive func-

tional might necessitate an exponential blow-up. Although

the translation cannot be done efficiently in the general case,

the advantage of using disjunctive functional VAs lies in the

fact that we can compile the join of two disjunctive func-

tional VAs efficiently into a disjunctive functional VA.

Proposition 3.12. Given two disjunctive functional VAs
A1 and A2, one can construct in polynomial time a disjunctive
functional VA A that is equivalent to A1 ▷◁ A2.

To prove this we can perform a pairwise join between

the set of functional components of A1 and those of A2 and

obtain a set of functional VAs for the join [13, Lemma 3.10].
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Since disjunctive functional is a restricted type of sequen-

tial VA, we conclude the following.

Corollary 3.13. Given two disjunctive functional VAs A1

and A2 and a input document d, one can enumerate the map-
pings of VA1 ▷◁ A2W(d) in polynomial delay.

4 THE DIFFERENCE OPERATOR
When we consider the class of functional VAs, we know that

we can compile all of the positive operators efficiently (i.e.,

in polynomial time) into a functional VA [13]. In the case of

NFAs or regular expressions, compiling the complement into

an NFA necessitates an exponential blowup in size [7, 16].

Since NFAs and regular expressions are the Boolean func-

tional VA and Boolean regex formulas, respectively, we con-

clude that constructing a VA that is equivalent to the differ-

ence of two functional VAs, or two functional regex formulas,

entails an exponential blowup. Therefore, the static compila-

tion fails to yield tractability results for the difference.

In the case of NFAs and regular expressions, the member-

ship of a string in the difference can be tested in polynomial

time. In contrast, the following theorem states that, for func-

tional regex formulas (and VAs), this is no longer true under

the conventional complexity assumption P , NP.

Theorem 4.1. The following problem isNP-complete. Given
two functional regex formulas γ1 and γ2 with Vars(γ1) =
Vars(γ2) and an input document d, is Vγ1 \ γ2W(d) nonempty?

Proof. Membership in NP is straightforward: for func-

tional regex formulas, membership can be decided in poly-

nomial time [11]. Hence, we focus on NP-hardness.

We use a reduction from 3SAT as in the proof of Theo-

rem 3.1. Here, however, we are restricted to functional regex

formulas and therefore we cannot use the domains of the

resulting mappings to encode the assignments. Recall that

the input is a formula φ with the free variables x1, . . . ,xn
such that φ has the form C1 ∧ · · · ∧Cm , where each Ci is a

clause. In turn, each clause is a disjunction of three literals,

where a literal has the form xi or ¬xi .
Given a 3CNF formula, we construct two functional regex

formulas γ1 and γ2, and an input document d, such that there

is a satisfying assignment forφ if and only if Vγ1 \ γ2W(d) , ∅.
We begin with the document d, which is defined by d := an .

The regex formulas γ1 and γ2 are constructed as follows.

We associate every free variable xi with a capture variable

xi . We start by defining the auxiliary regex formulas

βi := ((xi {ϵ } ·a) ∨ xi {a})

for 1 ≤ i ≤ n and then define γ1 := β1 · · · βn . Intuitively,

γ1 encodes all of the legal assignments for φ in such a way

that if xi captures the substring ‘a’ then it corresponds with

assigning t to the free variable xi , and otherwise (in case

it captures ϵ), it corresponds with assigning to it f. Before

defining γ2, for each 1 ≤ i ≤ m we denote the indices of

the literals that appear in Ci by i1 < i2 < i3 and define γ i
2

as

follows:

γ i
2

:= β1 · · · βi1−1 · δi1 · βi1+1 · · · βi2−1 · δi2
· βi2+1 · · · βi3−1 · δi3 · βi3+1 · · · βn

where δℓ is defined as (xℓ {ϵ } ·a) if xℓ appears as a literal inCi
or as (xℓ {a}) if ¬xℓ appears as a literal in Ci .

Intuitively, γ i
2

encodes the assignments for which clause

Ci is not satisfied. We then set

γ2 :=
∨

1≤i≤m

γ i
2
.

To emphasize the differences between this reduction and

that in the proof of Theorem 4.1, we consider the same for-

mula:

φ = (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ ¬z)

We have d := a3
since we have three variables {x ,y, z} and

γ1 =

(
(x {ϵ } ·a)∨x {a}

)
·

(
(y{ϵ } ·a)∨y{a}

)
·

(
(z{ϵ } ·a)∨z{a}

)
For the first clause we have

γ 1

2
:= (x {ϵ } ·a) · (y{ϵ } ·a) · (z{ϵ } ·a)

and for the second

γ 2

2
:= (x {a}) · (y{ϵ } ·a) · (z{a})

It is left to show that Vγ1 \ γ2W(d) , ∅ if and only if φ has a

satisfying assignment.

Note that for every assignment µ ∈ Vγ1W(d) and for every

1 ≤ j ≤ n, it holds that µ (x j ) is either [j, j⟩ or [j, j + 1⟩. Note

also that the same is true also for µ ∈ Vγ2W(d).
Let us assume that there exists a satisfying assignment

τ for φ. We define µ to be the mapping that is defined as

follows: µ (xi ) := [i, i⟩ if τ (xi ) = f and µ (xi ) := [i, i + 1⟩,

otherwise (if τ (xi ) = t). It then follows immediately from

the definition of γ2 that µ ∈ Vγ1 \ γ2W(d).
On the other hand, assume that µ ∈ Vγ1 \ γ2W(d). We

can define an assignment τ is such a way that τ (xi ) = t if

µ (xi ) = [i, i + 1⟩ and τ (xi ) = f otherwise (if µ (xi ) = [i, i⟩). It

follows directly from the way we defined γ1 and γ2 that τ is

a satisfying assignment for φ.

In our example, the assignment τ defined by τ (x ) = τ (y) =
t and τ (z) = f is a satisfying assignment. Indeed, the mapping

µ corresponds to this assignment that is defined by µ (x ) =
[1, 2⟩, µ (y) = [2, 3⟩ and µ (z) = [3, 3⟩ is in Vγ1W(an ) but is not

in Vγ2W(an ) since either (a) µ (x ) = [1, 1⟩ and µ (y) = [2, 2⟩ or

(b) µ (x ) = [1, 2⟩ and µ (y) = [2, 2⟩.
Note also that the assignment µ defined by µ (x ) = [1, 2⟩,

µ (y) = [2, 3⟩ and µ (z) = [3, 4⟩ is in Vγ1 \ γ2W(an ) since it

is in Vγ1W(an ) and not in Vγ2W(an ). Indeed, the assignment

τ for which τ (x ) = τ (y) = τ (z) is a satisfying assignment
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for φ. Hence, deciding nonemptiness of Vγ1 \ γ2W(d) is NP-

hard. □

From Theorem 4.1 we conclude that, in contrast to the

tractability of the natural join of disjunctive functional VAs

(Corollary 3.13), here we are facing NP-hardness already for

functional VAs. In the remainder of this section, we discuss

syntactic conditions that allow to avoid this hardness.

4.1 Bounded Number of Common
Variables

Theorem 4.1 implies that no matter what approach we choose

to tackle the evaluation of the difference, without imposing

any restrictions we hit NP-hardness. In this section, we in-

vestigate the restriction of an upper bound on the number

of common variables shared between the operands. Recall

that this restriction leads to an FPT static compilation for

the natural join (Lemma 3.2).

Yet, in the case of difference, such static compilation neces-

sitates an exponential blow-up, even if there are no variables

at all (see the start of Section 4).

Therefore, instead of static compilation that is indepen-

dent of the document, we apply an ad-hoc compilation that

depends on the specific document at hand. In this case, we

refer to the resulting automaton as an ad-hoc VA since it is

valid only for that specific document.

Ad-hoc VAs were introduced (without a name) by Frey-

denberger et al. [13] as a tool for evaluating functional VAs

with polynomial delay. The next lemma is based on this idea.

Lemma 4.2. Let k be a fixed natural number. Given two
sequential VAs A1 and A2 where |Vars(A1) ∩ Vars(A2) | ≤ k
and a document d, one can construct in polynomial time a
sequential VA Ad with VAdW(d) = VA1 \A2W(d).

By Theorem 2.5, we can enumerate the results of a sequen-

tial VA in polynomial. We can conclude the following.

Theorem 4.3. Let k be a fixed natural number. Given two
sequential VAs A1 and A2 where |Vars(A1) ∩ Vars(A2) | ≤
k and a document d, one can enumerate VA1 \A2W(d) with
polynomial delay.

Proof Sketch of Lemma 4.2. We construct two sequen-

tial VAs A and B (that share a bounded number of variables)

such that evaluating the difference of A1 and A2 on d is the

same as evaluating the natural join of A and B on d. This

natural join can be compiled into a sequential VA in polyno-

mial time when the number of common variables is bounded

by a constant (Theorem 3.3), and therefore, we establish the

desired result.

Yet, unlike the schema-based model, difference in the

schemaless case cannot be translated straightforwardly into

a natural join (e.g., via complementation). For illustration,

let us consider the case where there are µ1 ∈ VA1W(d) and

µ2 ∈ VA2W(d) such that dom(µ1)∩dom(µ2) = ∅. In this case,

the assignment µ1 is not in VA1 \A2W(d) since it is compat-

ible with µ2. Nevertheless, µ1 will occur in the natural join

of A1 with every VA A′
2
, unless A1 and A′

2
share one or more

common variables.

As a solution, we construct a VA that encodes information

about the domains of the mappings µ, within the variables

shared by A1 and A2, using new shared dummy variables.

Specifically, we have a dummy variable x̂ for every shared

variable x . If x ∈ dom(µ ), then x̂ is assigned the first empty

span [1, 1⟩, and if x < dom(µ ), then x̂ is assigned the last

empty span [|d| + 1, |d| + 1⟩. (Here, we assume that d is

nonempty; we deal separately with the case d = ϵ .)

We construct a VA A for the above extended mappings

of A1. In addition, we construct a VA B by iterating through

all possible extended mappings over the shared variables,

and for each such a mapping, if it is incompatible with all of

the extended mappings of VA2W(d), then we include it in B.

This construction can be done in polynomial time, since the

number of common variables is bounded by a constant.

We conclude by showing that the extended mappings

of VAW(d) that have compatible mappings in VBW(d) cor-

respond to the mappings of VA1W(d) that have no compati-

ble mappings in VA2W(d), and also that the extended map-

pings of VAW(d) that have compatible mappings in VBW(d)
correspond to the mappings of VA1W(d) that do not have

compatible mappings in VA2W(d). □(Proof sketch)

Theorem 4.3 shows that we can enumerate the difference

with polynomial delay when we restrict the number of com-

mon variables. A natural question is whether the degree

of this polynomial depends on this number; the next theo-

rem answers this question positively, under the conventional

assumptions of parameterized complexity.

Theorem 4.4. The following problem is W[1]-hard parame-
trized by |Vars(γ1) ∩ Vars(γ2) |. Given two functional regex
formulas γ1 and γ2 and an input document d, is Vγ1 \ γ2W(d)
nonempty?

This result contrasts our FPT result for the natural join

(Theorem 3.3). The proof uses a reduction from the problem

of determining whether a 3-SAT formula has a satisfying

assignment with at most p ones, where p is the parameter [6].

4.2 Restricting the Disjunctions
We now propose another restriction that guarantees a trac-

table evaluation, this time allowing the number of common

variables to be unbounded. We begin with some definitions.

Let γ be a sequential regex formula and let x ∈ Vars be a

variable. Then γ is synchronized for x if, for every subexpres-

sion of γ of the form γ1 ∨ γ2, we have that x appears neither
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in γ1 nor in γ2. A regex formula γ is called synchronized for

X ⊆ Vars if it is synchronized for every x ∈ X .

This notion generalizes to sequential VAs: A state q of a

sequential VAA is called a unique target state for the variable

operation ω ∈ ΓVars(A) , if for every state p of A we have

that (p,ω,q) ∈ δ implies q = qω where δ is the transition

relation of A. In other words, qω is the only state that can be

reached by processing ω. We say that A is synchronized for

a variable x ∈ Vars if each of x⊢ and ⊣x has a unique target

state and either all accepting runs of A open and close x , or

no accepting run ofA operates on x . Finally,A is synchronized
for X ⊆ Vars if it is synchronized for every x ∈ X .

Example 4.5. Consider the regex formula (x {Σ∗} ∨ϵ ) ·
y{Σ∗} and this equivalent VA:

x⊢

Σ

⊣x

ϵ y⊢

Σ

⊣y

Both are synchronized fory and not for x : The regex formula

has a subexpression of the form (x {Σ∗} ∨ ϵ ), whereas the

variable y does not appear under any disjunction. In the VA,

although each variable operation has a unique target state,

not all of the accepting runs include the variable operations

x⊢ and ⊣x (as opposed to y⊢ and ⊣y, which are included in

every accepting run). □

The following result states that conversions from regex

formulas to VAs can preserve the property of being synchro-

nized for X .

Lemma 4.6. Let γ be a sequential regex formula that is
synchronized for X ⊆ Vars. One can convert γ in linear time
into an equivalent sequential VA A that is synchronized for X .

As one might expect, VAs that are synchronized (for some

nonempty setX of variables) are less expressive than sequen-

tial or semi-functional VAs (that are defined in Section 3.1).

In fact, even functional regex formulas can express spanners

that are not expressible with VAs that are synchronized for

all their variables:

Proposition 4.7. There is no sequential VA that is synchro-
nized for x and equivalent to (a · x {ϵ } · a) ∨ (b · x {ϵ } · b).

Hence, by using synchronized VAs, we sacrifice expres-

sive power. But this restriction also allows us to state the

following positive result on the difference of VAs:

Theorem 4.8. Given an input document d and two sequen-
tial VAsA1 andA2 such that, forX := Vars(A1)∩Vars(A2),A1

is semi-functional for X and A2 is synchronized for X , one can

construct a sequential VA Ad with VAdW(d) = VA1 \A2W(d)
in polynomial time.

The full proof can be found in the full version of the pa-

per [24]; we discuss some of its key ideas. The first key

observation is that A2 can be treated as a functional VA that

uses only the common variables (similarly to the proof of

Lemma 3.8). This allows us to work with the variable config-

urations of A2, and construct the match structureM (A2, d) of

A2 on d. This model was introduced (without a name) by Frey-

denberger et al. [13] to evaluate functional VAs with poly-

nomial delay. As explained there, every element of VA2W(d)
can be uniquely expressed as a sequence of |d| + 1 variable

configurations of A2.

Every accepting run of A2 on d can be mapped into such a

sequence by taking the variable configurations of the states

just before a symbol of d is read (and the configuration of

the final state). The match structure M (A2, d) is an NFA that

has the set of variable configurations of A2 as its alphabet;

and its language is exactly the set of sequences of variables

configurations that correspond to elements of VA2W(d).
While determinizing match structures is still hard, the fact

that A2 is synchronizing on the common variables allows us

to construct a deterministic match structureD2 fromM (A, d).
Using a variant of the proof of Lemma 3.8, we can then

combine A1 and A2 into an ad-hoc VA Ad with VAdW(d) =
VA1 \A2W(d).

After creating Ad according to Theorem 4.8, we can use

Theorem 2.5 to obtain the following tractability result:

Corollary 4.9. Given an input document d and two se-
quential VAsA1 andA2 such that, forX := Vars(A1)∩Vars(A2),
A1 is semi-functional for X and A2 is synchronized for X , one
can enumerate the mappings in VA1 \A2W(d) in polynomial
delay.

We saw that disallowing disjunctions over the variables

leads to tractability. Can we relax this restriction by allow-

ing a fixed number of such disjunctions? Our next result is

a step towards answering this question. A disjunction-free
regex formula is a regex formula that does not contain any

subexpression of the form γ1 ∨ γ2.

Proposition 4.10. The following decision problem is NP-
complete. Given two sequential regex formulas γ1 and γ2 with
Vars(γ1) = Vars(γ2) and an input document d such that
• γ1 is functional,
• γ2 is a disjunction of regex formulas γ i

2
such that each is

disjunction-free,
• for every variable x ∈ Vars(γ2), it holds that x appears
in at most 3 disjuncts γ i

2
of γ2,

is Vγ1 \ γ2W(d) nonempty?

Proof. This proof is an adaption of the proof of Theo-

rem 4.1, using mostly the same notation. Instead of a general
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3CNF formula, let φ = C1 ∧ . . . ∧ Cm be a CNF formula,

such that every clause Ci contains either 2 or 3 literals, and

each of the variables appears in at most 3 clauses. Deciding

satisfiability for such a formula is still NP-complete [31].

For γ1 to not have any disjunctions, we first set set d =
(bab)n for some a, b ∈ Σ. We then define

γ1 = (bx1{a
∗} ·a∗b) · · · (bxn {a

∗} ·a∗b).

Intuitively γ1 encodes all of the possible assignments. The

regex formula γ2 is defined analogously to γ2 in the proof of

Theorem 4.1 with an adaptation to the new input document

and a slight simplification of the γ i
2
s (since we do not need

γ2 to be functional any more). Formally, we set

γ i
2
= (bab)i1−1δi1 (bab)

i2−i1−1δi2 (bab)
n−i2

if only variables xi1 ,xi2 with i1 < i2 appear in clause Ci , and

γ i
2
= (bab)i1−1δi1 (bab)

i2−i1−1δi2 (bab)
i3−i2−1δi3 (bab)

n−i3

if variables xi1 ,xi2 ,xi3 with i1 < i2 < i3 appear in clause Ci .

By the choice of the 3CNF formula φ, every variable x j
appears in at most three regex formulas of the form γ i

2
. Cor-

rectness of this reduction can be shown analogously to that

of Theorem 4.1. □

We conclude that evaluating γ1 \ γ2 remains hard even

if γ1 is functional (and hence also semi-functional for the

common variables) and γ2 is a disjunction of disjunction-free

regex formulas, and each of γ2’s variables appears in at most

three such disjuncts.

It is open whether the problem becomes tractable if the

variables are limited to at most one or two disjuncts.

5 EXTRACTION COMPLEXITY
In this section, we discuss queries that are defined as RA

expressions over schemaless spanners given in a representa-

tion language L (e.g., regex formulas), which we refer to as

the language of the atomic spanners. Formally, an RA tree is

a directed and ordered tree whose inner nodes are labeled

with RA operators, the out-degree of every inner node is the

arity its RA operator, and each of the leaves is a placeholder

for a schemaless spanner. For illustration, Figure 2 shows

an RA tree τ , where the placeholders are the rectangular

boxes with the question marks; the dashed arrows should be

ignored for now. The RA tree corresponds to the relational

concept of a query tree or a logical query plan [14, 30]. As

in the rest of the paper, we restrict the discussion to the RA

operators projection, union, natural join, and difference.

Let L be a representation language for atomic spanners,

and let τ be an RA tree. An instantiation of τ assigns a schema-

less spanner representation fromL to every placeholder, and

a set of variables to every projection. For example, Figure 2

shows an instantiation I for τ via the dashed arrows; here,

αnr

αspαsm

xstdnt

?

π

\

Z

? ?

Figure 2: An RA tree τ with an instantiation I

we can think of L as the class of sequential regex formulas,

and so, each α expression is a sequential regex formula.

An instantiation I of τ transforms τ into an actual schema-

less spanner representation, where τ is the parse tree of its

algebraic expression. We denote this representation by I [τ ].

As usual, by VI [τ ]W we denote the actual schemaless spanner

that I [τ ] represents.

Example 5.1. Assume that the input document dStudents
from the earlier examples is now extended and contains addi-

tional information about the students, including recommen-

dations they got from their professors and previous hires. Let

us assume that every line begins with a student’s name and

contains information about that student. Let us also assume

that we have the following functional regex formulas:

• regex formula αsm with capture variables xstdnt,xml
that extracts names with their corresponding email

addresses;

• regex formula αsp with variables xstdnt,xphn that ex-

tracts names with their corresponding phone numbers;

• regex formula αnr with variables xstdnt,xrcmnd that ex-

tracts names with their corresponding recommenda-

tions.

Note that all of the regex formulas are functional, that is,

they do not output partial mappings. The following query

extracts the students that do not have recommendations.

π {xstdnt }

(
(αsm ▷◁ αsp) \ (αnr)

)
This query is I [τ ] for the RA tree τ and the instantiation I of

Figure 2. This query defines the spanner VI [τ ]W, and the set

of extracted spans is VI [τ ]W(dStudents). □

We present a complexity measure that is unique to span-

ners, namely the extraction complexity, where the RA tree τ
is fixed and the input consists of both the instantiation I and

the input document d. Specifically, the evaluation problem
for an RA tree τ is that of evaluating VI [τ ]W(d), given I and

d. Similarly, the nonemptiness problem for an RA tree τ is

that of deciding whether VI [τ ]W(d) is nonempty, given I and

d.

Clearly, some RA trees have an intractable nonemptiness

and, consequently, an intractable evaluation. For example,

if L is the class of sequential regex formulas and τ is the
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RA tree that consists of a single natural-join node, then the

nonemptiness problem for τ is NP-complete (Theorem 3.1).

Also, if L is the class of functional regex formulas and τ is

the RA tree that consists of a single difference node, then the

nonemptiness problem for τ is NP-complete (Theorem 4.1).

In contrast, by composing the positive results established in

Sections 3 and 4, we obtain the following theorem, which is

a consequence of Lemma 3.2 and Lemma 4.2.

Theorem 5.2. Let L be the class of sequential VAs. Let k
be a fixed natural number and τ an RA tree. The evaluation
problem for τ is solvable with polynomial delay, assuming that
for all join and difference nodes v of I [τ ], the left and right
subtrees under v share at most k variables.

We restate that, while static compilation suffices for the

positive operators, we need ad-hoc compilation to support

the difference. Interestingly, the ad-hoc approach allows us to

incorporate into the RA tree other representations of schema-

less spanners, which can be treated as black-box schemaless

spanners, as long as these spanners can be evaluated in poly-

nomial time and are of a bounded degree. In turn, the de-
gree of a schemaless spanner S is the maximal cardinality

of a mapping produced over all possible documents, that is,

max{|dom(µ ) | | d ∈ Σ∗, µ ∈ S (d)}.
Formalizing the above, we can conclude from Theorem 5.2

a generalization that allows for black-box schemaless span-

ners. To this end, we call a representation language L ′ for

schemaless spanners tractable if VβW(d) can be evaluated in

polynomial time (for some fixed polynomial), given β ∈ L ′

and d ∈ Σ∗, and we call L ′ degree bounded if there is a fixed

natural number that bounds the degree of all the schemaless

spanners represented by expressions in L ′.

Corollary 5.3. Let L ′ be a tractable and degree-bounded
representation system for schemaless spanners, and let L be
the union of L ′ and the class of all sequential VAs. Let k be a
fixed natural number and let τ be an RA tree. The evaluation
problem of τ is solvable with polynomial delay, assuming that
for all join and difference nodes v of I [τ ], the left and right
subtrees under v share at most k variables.

Combining such black-box schemaless spanners in the

instantiated RA tree increases the expressiveness, as it al-

lows us to incorporate spanners that are not (and possibly

cannot be) described as RA expressions over VAs, such as

string equalities [8]. Other examples of such spanners are

part of speech (POS) taggers, dependency parsers, sentiment

analysis modules, and so on.

Example 5.4. Following Example 5.1, suppose that we

now wish to extract the students that do not have any positive
recommendations. Assume we have a black-box spanner

for sentiment analysis, namely PosRec, with the variables

xstdnt and xposrec, that extract names and their corresponding

positive recommendation. Note that this spanner has the

degree 2. We can replace αnr in the instantiation I of Figure 2

with PosRec, and thereby obtain the desired result. If PosRec
can be computed in polynomial time, then the resulting query

can be evaluated in polynomial delay. □

6 CONCLUSIONS
We have studied the complexity of evaluating algebraic ex-

pressions over schemaless spanners that are represented

as sequential regex formulas and sequential VAs. We have

shown that we hit computational hardness already in the

evaluation of the natural join and difference of two such

spanners. In contrast, we have shown that we can compile

the natural join of two sequential VAs (and regex formulas)

into a single sequential VA, in polynomial time, if we assume

a constant bound on the number of common variables of the

joined spanners; hence, under this assumption, we can evalu-

ate the natural join with polynomial delay. As an alternative

to this assumption, we have proposed and investigated a

new normal form for sequential spanners, namely disjunc-

tive functional, that allows for such efficient compilation and

evaluation.

Bounding the number of common variables between the

involved spanners also allows to evaluate the difference with

polynomial delay, even though this cannot be obtained by

compiling into a VA—an exponential blowup in the number

of states is necessary already for Boolean spanners. Evalua-

tion with polynomial delay is then obtained via an ad-hoc

compilation of both the spanners and the document into a

VA. We have shown how the ad-hoc approach can be used

for establishing upper bounds on general RA trees over regex

formulas, VAs, and even black-box spanners of a bounded di-

mension. This has been done within the concept of extraction
complexity that we have proposed as new lens to analyzing

the complexity of spanners.

We believe that our analysis has merely touched the tip of

the iceberg on the algorithms that can be devised under the

guarantee of tractable extraction complexity. In particular,

we have proposed sufficient conditions to avoid the inherent

hardness of the natural join and difference, but it is quite

conceivable that less restrictive conditions already suffice.

Alternatively, are there conditions of extractors (possibly

incomparable to ours) that are both common in practice and

useful to bound the extraction complexity?
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