
HyperBench: A Benchmark and Tool for Hypergraphs
and Empirical Findings

Wolfgang Fischl

TU Wien

wolfgang.fischl@tuwien.ac.at

Georg Gottlob

TU Wien & University of Oxford

georg.gottlob@cs.ox.ac.uk

Davide Mario Longo

TU Wien

davide.longo@tuwien.ac.at

Reinhard Pichler

TU Wien

reinhard.pichler@tuwien.ac.at

ABSTRACT
To cope with the intractability of answering Conjunctive

Queries (CQs) and solving Constraint Satisfaction Problems

(CSPs), several notions of hypergraph decompositions have

been proposed – giving rise to different notions of width,

noticeably, plain, generalized, and fractional hypertree width

(hw, ghw, and fhw). Given the increasing interest in using

such decompositionmethods in practice, a publicly accessible

repository of decomposition software, as well as a large set of

benchmarks, and a web-accessible workbench for inserting,

analysing, and retrieving hypergraphs are called for.

We address this need by providing (i) concrete implementa-

tions of hypergraph decompositions (including new practical

algorithms), (ii) a new, comprehensive benchmark of hyper-

graphs stemming from disparate CQ and CSP collections,

and (iii) HyperBench, our new web-interface for accessing

the benchmark and the results of our analyses. In addition,

we describe a number of actual experiments we carried out

with this new infrastructure.

KEYWORDS
hypergraph decomposition methods, query answering, con-

straint satisfaction

ACM Reference Format:
Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard

Pichler. 2019. HyperBench: A Benchmark and Tool for Hypergraphs

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PODS’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

https://doi.org/10.1145/3294052.3319683

and Empirical Findings. In 38th ACM SIGMOD-SIGACT-SIGAI Sym-

posium on Principles of Database Systems (PODS’19), June 30-July 5,

2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3294052.3319683

1 INTRODUCTION
In this work we study computational problems on hyper-

graph decompositions which are designed to speed up the

evaluation of Conjunctive Queries (CQs) and the solution of

Constraint Satisfaction Problems (CSPs). Hypergraph decom-

positions have meanwhile found their way into commercial

database systems such as LogicBlox [5, 8, 32, 33, 40] and ad-

vanced research prototypes such as EmptyHeaded [1, 2, 41,

48]. Hypergraph decompositions have also been successfully

used in the CSP area [4, 29, 34]. In theory, the pros and cons

of various notions of decompositions and widths are well

understood (see [23] for a survey). However, from a practical

point of view, many questions have remained open.

We want to analyse the hypertree width (hw) of hyper-

graphs from different application contexts. The investigation

of millions of CQs [12, 42] posed at various SPARQL end-

points suggests that these real-world CQs with atoms of arity

≤ 3 have very low hw: the overwhelming majority is acyclic;

almost all of the rest has hw = 2. It is, however, not clear if

CQs with arbitrary arity and CSPs also have low hypertree

width, say, hw ≤ 5. Ghionna et al. [21] gave a positive an-

swer to this question for a small set of TPC-H benchmark

queries. We significantly extend their collection of CQs.

Answering CQs and solving CSPs are fundamental tasks

in Computer Science. Formally, they are the same problem,

since both correspond to the evaluation of first-order formu-

lae over a finite structure, such that the formulae only use

{∃,∧} as connectives but not {∀,∨,¬}. Both problems, an-

swering CQs and solving CSPs, areNP-complete [14]. Conse-

quently, the search for tractable fragments of these problems

has been an active research area in the database and artificial

intelligence communities for several decades.

The most powerful methods known to date for defining

tractable fragments are based on various decompositions

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

464

https://doi.org/10.1145/3294052.3319683
https://doi.org/10.1145/3294052.3319683
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3294052.3319683&domain=pdf&date_stamp=2019-06-25

of the hypergraph structure underlying a given CQ or CSP.

The most important forms of decompositions are hypertree

decompositions (HDs) [24], generalized hypertree decompo-

sitions (GHDs) [24], and fractional hypertree decompositions

(FHDs) [27]. These decomposition methods give rise to three

notions of width of a hypergraph H : the hypertree width

hw(H), generalized hypertree width ghw(H), and fractional

hypertree width fhw(H), where, fhw(H) ≤ ghw(H) ≤ hw(H)

holds for every hypergraph H . For definitions, see Section 2.

Both, answering CQs and solving CSPs, become tractable

if the underlying hypergraphs have bounded hw, ghw, or,

fhw and an appropriate decomposition is given. This gives

rise to the problem of recognizing if a given CQ or CSP has

hw, ghw, or, fhw bounded by some constant k . Formally, for

decomposition ∈ {HD, GHD, FHD} and k ≥ 1, we consider

the following family of problems:

Check(decomposition,k)
input hypergraph H = (V ,E);
output decomposition of H of width ≤ k if it exists and

answer ‘no’ otherwise.

Clearly, bounded fhw defines the largest tractable class

while bounded hw defines the smallest one. On the other

hand, the problem Check(HD,k) is feasible in polynomial

time [24] while the Check(GHD,k) [25] and Check(FHD,k)
[19] problems are NP-complete even for k = 2.

Systems to solve the Check(HD,k) problem exist [26, 44].

In contrast, for Check(GHD,k) and Check(FHD,k), apart
from exhaustive search over possible decomposition trees

(which only works for small hypergraphs), no implemen-

tations have been reported yet [1] – with one exception:

very recently, an interesting approach is presented in [17],

where SMT-solving is applied to the Check(FHD,k) prob-
lem. In [26], tests of the Check(HD,k) system are presented.

However, a benchmark for systematically evaluating systems

for the Check(decomposition,k) problem with decomposition

∈ {HD, GHD, FHD} and k ≥ 1 were missing so far. This

motivates our first research goals.

Goal 1: Create a comprehensive, easily extensible bench-

mark of hypergraphs corresponding to CQs or CSPs for

the analysis of hypergraph decomposition algorithms.

Goal 2: Use the benchmark from Goal 1 to find out if the

hypertree width is, in general, small enough (say ≤ 5)

to allow for efficient evaluation of CQs of arbitrary arity

and of CSPs.

Recently, in [19], the authors have identified classes of CQs

for which the Check(GHD,k) and Check(FHD,k) problems

become tractable (from now on, we only speak about CQs;

of course, all results apply equally to CSPs). To this end, the

Bounded Intersection Property (BIP) and, more generally,

the Bounded Multi-Intersection Property (BMIP) have been

introduced. The maximum number i of attributes shared by

two (resp. c) atoms is referred to as the intersection width

(resp. c-multi-intersection width) of the CQ, which is similar

to the notion of cutset width from the CSP literature [15].

We say that a class of CQs satisfies the BIP (resp. BMIP) if

the number of attributes shared by two (resp. by a constant

number c of) query atoms is bounded by some constant i .
A related property is that of bounded degree, i.e., each

attribute only occurs in a constant number of query atoms.

Clearly, the BMIP is an immediate consequence of bounded

degree. It has been shown in [19] that Check(GHD,k) is
solvable in polynomial time for CQs whose underlying hy-

pergraphs satisfy the BMIP. For CQs, the BMIP and bounded

degree seem natural restrictions. For CSPs, the situation is

not so clear. This yields the following research goals.

Goal 3: Use the hypergraph benchmark from Goal 1 to

analyse how realistic the restrictions to low (multi-)inter-

section width, or low degree of CQs and CSPs are.

Goal 4: Verify that for hypergraphs of low intersection

width, the Check(GHD,k) problem indeed allows for

efficient algorithms that work well in practice.

The tractability results for Check(FHD,k) [18, 19] are sig-
nificantly weaker than for Check(GHD,k): they involve a

factor which is at least double-exponential in some “constant”

(namely k , the bound d on the degree and/or the bound i
on the intersection-width). Hence, we want to investigate if

(generalized) hypertree decompositions could be “fraction-

ally improved” by taking the integral edge cover at each node

in the HD or GHD and replacing it by a fractional edge cover.

We will thus introduce the notion of fractionally improved

HD which checks if there exists an HD of width ≤ k , such
that replacing each integral cover by a fractional cover yields

an FHD of width ≤ k ′
for given bounds k,k ′

with 0 < k ′ < k .

Goal 5: Explore the potential of fractionally improved

HDs, i.e., investigate if the improvements achieved are

significant.

In cases where Check(GHD,k) and Check(FHD,k) are
intractable, we may have to settle for good approximations

of ghw and fhw. For GHDs, we may thus use the inequal-

ity ghw(H) ≤ 3 · hw(H) + 1, which holds for every hyper-

graph H [3]. In contrast, for FHDs, the best known general,

polynomial-time approximation is cubic. More precisely, in

[38], a polynomial-time algorithm is presented which, given

a hypergraph H with fhw(H) = k , computes an FHD of

width O(k3). In [19], it is shown that a polynomial-time ap-

proximation up to a logarithmic factor is possible for any

class of hypergraphs with bounded Vapnik–Chervonenkis

dimension (VC-dimension; see Section 2 for a precise defi-

nition). The problem of efficiently approximating the ghw

and/or fhw leads us to the following goals.

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

465

Goal 6: Use the benchmark from Goal 1 to analyse if, in

practice, hw and ghw indeed differ by factor 3 or, if hw is

typically much closer to ghw than this worst-case bound.

Goal 7: Use the benchmark from Goal 1 to analyse how

realistic the restriction to small VC-dimension of CQs

and CSPs is.

Results. Our main results are as follows:

• We provide HyperBench, a comprehensive hypergraph

benchmark of initially over 3,000 hypergraphs (see Section 3).

This benchmark is exposed by a web interface, which allows

the user to retrieve the hypergraphs or groups of hyper-

graphs together with a broad spectrum of properties of these

hypergraphs, such as lower/upper bounds on hw and ghw,

(multi-)intersection width, degree, etc.

• We extend the software for HD computation from [26]

to also solve the Check(GHD,k) problem. For a given hyper-

graph H , our system first computes the intersection width

of H and then applies the ghw-algorithm from [19], which

is parameterized by the intersection width. We implement

several improvements and we further extend the system to

compute also “fractionally improved” HDs.

• We carry out an empirical analysis of the hypergraphs

in the HyperBench benchmark. This analysis demonstrates,

especially for real-world instances, that the restrictions to

BIP, BMIP, bounded degree, and bounded VC-dimension

are astonishingly realistic. Moreover, on all hypergraphs

in the HyperBench benchmark, we run our hw- and ghw-

systems to identify (or at least bound) their hw and ghw.

An interesting observation of our empirical study is that

apart from the CQs also a significant portion of CSPs in

our benchmark has small hypertree width (all non-random

CQs have hw ≤ 3 and over 60% of CSPs stemming from

applications have hw ≤ 5). Moreover, for hw ≤ 5, in all of

the cases where the ghw-computation terminates, hw and

ghw have identical values.

• In our study of the ghw of the hypergraphs in the Hy-

perBench benchmark, we observed that a straightforward

implementation of the algorithm from [19] for hypergraphs

of low intersection width is too slow in many cases. We

therefore present a new approach (based on so-called “bal-

anced separators”) with promising experimental results. It

is interesting to note that the new approach works particu-

larly well in those situations which are particularly hard for

the straightforward implementation, namely hypergraphs

H where the test if ghw ≤ k for given k gives a “no”-answer.

Hence, combining the different approaches is very effective.

Structure. This paper is structured as follows: In Section 2,

we recall some basic notions. In Section 3, we present our sys-

tem and test environment as well as our HyperBench bench-

mark. First results of our empirical study of the hypergraphs

in this benchmark are presented in Section 4. In Section 5,

we describe our algorithms for solving the Check(GHD,k)
problem. A further extension of the system to allow for the

computation of fractionally improved HDs is described in

Section 6. Finally, in Section 7 we summarize related work

and conclude in Section 8 by highlighting the most important

lessons learned from our empirical study and by identifying

some appealing directions for future work.

Due to lack of space, some of the statistics presented in

the main body contain aggregated values (for instance, for

different classes of CSPs). Figures and tables with more fine-

grained results (for instance, distinguishing the 3 classes of

CSPs to be presented in Section 4) will be provided in the

full version of this paper.

2 PRELIMINARIES
Let ϕ be a CQ or CSP (i.e., an FO-formula with connectives

{∃,∧}). The hypergraph corresponding to ϕ is defined as H =
(V (H),E(H)), where the set of vertices V (H) is defined as

the set of variables in ϕ and the set of edges E(H) is defined

as E(H) = {e | ϕ contains an atom A, s.t. e equals the set of
variables occurring in A}.

Hypergraph decompositions and width measures. We

consider here three notions of hypergraph decompositions

with associated notions of width. To this end, we first need

to introduce the notion of (fractional) edge covers:

Let H = (V (H),E(H)) be a hypergraph and consider a

function γ : E(H) → [0, 1]. Then, we define the set B(γ) of
all vertices covered by γ and the weight of γ as

B(γ) =

v ∈ V (H) |
∑

e ∈E(H),v ∈e

γ (e) ≥ 1

 ,
weight(γ) =

∑
e ∈E(H)

γ (e).

The special case of a function with values restricted to {0, 1},
will be denoted by λ, i.e., λ : E(H) → {0, 1}. Following [24],
we can also treat λ as a set with λ ⊆ E(H) (namely, the set

of edges e with λ(e) = 1) and the weight as the cardinality

of such a set of edges.

We now introduce three notions of decompositions.

Definition 2.1. A generalized hypertree decomposition (for

short GHD) of a hypergraph H = (V (H),E(H)) is a tuple〈
T , (Bu)u ∈N (T), (λu)u ∈N (T)

〉
, such that T = ⟨N (T),E(T)⟩ is a

rooted tree and the following conditions hold:

(1) ∀e ∈ E(H): there exists a node u ∈ N (T) with e ⊆ Bu ;
(2) ∀v ∈ V (H): the set {u ∈ N (T) | v ∈ Bu } is connected

in T ;
(3) ∀u ∈ N (T): λu is defined as λu : E(H) → {0, 1} with

Bu ⊆ B(λu).

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

466

We use the following notational conventions throughout

this paper. To avoid confusion, we will consequently refer

to the elements in V (H) as vertices of the hypergraph and to

the elements in N (T) as the nodes of the decomposition. For

a node u in T , we write Tu to denote the subtree of T rooted

at u. By slight abuse of notation, we will often write u ′ ∈ Tu
to denote that u ′

is a node in the subtree Tu of T . Finally, we
define V (Tu) :=

⋃
u′∈Tu Bu′ .

Definition 2.2. A hypertree decomposition (for short HD) of

a hypergraph H = (V (H),E(H)) is a GHD, which in addition

also satisfies the following condition:

(4) ∀u ∈ N (T): V (Tu) ∩ B(λu) ⊆ Bu

Definition 2.3. A fractional hypertree decomposition (for

short FHD) [27] of a hypergraphH = (V (H),E(H)) is defined

as a tuple

〈
T , (Bu)u ∈N (T), (γu)u ∈N (T)

〉
, where conditions (1)

and (2) of Definition 2.1 plus the following condition (3’)

hold:

(3’) ∀u ∈ N (T): γu is defined as γu : E(H) → [0, 1] with
Bu ⊆ B(γu).

The width of a GHD, HD, or FHD is the maximum weight

of the functions λu or γu , over all nodes u in T . The gen-

eralized hypertree width, hypertree width, and fractional

hypertree width of H (denoted ghw(H), hw(H), fhw(H)) is

the minimum width over all GHDs, HDs, and FHDs of H ,

respectively. Condition (2) is called the “connectedness con-

dition”, and condition (4) is referred to as “special condition”

[24]. The set Bu is often referred to as the “bag” at node u.
The functions λu and γu are referred to as the λ-label and
γ -label of node u. Strictly speaking, only HDs require that

the underlying tree T be rooted. We assume that also the

tree underlying a GHD or an FHD is rooted where the root

is arbitrarily chosen.

Favourable properties of hypergraphs. In [19], the fol-

lowing properties of hypergraphs were identified to allow for

the definition of tractable classes of Check(GHD,k) and for

an efficient approximation of Check(FHD,k), respectively.

Definition 2.4. The intersection width iwidth(H) of a hy-

pergraph H is the maximum cardinality of any intersection

e1 ∩ e2 of two edges e1 , e2 of H . We say that a hyper-

graph H has the i-bounded intersection property (i-BIP) if
iwidth(H) ≤ i . A class C of hypergraphs has the bounded

intersection property (BIP) if there exists some constant i such
that every hypergraph H in C has the i-BIP.

Definition 2.5. For positive integer c , the c-multi-inter-

section width c-miwidth(H) of a hypergraph H is the max-

imum cardinality of any intersection e1 ∩ · · · ∩ ec of c dis-
tinct edges e1, . . . , ec of H . We say that a hypergraph H
has the i-bounded c-multi-intersection property (ic-BMIP) if

c-miwidth(H) ≤ i holds. We say that a class C of hyper-

graphs has the bounded multi-intersection property (BMIP) if

there exist constants c and i such that every hypergraph H
in C has the ic-BMIP.

There are two more relevant properties of (classes of)

hypergraphs: bounded degree and bounded Vapnik–Chervo-

nenkis dimension (VC-dimension). It is easy to verify [19]

that bounded degree implies the BMIP, which in turn implies

bounded VC-dimension.

Definition 2.6. The degree deg(H) of a hypergraph H is

defined as the maximum number d of hyperedges in which

a vertex occurs, i.e., d = maxv ∈V (H) |{e ∈ E(H) | v ∈ E(H)}|.

We say that a class C of hypergraphs has bounded degree, if

there exists d ≥ 1, such that every hypergraph H ∈ C has

degree ≤ d .

Definition 2.7 ([49]). Let H = (V (H),E(H)) be a hyper-

graph, and X ⊆ V a set of vertices. Denote by E(H)|X =

{X ∩ e | e ∈ E(H)}. X is called shattered if E(H)|X = 2
X
.

The Vapnik-Chervonenkis dimension (VC dimension) of H is

the maximum cardinality of a shattered subset of V . We say

that a class C of hypergraphs has bounded VC-dimension,

if there exists v ≥ 1, such that every hypergraph H ∈ C has

VC-dimension ≤ v .

The above four properties help to solve or approximate the

Check(GHD,k) and Check(FHD,k) problems as follows:

Theorem 2.8 ([18, 19]). Let C be a class of hypergraphs.

• If C has the BMIP, then the Check(GHD,k) problem is

solvable in polynomial time for arbitrary k ≥ 1. Conse-

quently, this tractability holds if C has bounded degree or

the BIP (which each imply the BMIP) [19].

• If C has bounded degree, then the Check(FHD,k) problem
is solvable in polynomial time for arbitrary k ≥ 1 [18].

• If C has bounded VC-dimension, then the fhw can be ap-

proximated in polynomial time up to a log-factor [19].

3 HYPERBENCH BENCHMARK AND
TOOL

In this section, we introduce our system, test environment,

and HyperBench – our new benchmark and web tool.

System and Test Environment. In [26], an implementa-

tion (called DetKDecomp) of the hypertree decomposition

algorithm from [24] was presented. We have extended this

implementation and built our library (called NewDetKDecomp)
upon it. This library includes the original hw-algorithm

from [26], the tool hg-stats to determine properties de-

scribed in Section 4 and the algorithms to be presented in

Sections 5 and 6. The library is written in C++ and comprises

around 8,500 lines of code. The code is available in GitHub

at http://github.com/TUfischl/newdetkdecomp.

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

467

http://github.com/TUfischl/newdetkdecomp

All the experiments reported in this paper were performed

on a cluster of 10 workstations each running Ubuntu 16.04.

Every workstation has the same specification and is equip-

ped with two Intel Xeon E5-2650 (v4) processors each having

12 cores and 256-GB main memory. Since all algorithms

are single-threaded, we were allowed to compute several

instances in parallel. For all upcoming runs of our algorithms

we set a timeout of 3600s.

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−10
11−20
21−30
31−40
41−50
>50

Vertices

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−10
11−20
21−30
31−40
41−50
>50

Edges

CSP Other

CSP Random

CSP Application

CQ Random

CQ Application

0% 25% 50% 75% 100%

1−5
6−10
11−15
16−20
>20

Arity

Figure 1: Hypergraph Sizes

Hypergraph benchmark. Our benchmark contains 3,070

hypergraphs, which have been converted fromCQs and CSPs

collected from various sources. Out of these 3,070 hyper-

graphs, 2,918 hypergraphs have never been used in a hy-

pertree width analysis before. The hypertree width of 70

CQs and of 82 CSPs has been analysed in [26], [11], and/or

Table 1: Overview of benchmark instances

Benchmark No. instances hw ≥ 2

C
Q
s

SPARQL[12] 70 (out of 26,157,880) 70

LUBM[10, 28] 14 2

iBench[6, 10] 40 0

Doctors[10, 20] 14 0

Deep[10] 41 0

JOB (IMDB) [36] 33 7

TPC-H [9, 47] 33 1

SQLShare [30] 290 (out of 15,170) 1

Random [43] 500 464

C
S
P
s

Application [7] 1,090 1,090

Random [7] 863 863

Other [11, 26] 82 82

Total: 3,070 2,580

[12]. An overview of all instances of CQs and CSPs is given

in Table 1. They have been collected from various publicly

available benchmarks and repositories of CQs and CSPs. In

the first column, the names of each collection of CQs and

CSPs are given together with references where they were

first published. In the second column we display the number

of hypergraphs extracted from each collection. The hw of

the CQs and CSPs in our benchmark will be discussed in

detail in Section 4. To get a first feeling of the hw of the vari-

ous sources, we mention the number of cyclic hypergraphs

(i.e., those with hw ≥ 2) in the last column. When gathering

the CQs, we proceeded as follows: of the huge benchmark

reported in [12], we have only included CQs, which were

detected as having hw ≥ 2 in [12]. Of the big repository

reported in [30], we have included those CQs, which are not

trivially acyclic (i.e., they have at least 3 atoms). Of all the

small collections of queries, we have included all.

Below, we describe the different benchmarks in detail:

• CQs: Our benchmark contains 535 CQs from four main

sources [9, 10, 12, 30] and a set of 500 randomly generated

queries using the query generator of [43]. In the sequel, we

shall refer to the former queries as CQ Application, and to the

latter as CQ Random. The CQs analysed in [12] constitute by

far the biggest repository of CQs – namely 26,157,880 CQs

stemming from SPARQL queries. The queries come from

real-users of SPARQL endpoints and their hypertree width

was already determined in [12]. Almost all of these CQs were

shown to be acyclic. Our analysis comprises 70 CQs from

[12], which (apart from few exceptions) are essentially the

ones in [12] with hw ≥ 2. In particular, we have analysed

all 8 CQs with highest hw among the CQs analysed in [12]

(namely, hw = 3).

The LUBM [28], iBench [6], Doctors [20], and Deep sce-

narios have been recently used to evaluate the performance

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

468

of chase-based systems [10]. Their queries were especially

tailored towards the evaluation of query answering tasks

of such systems. Note that the LUBM benchmark [28] is a

widely used standard benchmark for the evaluation of Seman-

tic Web repositories. Its queries are designed to measure the

performance of those repositories over large datasets. Strictly

speaking, the iBench is a tool for generating schemas, con-

straints, and mappings for data integration tasks. However,

in [10], 40 queries were created for tests with the iBench.

We therefore refer to these queries as iBench-CQs here. In

summary, we have incorporated all queries that were either

contained in the original benchmarks or created/adapted for

the tests in [10].

The goal of the Join Order Benchmark (JOB) [36] was to

evaluate the impact of a good join order on the performance

of query evaluation in standard RDBMS. Those queries were

formulated over the real-world dataset Internet Movie Data-

base (IMDB). All of the queries have between 3 and 16 joins.

Clearly, as the goal was to measure the impact of a good join

order, those 33 queries are of higher complexity, hence 7 out

of the 33 queries have hw ≥ 2.

The 33 TPC-H queries in our benchmark are from the

GitHub repository originally provided by Michael Benedikt

and Efthymia Tsamoura [9] for the work on [10]. Out of

the 33 CQs based on the TPC-H benchmark [47], 13 queries

were handcrafted and 20 randomly generated. The TPC-H

benchmark has been widely used to assess multiple aspects

of the capabilities of RDBMS to process queries. They reflect

common workloads in decision support systems and were

chosen to have broad industry-wide relevance.

From SQLShare [30], a multi-year SQL-as-a-service exper-

iment with a large set of real-world queries, we extracted

15,170 queries by considering all CQs (in particular, no nested

SELECTs). After eliminating trivial queries (i.e., queries with

≤ 2 atoms, whose acyclicity is immediate) and duplicates,

we ended up with 290 queries.

The random queries were generated with a tool that stems

from the work on query answering using views in [43]. The

query generator allows 3 options: chain/star/random queries.

Since the former two types are trivially acyclic, we only

used the third option. Here it is possible to supply several

parameters for the size of the generated queries. In terms of

the resulting hypergraphs, one can thus fix the number of

vertices, number of edges and arity. We have generated 500

CQswith 5 – 100 vertices, 3 – 50 edges and arities from 3 to 20.

These values correspond to the values observed for the CQ

Application hypergraphs. However, even though these size

values have been chosen similarly, the structural properties

of the hypergraphs in the two groups CQ Application and

CQ Random differ significantly, as will become clear from

our analysis in Section 4.

• CSPs: In total, our benchmark currently contains 2,035

hypergraphs from CSP instances, out of which 1,953 in-

stances were obtained from xcsp.org (see also [7]). We have

selected all CSP instances from xcsp.org with less than 100

constraints such that all constraints are extensional. These

instances are divided into CSPs from concrete applications,

called CSP Application in the sequel (1,090 instances), and

randomly generated CSPs, called CSP Random below (863

instances). In addition, we have included 82 CSP instances

from previous hypertree width analyses provided at https:

//www.dbai.tuwien.ac.at/proj/hypertree/; all of these stem

from industrial applications and/or further CSP benchmarks.

We refer to these instances as other CSPs.

Our HyperBench benchmark consists of these instances

converted to hypergraphs. In Figure 1, we show the number

of vertices, the number of edges and the arity (i.e., the max-

imum size of the edges) as three important metrics of the

size of each hypergraph. The smallest are those coming from

CQ Application (at most 10 edges), while the hypergraphs

coming from CSPs can be significantly larger (up to 2993

edges). Although some hypergraphs are very big, more than

50% of all hypergraphs have maximum arity less than 5. In

Figure 1 we can easily compare the different types of hyper-

graphs, e.g. hypergraphs of arity greater than 20 only exist

in the CSP Application class; the other CSPs class contains

the highest portion of hypergraphs with a big number of

vertices and edges, etc.

The hypergraphs and the results of our analysis can be ac-

cessed through our web tool, available at http://hyperbench.

dbai.tuwien.ac.at.

4 FIRST EMPIRICAL ANALYSIS
In this section, we present first empirical results obtained

with the HyperBench benchmark. On the one hand, we want

to get an overview of the hypertree width of the various types

of hypergraphs in our benchmark (cf. Goal 2 in Section 1).

On the other hand, we want to find out how realistic the

restriction to low values for certain hypergraph invariants

is (cf. Goal 3 stated in Section 1).

Hypergraph Properties. In [18, 19], several invariants of

hypergraphs were used to make the Check(GHD,k) and
Check(FHD,k) problems tractable or, at least, easier to ap-

proximate. We thus investigate the following properties (cf.

Definitions 2.4 – 2.7):

• Deg: the degree of the underlying hypergraph

• BIP: the intersection width

• c-BMIP: the c-multi-intersection width for c ∈ {3, 4}
• VC-dim: the VC-dimension

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

469

xcsp.org
xcsp.org
https://www.dbai.tuwien.ac.at/proj/hypertree/
https://www.dbai.tuwien.ac.at/proj/hypertree/
http://hyperbench.dbai.tuwien.ac.at
http://hyperbench.dbai.tuwien.ac.at

Table 2: Properties of all benchmark instances

CQ Application

i Deg BIP 3-BMIP 4-BMIP VC-dim

0 0 0 118 173 10

1 2 421 348 302 393

2 176 85 59 50 132

3 137 7 5 5 0

4 87 5 5 5 0

5 35 17 0 0 0

6 98 0 0 0 0

CQ Random

i Deg BIP 3-BMIP 4-BMIP VC-dim

0 0 1 16 49 0

1 1 17 77 125 20

2 15 53 90 120 133

3 38 62 103 74 240

4 31 63 62 42 106

5 33 71 47 28 1

6 382 233 105 62 0

CSP Application & Other

i Deg BIP 3-BMIP 4-BMIP VC-dim

0 0 0 597 603 0

1 0 1037 495 525 0

2 597 95 57 23 1115

3 6 29 21 21 52

4 20 10 2 0 0

5 6 0 0 0 0

>5 543 1 0 0 0

CSP Random

i Deg BIP 3-BMIP 4-BMIP VC-dim

0 0 0 0 0 0

1 0 200 200 238 0

2 0 224 312 407 220

3 0 76 147 95 515

4 12 181 161 97 57

5 8 99 14 1 71

>5 843 83 29 25 0

The results obtained from computing Deg, BIP, 3-BMIP,

4-BMIP, and VC-dim for the hypergraphs in the HyperBench

benchmark are shown in Table 2.

Table 2 has to be read as follows: In the first column, we

distinguish different values of the various hypergraph met-

rics. In the columns labelled “Deg“, “BIP“, etc., we indicate

for how many instances each metric has a particular value.

For instance, by the last row in the second column, only 98

non-random CQs have degree > 5. Actually, for most CQs,

the degree is less than 10. Moreover, for the BMIP, already

with intersections of 3 edges, we get 3-miwidth(H) ≤ 2 for

almost all non-random CQs. Also the VC-dimension is ≤ 2.

For CSPs, all properties may have higher values. However,

we note a significant difference between randomly gener-

ated CSPs and the rest: For hypergraphs in the groups CSP

Application and CSP Other , 543 (46%) hypergraphs have a

high degree (>5), but nearly all instances have BIP or BMIP

of less than 3. And most instances have a VC-dimension of

at most 2. In contrast, nearly all random instances have a

significantly higher degree (843 out of 863 instances with a

degree >5). Nevertheless, many instances have small BIP and

BMIP. For nearly all hypergraphs (838 out of 863) we have

4-miwidth(H) ≤ 4. For 5 instances the computation of the

VC-dimension timed out. For all others, the VC-dimension is

≤ 5 for random CSPs. Clearly, as seen in Table 2, the random

CQs resemble the random CSPs a lot more than the CQ and

CSP Application instances. For example, random CQs have

similar to random CSPs high degree (382, corresponding to

76%, with degree > 5), higher BIP and BMIP. Nevertheless,

similar to random CSPs, the values for BIP and BMIP are still

small for many random CQ instances.

To conclude, for the proposed properties, in particular

BIP/BMIP and VC-dimension, most of the hypergraphs in

our benchmark indeed have low values.

Hypertree Width. We have systematically applied the hw-

computation from [26] to all hypergraphs in the benchmark.

The results are summarized in Figure 2. In our experiments,

we proceeded as follows. We distinguish between CQ Ap-

plication, CQ Random, and all three groups of CSPs taken

together. For every hypergraph H , we first tried to solve the

Check(HD,k) problem for k = 1. In case of CQ Application,

we thus got 454 yes-answers and 81 no-answers. The number

in each bar indicates the average runtime to find these yes-

and no-instances, respectively. Here, the average runtime

was “0” (i.e., less than 1 second). For CQ Random we got 36

yes- and 464 no-instances with an average runtime below 1

second. For all CSP-instances, we only got no-answers.

In the second round, we tried to solve the Check(HD,k)
problem for k = 2 for all hypergraphs that yielded a no-

answer for k = 1. Now the picture is a bit more diverse: 73

of the remaining 81 CQs from CQ Application yielded a yes-

answer in less than 1 second. For the hypergraphs stemming

from CQ Random (resp. CSPs), only 68 (resp. 95) instances

yielded a yes-answer (in less than 1 second on average), while

396 (resp. 1932) instances yielded a no-answer in less than

7 seconds on average and 8 CSP instances led to a timeout

(i.e., the program did not terminate within 3,600 seconds).

This procedure is iterated by incrementing k and running

the hw-computation for all instances, that either yielded a

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

470

0s

0s

0s
0s

0s0

100

200

300

400

500

1 2 3
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CQ Application

0s

0s

0s

0s

32s

0s

544s

0s

610s

0s

5s

0s0

100

200

300

400

500

1 2 3 4 5 10 15
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CQ Random

0s 7s

0s

988s

0s

1156s

21s

0s
30s

0s

0s 1s 0s 0s0

500

1000

1500

2000

1 2 3 4 5 10 15 25 50 75
k

N
o.

 o
f i

ns
ta

nc
es

yes no timeout

CSP

Figure 2: HW analysis (labels are avg. runtimes in s)

no-answer or a timeout in the previous round. For instance,

for queries from CQ Application, one further round is needed

after the second round. In other words, we confirm the ob-

servation of low hw, which was already made for CQs of

arity ≤ 3 in [12, 42]. For the hypergraphs stemming from CQ

Random (resp. CSPs), 396 (resp. 1940) instances are left in the

third round, of which 70 (resp. 232) yield a yes-answer in less

than 1 second on average, 326 (resp. 1415) instances yield a

no-answer in 32 (resp. 988) seconds on average and no (resp.

293) instances yield a timeout. Note that, as we increase k ,
the average runtime and the percentage of timeouts first

increase up to a certain point and then they decrease. This

is due to the fact that, as we increase k , the number of com-

binations of edges to be considered in each λ-label (i.e., the
function λu at each node u of the decomposition) increases.

In principle, we have to test O(nk) combinations, where n
is the number of edges. However, if k increases beyond a

certain point, then it gets easier to “guess” a λ-label since an
increasing portion of the O(nk) possible combinations leads

to a solution (i.e., an HD of desired width).

To answer the question in Goal 2, it is indeed the case

that for a big number of instances, the hypertree width is

small enough to allow for efficient evaluation of CQs or CSPs:

all instances of non-random CQs have hw ≤ 3 no matter

whether their arity is bounded by 3 (as in case of SPARQL

queries) or not; and a large portion (at least 1027, i.e., ca. 50%)

of all 2035 CSP instances have hw ≤ 5. In total, including

random CQs, 1,849 (60%) out of 3,070 instances have hw ≤ 5,

for which we could determine the exact hypertree width for

1,453 instances; the others may even have lower hw.

Correlation Analysis. Finally, we have analysed the pair-

wise correlation between all properties. Of course, the dif-

ferent intersection widths (BIP, 3-BMIP, 4-BMIP) are highly

correlated. Other than that, we only observe quite a high

correlation of the arity with the number of vertices and the

hypertree width and of the number of vertices with the arity

and the hypertree width. Clearly, the correlation between

arity and hypertree width is mainly due to the CSP instances

and the random CQs since, for non-random CQs, the hw

never increases beyond 3, independently of the arity.

A graphical presentation of all pairwise correlations is

given in Figure 3. Here, large, dark circles indicate a high cor-

relation, while small, light circles stand for low correlation.

Blue circles indicate a positive correlation while red circles

stand for a negative correlation. In [19], we have argued

that Deg, BIP, 3-BMIP, 4-BMIP and VC-dim are non-trivial

restrictions to achieve tractability. It is interesting to note

that, according to the correlations shown in Figure 3, these

properties have almost no impact on the hypertree width

of our hypergraphs. This underlines the usefulness of these

restrictions in the sense that (a) they make the GHD compu-

tation and FHD approximation easier [19] but (b) low values

of degree, (multi-)intersection-width, or VC-dimension do

not pre-determine low values of the widths.

5 GHW COMPUTATION
In this section, we report on new algorithms and implemen-

tations to solve the Check(GHD,k) problem and on new

empirical results.

Background. In [19], it is shown that the Check(GHD,k)
problem becomes tractable for fixed k ≥ 1, if we restrict

ourselves to a class of hypergraphs enjoying the BIP. As our

first empirical analysis with the HyperBench has shown (see

Section 4), it is indeed realistic to assume that the intersec-

tion width of a given hypergraph is small. We have therefore

extended the hw-computation from [26] by an implemen-

tation of the Check(GHD,k) algorithm from [19], referred

to as the “ghw-algorithm” in the sequel. This algorithm is

parameterized, so to speak, by two integers: k (the desired

width of a GHD) and i (the intersection width of H).

The key idea of the ghw-algorithm is to add a polynomial-

time computable set f (H ,k) of subedges of edges in E(H)

to the hypergraph H , such that ghw(H) = k iff hw(H ′) = k

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

471

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ve
rti
ce
s

Ed
ge
s

Ar
ity

D
eg
re
e

BI
P

3−
BM

IP

4−
BM

IP

VC
−D

im

H
W

Vertices

Edges

Arity

Degree

BIP

3−BMIP

4−BMIP

VC−Dim

HW

Figure 3: Correlation analysis.

with H = (V (H),E(H)) and H ′ = (V (H),E(H) ∪ f (H ,k)).
Tractability of Check(GHD,k) follows immediately from the

tractability of Check(HD,k). The set f (H ,k) is defined as

f (H ,k) =
⋃

e ∈E(H)

(⋃
e1, ...,ej ∈(E(H)\{e }), j≤k

2
(e∩(e1∪···∪ej))

)
,

i.e., f (H ,k) contains all subsets of intersections of edges
e ∈ E(H) with unions of ≤ k edges of H different from e .
By the BIP, the intersection e ∩ (e1 ∪ · · · ∪ ej) has at most

i · k elements. Hence, for fixed constants i and k , | f (H ,k)| is
polynomially bounded.

“Global” implementation. In a straightforward implemen-

tation of this algorithm, we compute f (H ,k) and from thisH ′

and call the hw-computation from [26] for the Check(HD,k)
problem as a “black box”. A coarse-grained overview of the

results is given in Table 3 in the column labelled as ‘Glob-

alBIP”. We call this implementation of the ghw algorithm

of [19] “global” to indicate that the set f (H ,k) is computed

“globally”, once and for all, for the entire hypergraph.We have

run the program on each hypergraph from the HyperBench

up to hypertree width 6, trying to get a smaller ghw than hw.

We have thus run the ghw-algorithm with the following pa-

rameters: for all hypergraphs H with hw(H) = k (or hw ≤ k
and, due to timeouts, we do not know if hw ≤ k − 1 holds),

where k ∈ {3, 4, 5, 6}, try to solve the Check(GHD,k − 1)

problem. In other words, we just tried to improve the width

by 1. Clearly, for hw(H) ∈ {1, 2}, no improvement is possible

since, in this case, hw(H) = ghw(H) holds.

Table 3: GHW algorithms with avg. runtimes in s

hw → GlobalBIP LocalBIP BalSep
ghw total yes no yes no no

3 → 2 310 - 128 (537) - 195 (162) 307 (12)

4 → 3 386 - 137 (2809) - 54 (2606) 249 (54)

5 → 4 427 - - - - 148 (13)

6 → 5 459 13 (162) - 13 (60) - 180 (288)

In Table 3, we report on the number of “successful” at-

tempts to solve the Check(GHD,k − 1) problem for hyper-

graphs with hw = k . Here “successful” means that the pro-

gram terminated within 1 hour. For instance, for the 310

hypergraphs with hw = 3 in the HyperBench, the “global”

computation terminated in 128 cases (i.e., 41%) when trying

to solve Check(GHD, 2). The average runtime of these “suc-

cessful” runs was 537 seconds. For the 386 hypergraphs with

hw = 4, the “global” computation terminated in 137 cases

(i.e., 35%) with average runtime 2809 when trying to solve

the Check(GHD, 3) problem. For the 886 hypergraphs with

hw ∈ {5, 6}, the “global” computation only terminated in

13 cases (i.e., 1.4%). Overall, it turns out that the set f (H ,k)
may be very big (even though it is polynomial if k and i
are constants). Hence, H ′

can become considerably bigger

than H . This explains the frequent timeouts in the GlobalBIP

column in Table 3.

“Local” implementation. Looking for ways to improve

the ghw-algorithm, we closely inspect the role played by

the set f (H ,k) in the tractability proof in [19]. The defini-

tion of this set is motivated by the problem that, in the top

down construction of a GHD, we may want to choose at

some node u the bag Bu such that x < Bu for some variable

x ∈ B(λu) ∩ V (Tu). This violates condition (4) of Defini-

tion 2.2 (the “special condition”) and is therefore forbidden

in an HD. In particular, there exists an edge e with x ∈ e and
λu (e) = 1. The crux of the ghw-algorithm in [19] is that for

every such “missing” variable x , the set f (H ,k) contains a
subedge e ′ ⊆ e with x < e ′. Hence, replacing e by e ′ in λu
(i.e., setting λu (e) = 0, λu (e

′) = 1 and leaving λu unchanged

elsewhere) eliminates the special condition violation. By the

connectedness condition, it suffices to consider the intersec-

tions of e with unions of edges that may possibly occur in

bags ofTu rather than with arbitrary edges in E(H). In other

words, for each nodeu in the decomposition, we may restrict

f (H ,k) to an appropriate subset fu (H ,k) ⊆ f (H ,k).
The results obtained with this enhanced version of the

ghw-computation are shown in Table 3 in the column la-

belled “LocalBIP”. We call this ghw-computation “local” be-

cause the set fu (H ,k) of subedges of H to be added to the

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

472

hypergraph is computed separately for each nodeu of the de-

composition. Recall that in this table, the “successful” calls of

the program are recorded. Interestingly, for the hypergraphs

with hw = 3, the “local” computation performs significantly

better (namely 63% solved with average runtime 162 sec-

onds rather than 41% with average runtime 537 seconds). In

contrast, for the hypergraphs with hw = 4, the “global” com-

putation is significantly more successful. For hw ∈ {5, 6},
the “global” and “local” computations are equally bad. A pos-

sible explanation for the reverse behaviour of “global” and

“local” computation in case of hw = 3 as opposed to hw = 4

is that the restriction of the “global” set f (H ,k) of subedges
to the “local” set fu (H ,k) at each node u seems to be quite

effective for the hypergraphs with hw = 3. In contrast, the

additional cost of having to compute fu (H ,k) at each node u
becomes counter-productive, when the set of subedges thus

eliminated is not significant. It is interesting to note that the

sets of solved instances of the global computation and the

local computation are incomparable, i.e., in some cases one

method is better, while in other cases the other method is

better.

New alternative approach: “balanced separators”. We

now propose a completely new approach, based on so-called

“balanced separators”. The latter are a familiar concept in

graph theory [16, 46] – denoting a set S of vertices of a graph

G, such that the subgraph G ′
induced by V (G) \ S has no

connected component larger than some given size, e.g., α · |V |

for some given α ∈ (0, 1). In our setting, we may consider

the label λu at some node u in a GHD as separator in the

sense that we can consider connected components of the

subhypergraph H ′
of H induced by V (H) \ Bu . Clearly, in a

GHD, we may consider any node as the root. So suppose that

u is the root of some GHD. Moreover, as is shown in [19] in

the proof of tractability of Check(GHD,k) in case of the BIP,

we may choose λu such that B(λu) = Bu if the subedges in

f (H ,k) have been added to the hypergraph.

By the HD-algorithm from [24], we know that an HD of

H ′
(and, hence, a GHD of H) can be constructed in such a

way that every subtree rooted at a child nodeui ofu contains

only one connected component Ci of the subhypergraph of

H ′
induced by V (H) \ Bu . For our purposes, it is convenient

to define the size of a component Ci as the number of edges

that have to be covered at some node in the subtree rooted

at ui in the GHD. We thus call a separator λu “balanced”,

if the size of each component Ci is at most |E(H ′)|/2. The

following observation is immediate:

Proposition 5.1. In every GHD, there exists a nodeu (which

we may choose as the root) such that λu is a balanced separator.

This property allows us to design the algorithm sketched

in Figure 4 to compute a GHD of H ′
. Actually, as will be-

come clear below, we assume that the input to this recursive

ALGORITHM Find_GHD_via_balancedSeparators

// high-level description

Input: hypergraph H ′
, integer k ≥ 0.

Output: a GHD ⟨T ,Bu , λu ⟩ of width ≤ k if exists,

“Reject”, otherwise.

Procedure Find_GHD (H : Hypergraph,

Sp: Set of special edges)

begin
1. Base Case: if there are only two edges or special edges left

then stop and return a GHD with one node for each

edge or special edge, respectively.

2. Find a balanced separator: for all λ : E(H ′) → {0, 1}

check if λu is a balanced separator for H ;

if none is found then return Reject.

3. Split H into connected components C1, . . . ,Cℓ w.r.t. λu :
Ci ⊆ V (H) \ B(λu) for every i and Ci is connected
in H and each Ci is maximal with this property.

4. Build the pair

〈
Hi , Spi

〉
(the subhypergraph based on Ci

and the special edges in Ci) for each connected

component Ci ;
add B(λu) as one more special edge to each set Spi .

5. Call Find_GHD(Hi , Spi) for each pair

〈
Hi , Spi

〉
;

each successful call returns a GHD Ti for Hi
if one call returns Reject then return Reject.

6. Create and return a new GHD for H having λu as root:

each Ti has one leaf node labelled B(λu);
the new GHD is obtained by gluing together all

subtrees Ti at the node with label B(λu).
end

begin (* Main *)

return Find_GHD (H ′
, ∅);

end

Figure 4: GHD-algorithm via balanced separators

algorithm consists of a hypergraph plus a set Sp of “special

edges” and we request that the GHD to be constructed con-

tains “special nodes”, which (a) have to be leaf nodes in the

decomposition and (b) the λ-label of such a leaf node con-

sists of a single special edge only. Each special edge contains

the set of vertices Bu of some balanced separator λu further

up in the hierarchy of recursive calls of the decomposition

algorithm. The special edges are propagated to the recursive

calls for subhypergraphs in order to determine how to assem-

ble the overall GHD from the GHDs of the subhypergraphs.

This will become clearer in the proof sketch of Theorem 5.2

which, for space reasons, is given in the appendix.

Theorem 5.2. Let H be a hypergraph, let k ≥ 1, and let

H ′
be obtained from H by adding the subedges in f (H ,k) to

E(H). Then the algorithm Find_GHD_via_balancedSeparators

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

473

Table 4: GHW of instances with average runtime in s

hw → ghw yes no timeout

3 → 2 0 309 (10) 1

4 → 3 0 262 (57) 124

5 → 4 0 148 (13) 279

6 → 5 18 (129) 180 (288) 261

given in Figure 4 outputs a GHD of width ≤ k if one exists and

rejects otherwise.

If we look at the number of solved instances in Table 3,

we see that the recursive algorithm via balanced separators

(reported in the last column labelled BalSep) has the least
number of timeouts due to the fast identification of negative

instances (i.e., those with no-answer), where it often detects

quite fast that a given hypergraph does not have a balanced

separator of desiredwidth. Ask increases, the performance of

the balanced separators approach deteriorates. This is due to

k in the exponent of the running time of our algorithm, i.e. we

need to check for each of the possible O(nk+1) combinations

of ≤ k edges if it constitutes a balanced separator. Note that

the balanced separators approach only terminated in case of

no-answers. We have therefore omitted the yes-column for

this algorithm in Table 3.

Empirical results.We now look at Table 4, where we report

for all hypergraphs with hw ≤ k and k ∈ {3, 4, 5, 6}, whether
ghw ≤ k − 1 could be verified. To this end, we run our three

algorithms (“global”, “local”, and “balanced separators”) in

parallel and stop the computation, as soon as one terminates

(with answer “yes” or “no”). The number in parentheses

refers to the average runtime needed by the fastest of the

three algorithms in each case. A timeout occurs if none of

the three algorithms terminates within 3,600 seconds. It is

interesting to note that in the vast majority of cases, no

improvement of the width is possible when we switch from

hw to ghw: in 98% of the solved cases and 57% of all instances

with hw ≤ 6, hw and ghw have identical values. Actually,

we think that the high percentage of the solved cases gives a

more realistic picture than the percentage of all cases for the

following reason: our algorithms (in particular, the “global”

and “local” computations) need particularly long time for

negative instances. This is due to the fact that in a negative

case, “all” possible choices of λ-labels for a node u in the

GHD have to be tested before we can be sure that no GHD

of H (or, equivalently, no HD of H ′
) of desired width exists.

Hence, it seems plausible that the timeouts are mainly due

to negative instances. This also explains why our new GHD

algorithm in Figure 4, which is particularly well suited for

negative instances, has the least number of timeouts.

We conclude this section with a final observation: in Fig-

ure 2, we had many cases, for which only some upper bound

k on the hw could be determined, namely those cases, where

the attempt to solve Check(HD,k) yields a yes-answer and
the attempt to solve Check(HD,k − 1) gives a timeout. In

several such cases, we could get (with the balanced sep-

arator approach) a no-answer for the Check(GHD,k − 1)

problem, which implicitly gives a no-answer for the problem

Check(HD,k−1). In this way, our new ghw-algorithm is also

profitable for the hw-computation: for 827 instances with

hw ≤ 6, we were not able to determine the exact hypertree

width. Using our new ghw-algorithm, we closed this gap for

297 instances; for these instances hw = ghw holds.

To sum up, we now have a total of 1,778 (58%) instances

for which we determined the exact hw and a total of 1,406

instances (46%) for which we determined the exact ghw. Out

of these, 1,390 instances had identical values for hw and

ghw. In 16 cases, we found an improvement of the width

by 1 when moving from hw to ghw, namely from hw = 6

to ghw = 5. In 2 further cases, we could show hw ≤ 6 and

ghw ≤ 5, but the attempt to check hw = 5 or ghw = 4 led

to a timeout. Hence, in response to Goal 6, hw is equal to

ghw in 45% of the cases if we consider all instances and in

60% of the cases (1,390 of 2,308) with small width (hw ≤ 6).

However, if we consider the fully solved cases (i.e., where

we have the precise value of hw and ghw), then hw and ghw

coincide in 99% of the cases (1,390 of 1,406).

6 FRACTIONALLY IMPROVED
DECOMPOSITIONS

The algorithms proposed in the literature for computing

FHDs are very expensive. For instance, even the algorithm

used for the tractability result in [18] for hypergraphs of low

degree is problematical since it involves a double-exponential

factor in the degree. Therefore, we investigate the potential

of a simplified method to compute approximated FHDs. Be-

low, we present two algorithms for such approximated FHD

computations – with a trade-off between computational cost

and quality of the approximation.

• The simplest way to obtain a fractionally improved

(G)HD is to take either a GHD or HD as input and compute

a fractionally improved (G)HD. To this end, an algorithm

(whichwe refer to as SimpleImproveHD) visits each nodeu of

a given GHD or HD and computes an optimal fractional edge

cover γu for the set Bu of vertices. This algorithm is simple

and computationally inexpensive, provided that we can start

off with a GHD or HD that was computed before. In our case,

we simply took the HD resulting from the hw-computation

reported in Figure 2. Clearly, this approach is rather naive

and the dependence on a concrete HD is unsatisfactory. We

therefore move to a more sophisticated algorithm.

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

474

Table 5: Instances solved with SimpleImproveHD

hw ≥ 1 [0.5, 1) [0.1, 0.5) no timeout

2 0 41 25 172 0

3 12 104 25 169 0

4 9 55 11 311 0

5 20 14 11 382 0

6 12 60 80 309 0

• The algorithm FracImproveHD has as input a hyper-

graph H and numbers k,k ′ ≥ 1, where k is an upper bound

on the hw and k ′
the desired fractionally improved hw. We

search for an FHD D ′
with D ′ = SimpleImproveHD(D) for

some HDD ofH withwidth(D) ≤ k andwidth(D ′) ≤ k ′
. In

other words, this algorithm searches for the best fractionally

improved HD over all HDs of width ≤ k . Hence, the result is
independent of any concrete HD.

The experimental results with these algorithms for com-

puting fractionally improvedHDs are summarized in Tables 5

and 6. We have applied these algorithms to all hypergraphs

for which hw ≤ k withk ∈ {2, 3, 4, 5} is known from Figure 2.

The various columns of the Tables 5 and 6 are as follows:

the first column (labelled hw) refers to the (upper bound on

the) hw according to Figure 2. The next 3 columns, labelled

≥ 1, [0.5, 1), and [0.1, 0.5) tell us, by how much the width

can be improved (if at all) if we compute an FHD by one of

the two algorithms. We thus distinguish the 3 cases if, for a

hypergraph of hw ≤ k , we manage to construct an FHD of

width k−c for c ≥ 1, c ∈ [0.5, 1), or c ∈ [0.1, 0.5). The column

with label “no” refers to the cases where no improvement at

all or at least no improvement by c ≥ 0.1 was possible. The
last column counts the number of timeouts.

For instance, in the first row of Table 5, we see that (with

the SimpleImproveHD algorithm and starting from the HD

obtained by the hw-computation of Figure 2) out of 238

hypergraphs with hw = 2, no improvement was possible

in 172 cases. In the remaining 66 cases, an improvement to

a width of at most 2 − 0.5 was possible in 25 cases and an

improvement to k − c with c ∈ [0.1, 0.5) was possible in 41

cases. For the hypergraphs with hw = 3 in Figure 2, almost

half of the hypergraphs (141 out of 310) allowed at least some

improvement, in particular, 104 by c ∈ [0.5, 1) and 12 even by
at least 1. The improvements achieved for the hypergraphs

with hw ≤ 4 and hw ≤ 5 are less significant.

The results obtained with our FracImproveHD implemen-

tation are displayed in Table 6. We see that the number of

hypergraphs which allow for a fractional improvement of

the width by at least 0.5 or even by 1 is often bigger than

with SimpleImproveHD – in particular in the cases where

k ′ ≤ k with k ∈ {4, 5} holds. In the other cases, the results

Table 6: Instances solved with FracImproveHD

hw ≥ 1 [0.5, 1) [0.1, 0.5) no timeout

2 0 46 29 160 1

3 14 116 21 135 24

4 11 81 2 8 284

5 18 126 59 2 222

6 28 149 95 4 183

obtained with the naive SimpleImproveHD algorithm are

not much worse than with the more sophisticated FracIm-

proveHD algorithm.

7 RELATED WORK
Wedistinguish several types of works that are highly relevant

to ours. The works most closely related are the descriptions

of HD, GHD and FHD algorithms in [19, 24] and the imple-

mentation of HD computation by the DetKDecomp program

reported in [26]. We have extended these works in several

ways. Above all, we have incorporated our analysis tool

(reported in Sections 3 and 4) and the GHD and FHD compu-

tations (reported in Sections 5 and 6) into the DetKDecomp
program – resulting in our NewDetKDecomp library, which is

openly available on GitHub. For the GHD computation, we

have added heuristics to speed up the basic algorithm from

[19]. Moreover, we have proposed a novel approach via bal-

anced separators, which allowed us to significantly extend

the range of instances for which the GHD computation ter-

minates in reasonable time. We have also introduced a new

form of decomposition method: the fractionally improved

decompositions (see Section 6), which allow for a practical,

lightweight form of FHDs.

The second important input to our work comes from the

various sources [6, 9–11, 20, 26, 30, 35, 47] which we took

our CQs and CSPs from. Note that our main goal was not to

add further CQs and/or CSPs to these benchmarks. Instead,

we have aimed at taking and combining existing, openly

accessible benchmarks of CQs and CSPs, convert them into

hypergraphs, which are then thoroughly analysed. Finally,

the hypergraphs and the analysis results are made openly

accessible again.

The third kind of works highly relevant to ours are previ-

ous analyses of CQs and CSPs. To the best of our knowledge,

Ghionna et al. [21] presented the first systematic study of

HDs of benchmark CQs from TPC-H. However, Ghionna

et al. pursued a research goal different from ours in that

they primarily wanted to find out to what extent HDs can

actually speed up query evaluation. They achieved very pos-

itive results in this respect, which have recently been con-

firmed by the work of Perelman et al. [41], Tu et al. [48] and

Aberger et al. [1] on query evaluation using FHDs. As a side

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

475

result, Ghionna et al. also detected that CQs tend to have

low hypertree width (a finding which was later confirmed

in [12, 42] and also in our study). In a pioneering effort,

Bonifati, Martens, and Timm [12] have recently analysed

an unprecedented, massive amount of queries: they investi-

gated 180,653,910 queries from (not openly available) query

logs of several popular SPARQL endpoints. After elimination

of duplicate queries, there were still 56,164,661 queries left,

out of which 26,157,880 queries were in fact CQs. The au-

thors thus significantly extend previous work by Picalausa

and Vansummeren [42], who analysed 3,130,177 SPARQL

queries posed by humans and software robots at the DB-

Pedia SPARQL endpoint. The focus in [42] is on structural

properties of SPARQL queries such as keywords used and

variable structure in optional patterns. There is one para-

graph devoted to CQs, where it is noted that 99.99% of ca. 2

million CQs considered in [42] are acyclic.

Many of the CQs (over 15 million) analysed in [12] have

arity 2 (here we consider the maximum arity of all atoms in

a CQ as the arity of the query), which means that all triples

in such a SPARQL query have a constant at the predicate-

position. Bonifati et al. made several interesting observa-

tions concerning the shape of these graph-like queries. For

instance, they detected that exactly one of these queries has

tw = 3, while all others have tw ≤ 2 (and hence hw ≤ 2). As

far as the CQs of arity 3 are concerned (for CQs expressed

as SPARQL queries, this is the maximum arity achievable),

among many characteristics, also the hypertree width was

computed by using the original DetKDecomp program from

[26]. Out of 6,959,510 CQs of arity 3, only 86 (i.e. 0.01‰)

turned out to have hw = 2 and 8 queries had hw = 3 , while

all other CQs of arity 3 are acyclic. Our analysis confirms

that, also for non-random CQs of arity > 3, the hypertree

width indeed tends to be low, with the majority of queries

being even acyclic.

For the analysis of CSPs, much less work has been done.

Although it has been shown that exploiting (hyper-) tree

decompositions may significantly improve the performance

of CSP solving [4, 29, 31, 34], a systematic study on the

(generalized) hypertree width of CSP instances has only been

carried out by few works [26, 34, 45]. To the best of our

knowledge, we are the first to analyse the hw, ghw, and fhw

of ca. 2,000 CSP instances, where most of these instances

have not been studied in this respect before.

It should be noted that the focus of our work is different

from the above mentioned previous works: above all, we

wanted to test the practical feasibility of various algorithms

for HD, GHD, and FHD computation (including both, pre-

viously presented algorithms and new ones developed as

part of this work). As far as our repository of hypergraphs

(obtained from CQs and CSPs) is concerned, we emphasize

open accessibility. Thus, users can analyse their CQs and

CSPs (with our implementations of HD, GHD, and FHD algo-

rithms) or they can analyse new decomposition algorithms

(with our hypergraphs, which cover quite a broad range of

characteristics). In fact, in the recent work on FHD computa-

tion via SMT solving [17], the Hyperbench benchmark has

already been used for the experimental evaluation. In [17] a

novel approach to fhw computation via an efficient encod-

ing of the check-problem for FHDs to SMT (SAT modulo

Theory) is presented. The tests were carried out with 2,191

hypergraphs from the initial version of the HyperBench. For

all of these hypergraphs we have established at least some

upper bound on the fhw either by our hw-computation or

by one of our new algorithms presented in Sections 5 and 6.

In contrast, the exact algorithm in [17] found FHDs only for

1.449 instances (66%). In 852 cases, both our algorithms and

the algorithm in [17] found FHDs of the same width; in 560

cases, an FHD of lower width was found in [17]. By using

the same benchmark for the tests, the results in [17] and

ours are comparable and have thus provided valuable input

for future improvements of the algorithms by combining the

different strengths and weaknesses of the two approaches.

The use of the same benchmark has also allowed us to

provide feedback to the authors of [17] for debugging their

system: in 9 out of 2,191 cases, the “optimal” value for the

fhw computed in [19] was apparently erroneous, since it was

higher than the hw found out by our analysis; note that upper

bounds on the width are, in general, more reliable than lower

bounds since it is easy to verify if a given decomposition

indeed has the desired properties, whereas ruling out the

existence of a decomposition of a certain width is a complex

and error-prone task.

8 CONCLUSION
In this work, we have presented HyperBench, a new and

comprehensive benchmark of hypergraphs derived fromCQs

and CSPs from various areas, together with the results of

extensive empirical analyses with this benchmark.

Lessons learned. The empirical study has brought many

insights. Below, we summarize the most important lessons

learned from our studies.

• The finding of [12, 42] that non-random CQs have low

hypertree width has been confirmed by our analysis, even if

(in contrast to SPARQL queries) the arity of the CQs is not

bounded by 3. For random CQs and CSPs, we have detected

a correlation between the arity and the hypertree width, al-

though also in this case, the increase of the hw with increased

arity is not dramatic.

• In [19], several hypergraph invariants were identified,

which make the computation of GHDs and the approxima-

tion of FHDs tractable. We have seen that, at least for non-

random instances, these invariants indeed have low values.

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

476

• The reduction of the ghw-computation problem to the

hw-computation problem in case of low intersection width

turned out to be more problematical than the theoretical trac-

tability results from [19] had suggested. Even the improve-

ment by “local” computation of the additional subedges did

not help much. However, we were able to improve this sig-

nificantly by presenting a new algorithm based on “balanced

separators”. In particular for negative instances (i.e., those

with a no-answer), this approach proved very effective.

• An additional benefit of the new ghw-algorithm based

on “balanced separators” is that it allowed us to also fill

gaps in the hw-computation. Indeed, in several cases, we

managed to verify hw ≤ k for some k but we could not

show hw � k − 1, due to a timeout for Check(HD,k − 1).

By establishing ghw � k − 1 with our new GHD-algorithm,

we have implicitly showed hw � k − 1. This allowed us to

compute the exact hw of many further hypergraphs.

• Most surprisingly, the discrepancy between hw and ghw

is much lower than expected. Theoretically, only the upper

bound hw ≤ 3 · ghw + 1 is known. However, in practice,

when considering hypergraphs of hw ≤ 6, we could show

that in 53% of all cases, hw and ghw are simply identical.

Moreover, in all cases when one of our implementations of

ghw-computation terminated on instances with hw ≤ 5, we

got identical values for hw and ghw.

Future work. Our empirical study has also given us many

hints for future directions of research. We find the following

tasks particularly urgent and/or rewarding.

• So far, we have only implemented the ghw-computation

in case of low intersection width. In [19], tractability of the

Check(GHD,k) problem was also proved for the more re-

laxed bounded multi-intersection width. Our empirical re-

sults in Table 2 show that, apart from the random CQs and

random CSPs, the 3-multi-intersection is ≤ 2 in almost all

cases. It seems therefore worthwhile to implement and test

also the BMIP-algorithm from [19].

• The three approaches for ghw-computation presented

here turned out to have complementary strengths and weak-

nesses. This was profitable when running all three algorithms

in parallel and taking the result of the first one that termi-

nates (see Table 4). In the future, we also want to implement

a more sophisticated combination of the various approaches:

for instance, one could try to apply our new “balanced sepa-

rator” algorithm recursively only down to a certain recursion

depth (say depth 2 or 3) to split a big given hypergraph into

smaller subhypergraphs and then continue with the “global”

or “local” computation from Section 5.

• Our new approach to ghw-computation via “balanced

separators” proved quite effective in our experiments. How-

ever, further theoretical underpinning of this approach is

missing. The empirical results obtained for our new GHD

algorithm via balanced separators suggest that the number

of balanced separators is often drastically smaller than the

number of arbitrary separators. We want to determine a re-

alistic upper bound on the number of balanced separators in

terms of n (the number of edges) and k (an upper bound on

the width). This will then allow us to compute also a realistic

upper bound on the runtime of this new algorithm.

• Finally, we want to further extend the HyperBench

benchmark and tool in several directions. We will thus incor-

porate further implementations of decomposition algorithms

from the literature such as the GHD- and FHD computation

in [39] or the polynomial-time FHD computation for hyper-

graphs of bounded degree in [18]. Moreover, wewill continue

to fill in hypergraphs from further sources of CSPs and CQs.

For instance, in [1, 13, 21, 22] a collection of CQs for the

experimental evaluations in those papers is mentioned. We

will invite the authors to disclose these CQs and incorporate

them into the HyperBench benchmark.

• Very recently, a new, huge, publicly available query

log has been reported in [37]. It contains over 200 million

SPARQL queries on Wikidata. In the paper, the anonymisa-

tion and publication of the query logs is mentioned as future

work. However, on their web site, the authors have mean-

while made these queries available. At first glance, these

queries seem to display a similar behaviour as the SPARQL

queries collected by Bonifatti et al. [12]: there is a big num-

ber of single-atom queries and again, the vast majority of

the queries is acyclic. A detailed analysis of the query log

in the style of [12] constitutes an important goal for future

research.

ACKNOWLEDGMENTS
This workwas supported by theAustrian Science Fund (FWF)

project P30930-N35. Davide Mario Longo’s work was sup-

ported by the Austrian Science Fund (FWF) project W1255-

N23. We would like to thank Angela Bonifati, Wim Martens,

and Thomas Timm for sharing most of the hypergraphs with

hw ≥ 2 from their work [12] and for their effort in anonymis-

ing these hypergraphs, which was required by the license

restrictions.

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

477

Appendix
Below, we give a proof a proof sketch of Theorem 5.2.

Proof Sketch. Steps 1–5 of the algorithm in Figure 4

essentially correspond to the computation of λu and Bu for

the root node u in the HD-computation of [24]. The most

significant modifications here are due to the handling of

“special edges” in parameter Sp. A crucial property of the

construction in [24] and also of our construction here is

that each subtree below node u in the decomposition only

contains vertices from a single connected component Ci
w.r.t. V (H) \ Bu (see Steps 3 and 4). Since the special edges

come from such bags Bu , special edges can never be used as

separators in recursive calls below. Hence, we can exclude

special edges from the search for a balanced separator in Step

2. The base case (in Step 1) is reached for |E(H) ∪ Sp | ≤ 2.

The correctness of assembling a GHD (in Step 6) from

the results of the recursive calls can be shown by structural

induction on the tree structure of a GHD: suppose that the

recursive calls in the algorithm for each hypergraph Hi with

set Spi of special edges are correct, i.e., they yield for each

hypergraph Hi a GHD Di such that each special edge s in
Spi is indeed covered by a leaf node in Di whose λ-label
consists of s only. In particular, since s = B(λu) is a special
edge contained in Spi for each i , there exists a leaf node ti in
Di with λti = {s}. In a GHD, any node can be taken as the

root. We thus choose ti as the root node in each GHD Di .

By construction, we have Bu = Bt1 = · · · = Btℓ . Moreover,

any two subhypergraphs Hi , Hj contain the vertices from

two different connected components. Hence, apart from the

vertices contained in the special edge s , any two GHDs Di ,

Dj with i , j have no vertices in common. We can therefore

construct a GHD D of H ′
by deleting the root node ti from

each GHD Di and by appending the child nodes of each

ti directly as child nodes of u. Clearly, the connectedness
condition is satisfied in the resulting decomposition. �

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle

Olukotun, and Christopher Ré. 2017. EmptyHeaded: A Relational

Engine for Graph Processing. ACM Trans. Database Syst. 42, 4 (2017),

20:1–20:44. https://doi.org/10.1145/3129246

[2] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher

Ré. 2016. Old Techniques for New Join Algorithms: A Case Study

in RDF Processing. CoRR abs/1602.03557 (2016). arXiv:1602.03557

http://arxiv.org/abs/1602.03557

[3] Isolde Adler, Georg Gottlob, and Martin Grohe. 2007. Hypertree width

and related hypergraph invariants. Eur. J. Comb. 28, 8 (2007), 2167–

2181. https://doi.org/10.1016/j.ejc.2007.04.013

[4] Kamal Amroun, Zineb Habbas, and Wassila Aggoune-Mtalaa. 2016. A

compressed Generalized Hypertree Decomposition-based solving tech-

nique for non-binary Constraint Satisfaction Problems. AI Commun.

29, 2 (2016), 371–392. https://doi.org/10.3233/AIC-150694

[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan

Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn.

2015. Design and Implementation of the LogicBlox System. In Proceed-

ings of the 2015 ACM SIGMOD International Conference on Management

of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, Timos K.

Sellis, Susan B. Davidson, and Zachary G. Ives (Eds.). ACM, 1371–1382.

https://doi.org/10.1145/2723372.2742796

[6] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller.

2015. The iBench Integration Metadata Generator. PVLDB 9, 3 (2015),

108–119. https://doi.org/10.14778/2850583.2850586

[7] Gilles Audemard, Frédéric Boussemart, Christophe Lecoutre, and Cé-

dric Piette. 2016. XCSP3: an XML-based format designed to represent

combinatorial constrained problems. http://www.xcsp.org/

[8] Nurzhan Bakibayev, Tomás Kociský, Dan Olteanu, and Jakub Zavodny.

2013. Aggregation and Ordering in Factorised Databases. PVLDB 6, 14

(2013), 1990–2001. https://doi.org/10.14778/2556549.2556579

[9] Michael Benedikt. 2017. CQ benchmarks. Personal Communication.

[10] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris

Motik, Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017.

Benchmarking the Chase. In Proceedings of the 36th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2017, Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger, Jan Van

den Bussche, and Floris Geerts (Eds.). ACM, 37–52. https://doi.org/10.

1145/3034786.3034796

[11] Jeremias Berg, Neha Lodha, Matti Järvisalo, and Stefan Szeider. 2017.

MaxSAT Benchmarks based on Determining Generalized Hypertree-

width. MaxSAT Evaluation 2017: Solver and Benchmark Descriptions

B-2017-2 (2017), 22.

[12] Angela Bonifati,WimMartens, and Thomas Timm. 2017. AnAnalytical

Study of Large SPARQL Query Logs. PVLDB 11, 2 (2017), 149–161.

https://doi.org/10.14778/3149193.3149196

[13] Nofar Carmeli, Batya Kenig, and Benny Kimelfeld. 2017. Efficiently

Enumerating Minimal Triangulations. In Proceedings of the 36th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

PODS 2017, Chicago, IL, USA, May 14-19, 2017, Emanuel Sallinger,

Jan Van den Bussche, and Floris Geerts (Eds.). ACM, 273–287. https:

//doi.org/10.1145/3034786.3056109

[14] Ashok K. Chandra and PhilipM.Merlin. 1977. Optimal Implementation

of Conjunctive Queries in Relational Data Bases. In Proceedings of the

9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977,

Boulder, Colorado, USA, John E. Hopcroft, Emily P. Friedman, and

Michael A. Harrison (Eds.). ACM, 77–90. https://doi.org/10.1145/

800105.803397

[15] Rina Dechter. 2003. Constraint Processing. Elsevier. https://doi.org/10.

1016/b978-1-55860-890-0.x5000-2

[16] Uriel Feige and Mohammad Mahdian. 2006. Finding small balanced

separators. In Proceedings of the 38th Annual ACM Symposium on The-

ory of Computing, Seattle, WA, USA, May 21-23, 2006, Jon M. Kleinberg

(Ed.). ACM, 375–384. https://doi.org/10.1145/1132516.1132573

[17] Johannes Klaus Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider.

2018. An SMT Approach to Fractional Hypertree Width. In Principles

and Practice of Constraint Programming - 24th International Conference,

CP 2018, Lille, France, August 27-31, 2018, Proceedings (Lecture Notes in

Computer Science), John N. Hooker (Ed.), Vol. 11008. Springer, 109–127.

https://doi.org/10.1007/978-3-319-98334-9_8

[18] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2017. Tractable

Cases for Recognizing Low Fractional Hypertree Width. viXra.org

e-prints viXra:1708.0373 (2017). http://vixra.org/abs/1708.0373

[19] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2018. General

and Fractional Hypertree Decompositions: Hard and Easy Cases. In

Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, Houston, TX, USA, June 10-15, 2018,

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

478

https://doi.org/10.1145/3129246
http://arxiv.org/abs/1602.03557
http://arxiv.org/abs/1602.03557
https://doi.org/10.1016/j.ejc.2007.04.013
https://doi.org/10.3233/AIC-150694
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.14778/2850583.2850586
http://www.xcsp.org/
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.14778/3149193.3149196
https://doi.org/10.1145/3034786.3056109
https://doi.org/10.1145/3034786.3056109
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1016/b978-1-55860-890-0.x5000-2
https://doi.org/10.1016/b978-1-55860-890-0.x5000-2
https://doi.org/10.1145/1132516.1132573
https://doi.org/10.1007/978-3-319-98334-9_8
http://vixra.org/abs/1708.0373

Jan Van den Bussche and Marcelo Arenas (Eds.). ACM, 17–32. https:

//doi.org/10.1145/3196959.3196962

[20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello San-

toro. 2014. Mapping and cleaning. In IEEE 30th International Con-

ference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31

- April 4, 2014, Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa Bertino,

and Goce Trajcevski (Eds.). IEEE Computer Society, 232–243. https:

//doi.org/10.1109/ICDE.2014.6816654

[21] Lucantonio Ghionna, Luigi Granata, Gianluigi Greco, and Francesco

Scarcello. 2007. Hypertree Decompositions for Query Optimization.

In Proceedings of the 23rd International Conference on Data Engineering,

ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, Rada

Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis (Eds.).

IEEE Computer Society, 36–45. https://doi.org/10.1109/ICDE.2007.

367849

[22] Lucantonio Ghionna, Gianluigi Greco, and Francesco Scarcello. 2011.

H-DB: a hybrid quantitative-structural sql optimizer. In Proceedings

of the 20th ACM Conference on Information and Knowledge Manage-

ment, CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011, Craig

Macdonald, Iadh Ounis, and Ian Ruthven (Eds.). ACM, 2573–2576.

https://doi.org/10.1145/2063576.2064023

[23] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scar-

cello. 2016. Hypertree Decompositions: Questions and Answers. In

Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on

Principles of Database Systems, PODS 2016, San Francisco, CA, USA,

June 26 - July 01, 2016, Tova Milo and Wang-Chiew Tan (Eds.). ACM,

57–74. https://doi.org/10.1145/2902251.2902309

[24] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree

Decompositions and Tractable Queries. J. Comput. Syst. Sci. 64, 3

(2002), 579–627. https://doi.org/10.1006/jcss.2001.1809

[25] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. 2009. General-

ized hypertree decompositions: NP-hardness and tractable variants. J.

ACM 56, 6 (2009), 30:1–30:32. https://doi.org/10.1145/1568318.1568320

[26] Georg Gottlob and Marko Samer. 2008. A backtracking-based algo-

rithm for hypertree decomposition. ACM Journal of Experimental

Algorithmics 13 (2008), 1:1.1–1:1.19. https://doi.org/10.1145/1412228.

1412229

[27] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional

Edge Covers. ACM Trans. Algorithms 11, 1 (2014), 4:1–4:20. https:

//doi.org/10.1145/2636918

[28] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A bench-

mark for OWL knowledge base systems. J. Web Semant. 3, 2-3 (2005),

158–182. https://doi.org/10.1016/j.websem.2005.06.005

[29] Zineb Habbas, Kamal Amroun, and Daniel Singer. 2015. A Forward-

Checking algorithm based on a Generalised Hypertree Decomposition

for solving non-binary constraint satisfaction problems. J. Exp. Theor.

Artif. Intell. 27, 5 (2015), 649–671. https://doi.org/10.1080/0952813X.

2014.993507

[30] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed

Lazowska. 2016. SQLShare: Results from aMulti-Year SQL-as-a-Service

Experiment. In Proceedings of the 2016 International Conference on

Management of Data, SIGMOD Conference 2016, San Francisco, CA,

USA, June 26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and

Sam Madden (Eds.). ACM, 281–293. https://doi.org/10.1145/2882903.

2882957

[31] Shant Karakashian, Robert J. Woodward, and Berthe Y. Choueiry. 2011.

Reformulating R(*, m)C with Tree Decomposition. In Proceedings of the

Ninth Symposium on Abstraction, Reformulation, and Approximation,

SARA 2011, Parador de Cardona, Cardona, Catalonia, Spain, July 17-18,

2011., Michael R. Genesereth and Peter Z. Revesz (Eds.). AAAI, 62–69.

http://www.aaai.org/ocs/index.php/SARA/SARA11/paper/view/4234

[32] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra.

2016. Joins via Geometric Resolutions: Worst Case and Beyond. ACM

Trans. Database Syst. 41, 4 (2016), 22:1–22:45. https://doi.org/10.1145/

2967101

[33] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ:

Questions Asked Frequently. In Proceedings of the 35th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems, PODS

2016, San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and

Wang-Chiew Tan (Eds.). ACM, 13–28. https://doi.org/10.1145/2902251.

2902280

[34] Mohammed Lalou, Zineb Habbas, and Kamal Amroun. 2009. Solving

Hypertree Structured CSP: Sequential and Parallel Approaches. In Pro-

ceedings of the 16th RCRA workshop on Experimental Evaluation of Algo-

rithms for Solving Problems with Combinatorial Explosion, RCRA@AI*IA

2009, Reggio Emilia, Italy, December 11-12, 2009 (CEUR Workshop Pro-

ceedings), Marco Gavanelli and Toni Mancini (Eds.), Vol. 589. CEUR-

WS.org. http://ceur-ws.org/Vol-589/paper11.pdf

[35] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons

Kemper, and Thomas Neumann. 2015. How Good Are Query Opti-

mizers, Really? PVLDB 9, 3 (2015), 204–215. https://doi.org/10.14778/

2850583.2850594

[36] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Pe-

ter A. Boncz, Alfons Kemper, and Thomas Neumann. 2018. Query

optimization through the looking glass, and what we found run-

ning the Join Order Benchmark. VLDB J. 27, 5 (2018), 643–668.

https://doi.org/10.1007/s00778-017-0480-7

[37] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior,

and Adrian Bielefeldt. 2018. Getting the Most Out of Wikidata: Se-

mantic Technology Usage in Wikipedia’s Knowledge Graph. In The

SemanticWeb - ISWC 2018 - 17th International Semantic Web Conference,

Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II (Lecture Notes

in Computer Science), Denny Vrandecic, Kalina Bontcheva, Mari Car-

men Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,

Lucie-Aimée Kaffee, and Elena Simperl (Eds.), Vol. 11137. Springer,

376–394. https://doi.org/10.1007/978-3-030-00668-6_23

[38] Dániel Marx. 2010. Approximating fractional hypertree width. ACM

Trans. Algorithms 6, 2 (2010), 29:1–29:17. https://doi.org/10.1145/

1721837.1721845

[39] Lukas Moll, Siamak Tazari, and Marc Thurley. 2012. Computing hyper-

graph width measures exactly. Inf. Process. Lett. 112, 6 (2012), 238–242.

https://doi.org/10.1016/j.ipl.2011.12.002

[40] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised

Representations of Query Results. ACM Trans. Database Syst. 40, 1

(2015), 2:1–2:44. https://doi.org/10.1145/2656335

[41] Adam Perelman and Christopher Ré. 2015. DunceCap: Compiling

Worst-Case Optimal Query Plans. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, Melbourne,

Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B.

Davidson, and Zachary G. Ives (Eds.). ACM, 2075–2076. https://doi.

org/10.1145/2723372.2764945

[42] François Picalausa and Stijn Vansummeren. 2011. What are real

SPARQL queries like?. In Proceedings of the International Workshop on

Semantic Web Information Management, SWIM 2011, Athens, Greece,

June 12, 2011, Roberto De Virgilio, Fausto Giunchiglia, and Letizia

Tanca (Eds.). ACM, 7. https://doi.org/10.1145/1999299.1999306

[43] Rachel Pottinger and Alon Y. Halevy. 2001. MiniCon: A scalable al-

gorithm for answering queries using views. VLDB J. 10, 2-3 (2001),

182–198. https://doi.org/10.1007/s007780100048

[44] Francesco Scarcello, Gianluigi Greco, andNicola Leone. 2007. Weighted

hypertree decompositions and optimal query plans. J. Comput. Syst.

Sci. 73, 3 (2007), 475–506. https://doi.org/10.1016/j.jcss.2006.10.010

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

479

https://doi.org/10.1145/3196959.3196962
https://doi.org/10.1145/3196959.3196962
https://doi.org/10.1109/ICDE.2014.6816654
https://doi.org/10.1109/ICDE.2014.6816654
https://doi.org/10.1109/ICDE.2007.367849
https://doi.org/10.1109/ICDE.2007.367849
https://doi.org/10.1145/2063576.2064023
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1006/jcss.2001.1809
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/1412228.1412229
https://doi.org/10.1145/1412228.1412229
https://doi.org/10.1145/2636918
https://doi.org/10.1145/2636918
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1080/0952813X.2014.993507
https://doi.org/10.1080/0952813X.2014.993507
https://doi.org/10.1145/2882903.2882957
https://doi.org/10.1145/2882903.2882957
http://www.aaai.org/ocs/index.php/SARA/SARA11/paper/view/4234
https://doi.org/10.1145/2967101
https://doi.org/10.1145/2967101
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902280
http://ceur-ws.org/Vol-589/paper11.pdf
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1007/978-3-030-00668-6_23
https://doi.org/10.1145/1721837.1721845
https://doi.org/10.1145/1721837.1721845
https://doi.org/10.1016/j.ipl.2011.12.002
https://doi.org/10.1145/2656335
https://doi.org/10.1145/2723372.2764945
https://doi.org/10.1145/2723372.2764945
https://doi.org/10.1145/1999299.1999306
https://doi.org/10.1007/s007780100048
https://doi.org/10.1016/j.jcss.2006.10.010

[45] Werner Schafhauser. 2006. New heuristic methods for tree decomposi-

tions and generalized hypertree decompositions. Master’s thesis. Tech-

nische Universität Wien.

[46] Aaron Schild and Christian Sommer. 2015. On Balanced Separators

in Road Networks. In Experimental Algorithms - 14th International

Symposium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings

(Lecture Notes in Computer Science), Evripidis Bampis (Ed.), Vol. 9125.

Springer, 286–297. https://doi.org/10.1007/978-3-319-20086-6_22

[47] Transaction Processing Performance Council (TPC). 2014. TPC-H

decision support benchmark. http://www.tpc.org/tpch/default.asp

[48] Susan Tu and Christopher Ré. 2015. DunceCap: Query Plans Using

Generalized Hypertree Decompositions. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, Melbourne,

Victoria, Australia, May 31 - June 4, 2015, Timos K. Sellis, Susan B.

Davidson, and Zachary G. Ives (Eds.). ACM, 2077–2078. https://doi.

org/10.1145/2723372.2764946

[49] V. N. Vapnik and A. Ya. Chervonenkis. 1971. On the Uniform Con-

vergence of Relative Frequencies of Events to Their Probabilities.

Theory of Probability & Its Applications 16, 2 (jan 1971), 264–280.

https://doi.org/10.1137/1116025

Session 7: Join, Hypergraph, and Aggregate Querie PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

480

https://doi.org/10.1007/978-3-319-20086-6_22
http://www.tpc.org/tpch/default.asp
https://doi.org/10.1145/2723372.2764946
https://doi.org/10.1145/2723372.2764946
https://doi.org/10.1137/1116025

	Abstract
	1 Introduction
	2 Preliminaries
	3 HyperBench benchmark and tool
	4 First Empirical Analysis
	5 GHW Computation
	6 Fractionally Improved Decompositions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

