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To cope with the intractability of answering Conjunctive Queries (CQs) and solving Constraint Satisfaction
Problems (CSPs), several notions of hypergraph decompositions have been proposed—giving rise to different
notions of width, noticeably, plain, generalized, and fractional hypertree width (hw, ghw, and fhw). Given
the increasing interest in using such decomposition methods in practice, a publicly accessible repository of
decomposition software, as well as a large set of benchmarks, and a web-accessible workbench for inserting,
analyzing, and retrieving hypergraphs are called for.

We address this need by providing (i) concrete implementations of hypergraph decompositions (including
new practical algorithms), (ii) a new, comprehensive benchmark of hypergraphs stemming from disparate
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infrastructure.
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1 INTRODUCTION

In this work, we study computational problems on hypergraph decompositions that are designed
to speed up the evaluation of Conjunctive Queries (CQs) and the solution of Constraint
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1.6:2 W. Fischl et al.

Satisfaction Problems (CSPs). Hypergraph decompositions have meanwhile found their way
into commercial database systems such as LogicBlox [5, 8, 36, 37, 46] and advanced research proto-
types such as EmptyHeaded [1, 2, 47, 55]. Hypergraph decompositions have also been successfully
used in the CSP area [4, 33, 39]. In theory, the pros and cons of various notions of decompositions
and widths are well understood (see Reference [24] for a survey). However, from a practical point
of view, many questions have remained open.

We want to collect hypergraphs from different application contexts, analyze their structural
properties and, in particular, their (generalized) hypertree width (ghw and hw, respectively), and
make this hypergraph collection together with the results of our analyses publicly available. The
investigation of millions of CQs [12, 48] posed at various SPARQL endpoints suggests that these
real-world CQs with atoms of arity ≤ 3 have very low hw: the overwhelming majority is acyclic;
almost all of the rest has hw = 2. It is, however, not clear if CQs with arbitrary arity and CSPs also
have low hypertree width, say, hw ≤ 5. Ghionna et al. [22] gave a positive answer to this question
for a small set of TPC-H benchmark queries. We significantly extend their collection of CQs. This
also motivates our main goal.

Main Goal: Create a comprehensive, easily extensible benchmark of hypergraphs
corresponding to CQs or CSPs for the analysis of hypergraph structural properties
and decomposition algorithms.

Answering CQs and solving CSPs are fundamental tasks in Computer Science. Formally, they
are the same problem, since both correspond to the evaluation of first-order formulae over a finite
structure, such that the formulae only use {∃,∧} as connectives but not {∀,∨,¬}. Both problems,
answering CQs and solving CSPs, are NP-complete [15]. Consequently, the search for tractable
fragments of these problems has been an active research area in the database and artificial intelli-
gence communities for several decades.

The most powerful methods known to date for defining tractable fragments are based on
various decompositions of the hypergraph structure underlying a given CQ or CSP. The most
important forms of decompositions are hypertree decompositions (HDs) [27], generalized hy-

pertree decompositions (GHDs) [27], and fractional hypertree decompositions (FHDs) [31].
These decomposition methods give rise to three notions of width of a hypergraph H : the hypertree

width hw (H ), generalized hypertree width ghw (H ), and fractional hypertree widthfhw (H ), where,
fhw (H ) ≤ ghw (H ) ≤ hw (H ) holds for every hypergraph H . For definitions, see Section 3.

Both, answering CQs and solving CSPs, become tractable if the underlying hypergraphs have
bounded hw, ghw, or, fhw and an appropriate decomposition is given. This gives rise to the problem
of recognizing if a given CQ or CSP has hw, ghw, or, fhw bounded by some constant k . Formally,
for decomposition ∈ {HD, GHD, FHD} and k ≥ 1, we consider the following family of problems:

Check(decomposition,k )

Input hypergraph H = (V ,E);
Output decomposition of H of width ≤ k if it exists and answer “no” otherwise.

Clearly, bounded fhw defines the largest tractable class while bounded hw defines the small-
est one. However, the problem Check(HD,k ) is feasible in polynomial time [27] while the
Check(GHD,k ) [28] and Check(FHD,k ) [19] problems are NP-complete even for k = 2.

Systems to solve the Check(HD,k ) problem exist [30, 50]. In contrast, for Check(GHD,k )
and Check(FHD,k ), apart from exhaustive search over possible decomposition trees (which only
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works for small hypergraphs), no implementations have been reported yet [1]—with one excep-
tion: very recently, an interesting approach is presented in Reference [17], where SMT-solving is
applied to the Check(FHD,k ) problem. The same approach has been later extended to solve the
Check(HD,k ) problem [52]. In Reference [30], tests of the Check(HD,k ) system are presented.
However, a benchmark for systematically evaluating systems for the Check(decomposition,k )
problem with decomposition ∈ {HD, GHD, FHD} and k ≥ 1 were missing so far. This motivates
our first research subgoal.

Subgoal 1: Use the benchmark from the Main Goal to find out if the hypertree
width is, in general, small enough (say, ≤ 5) to allow for efficient evaluation of
CQs of arbitrary arity and of CSPs.

Recently, in Reference [19], the authors have identified classes of CQs for which the
Check(GHD,k ) and Check(FHD,k ) problems become tractable (from now on, we only speak
about CQs; of course, all results apply equally to CSPs). To this end, the Bounded Intersection

Property (BIP) and, more generally, the Bounded Multi-Intersection Property (BMIP) have
been introduced. The maximum number d of attributes shared by two (respectively, c) atoms is
referred to as the intersection size (respectively, c-multi-intersection size) of the CQ, which is sim-
ilar to the notion of cutset width from the CSP literature [16]. We say that a class of CQs satisfies
the BIP (respectively, BMIP) if the number of attributes shared by two (respectively, by a constant
number c of) query atoms is bounded by some constant d .

A related property is that of bounded degree, i.e., each attribute only occurs in a constant num-
ber of query atoms. Clearly, the BMIP is an immediate consequence of bounded degree. It has
been shown in Reference [19] that Check(GHD,k ) is solvable in polynomial time for CQs whose
underlying hypergraphs satisfy the BMIP. For CQs, the BMIP and bounded degree seem natural
restrictions. For CSPs, the situation is not so clear. This yields the following research subgoals.

Subgoal 2: Use the hypergraph benchmark from the Main Goal to analyze how
realistic the restrictions to low (multi-)intersection size, or low degree of CQs and
CSPs are.

Subgoal 3: Verify that for hypergraphs of low intersection size, the
Check(GHD,k ) problem indeed allows for efficient algorithms that work
well in practice.

The tractability results for Check(FHD,k ) [19] are significantly weaker than for
Check(GHD,k ): They involve a factor that is at least double-exponential in some “con-
stant” (namely, k , the bound δ on the degree and/or the bound d on the intersection size). Hence,
we want to investigate if (generalized) hypertree decompositions could be “fractionally improved”
by taking the integral edge cover at each node in the HD or GHD and replacing it by a fractional
edge cover. We will thus introduce the notion of fractionally improved HD that checks if there
exists an HD of width ≤ k , such that replacing each integral cover by a fractional cover yields an
FHD of width ≤ k ′ for given bounds k,k ′ with 0 < k ′ < k .

Subgoal 4: Explore the potential of fractionally improved HDs, i.e., investigate if
the improvements achieved are significant.

In cases where Check(GHD,k ) and Check(FHD,k ) are intractable, we may have to settle for
good approximations of ghw and fhw. For GHDs, we may thus use the inequality ghw (H ) ≤
3 · hw (H ) + 1, which holds for every hypergraph H [3]. In contrast, for FHDs, the best-known
general, polynomial-time approximation is cubic. More precisely, in Reference [43], a polynomial-
time algorithm is presented that, given a hypergraph H with fhw (H ) = k , computes an FHD of
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1.6:4 W. Fischl et al.

width O (k3). In Reference [19], it is shown that a polynomial-time approximation up to a logarith-
mic factor is possible for any class of hypergraphs with bounded Vapnik–Chervonenkis dimension
(VC-dimension; see Section 3 for a precise definition). The problem of efficiently approximating
the ghw and/or fhw leads us to the following subgoals.

Subgoal 5: Use the benchmark from the Main Goal to analyze if, in practice, hw

and ghw indeed differ by factor 3 or, if hw is typically much closer to ghw than
this worst-case bound.

Subgoal 6: Use the benchmark from the Main Goal to analyze how realistic the
restriction to small VC-dimension of CQs and CSPs is.

Results. Our main results are as follows:
•We provide HyperBench, a comprehensive hypergraph benchmark of initially over 3,000 hy-

pergraphs (see Section 5). This benchmark is exposed by a web interface, which allows the user to
retrieve the hypergraphs or groups of hypergraphs together with a broad spectrum of properties of
these hypergraphs, such as lower/upper bounds on hw and ghw, (multi-)intersection size, degree,
and so on. The system is accessible at http://hyperbench.dbai.tuwien.ac.at/. We also release a tool
for extracting hypergraphs from SQL queries that was used in the construction of HyperBench.
The tool is available at https://github.com/dmlongo/hgtools.
• We extend the software for HD computation from Reference [30] to also solve the

Check(GHD,k ) problem. For a given hypergraph H , our system first computes the intersec-
tion size of H and then applies the ghw-algorithm from Reference [19], which is parameterized
by the intersection size. We implement several improvements and we further extend the sys-
tem to compute also “fractionally improved” HDs. All implementations are available at https:
//github.com/dmlongo/newdetkdecomp.
• We carry out an empirical analysis of the hypergraphs in the HyperBench benchmark. This

analysis demonstrates, especially for real-world instances, that the restrictions to BIP, BMIP,
bounded degree, and bounded VC-dimension are astonishingly realistic. Moreover, on all hyper-
graphs in the HyperBench benchmark, we run our hw- and ghw-programs to identify (or at least
bound) their hw and ghw. An interesting observation of our empirical study is that apart from the
CQs also a significant portion of CSPs in our benchmark has small hypertree width (all non-random
CQs have hw ≤ 3 and over 60% of CSPs stemming from applications have hw ≤ 5). Moreover, for
hw ≤ 5, in all of the cases where the ghw-computation terminates, hw and ghw have identical
values.
• In our study of the ghw of the hypergraphs in the HyperBench benchmark, we observe that a

straightforward implementation of the algorithm from Reference [19] for hypergraphs of low in-
tersection size is too slow in many cases. We therefore present a new approach (based on so-called
“balanced separators”) with promising experimental results. It is interesting to note that the new
approach works particularly well in those situations that are particularly hard for the straight-
forward implementation, namely, hypergraphs H where the test if ghw ≤ k for given k gives a
“no”-answer. Hence, combining the different approaches is very effective. Also, this implementa-
tion is provided at https://github.com/dmlongo/newdetkdecomp.

Structure. This article is structured as follows: In Section 2, we summarize related work. In
Section 3, we recall some basic notions. In Section 4, we describe our algorithms for solving the
Check(GHD,k ) problem. In Section 5, we present our system and test environment as well as our
HyperBench benchmark. This section also contains the first results of our empirical study of the
hypergraphs in this benchmark. In Section 6, we report on the performance of the implementations
of our GHD-algorithms as well as a further extension of the system to allow for the computation of
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fractionally improved HDs. We conclude in Section 7 by highlighting the most important lessons
learned from our empirical study and by identifying some appealing directions for future work.

2 RELATED WORK

We distinguish several types of works that are highly relevant to ours. The works most closely
related are the descriptions of HD, GHD, and FHD algorithms in References [19, 27] and the im-
plementation of HD computation by the DetKDecomp program reported in Reference [30]. We
have extended these works in several ways. Above all, we have incorporated our analysis tool (re-
ported in Sections 5 and 6) and the GHD and FHD computations (reported in Sections 4 and 6.5)
into the DetKDecomp program—resulting in our NewDetKDecomp library, which is openly available
on GitHub at https://github.com/dmlongo/newdetkdecomp. For the GHD computation, we have
added heuristics to speed up the basic algorithm from Reference [19]. Moreover, we have proposed
a novel approach via balanced separators, which allowed us to significantly extend the range of
instances for which the GHD computation terminates in reasonable time. We have also introduced
a new form of decomposition method: the fractionally improved decompositions (see Section 6.5),
which allow for a practical, lightweight form of FHDs.

The second important input to our work comes from the various sources [6, 9–11, 21, 30, 34,
40, 54] which we took our CQs and CSPs from. Note that our main goal was not to add further
CQs and/or CSPs to these benchmarks. Instead, we have aimed at taking and combining exist-
ing, openly accessible benchmarks of CQs and CSPs, and convert them into hypergraphs, which
are then thoroughly analyzed. Finally, the hypergraphs and the analysis results are made openly
accessible again.

The third kind of works highly relevant to ours are previous analyses of CQs and CSPs. To the
best of our knowledge, Ghionna et al. [22] presented the first systematic study of HDs of bench-
mark CQs from TPC-H. However, Ghionna et al. pursued a research goal different from ours in that
they primarily wanted to find out to what extent HDs can actually speed up query evaluation. They
achieved very positive results in this respect, which have recently been confirmed by the work of
Perelman et al. [47], Tu et al. [55], and Aberger et al. [1] on query evaluation using FHDs. As a side
result, Ghionna et al. also detected that CQs tend to have low hypertree width (a finding that was
later confirmed in References [12, 13, 48] and also in our study). In a pioneering effort, Bonifati,
Martens, and Timm [12] have recently analyzed an unprecedented, massive amount of queries:
They investigated 180,653,910 queries from (not openly available) query logs of several popular
SPARQL endpoints. After elimination of duplicate queries, there were still 56,164,661 queries left,
out of which 26,157,880 queries were in fact CQs. The authors thus significantly extend previous
work by Picalausa and Vansummeren [48], who analyzed 3,130,177 SPARQL queries posed by hu-
mans and software robots at the DBPedia SPARQL endpoint. The focus in Reference [48] is on
structural properties of SPARQL queries such as keywords used and variable structure in optional
patterns. There is one paragraph devoted to CQs, where it is noted that 99.99% of circa 2M CQs
considered in Reference [48] are acyclic.

Many of the CQs (over 15M) analyzed in Reference [12] have arity 2 (here, we consider the
maximum arity of all atoms in a CQ as the arity of the query), which means that all triples in such
a SPARQL query have a constant at the predicate-position. Bonifati et al. made several interesting
observations concerning the shape of these graph-like queries. For instance, they detected that
exactly one of these queries has tw = 3, while all others have tw ≤ 2 (and hence hw ≤ 2). As far
as the CQs of arity 3 are concerned (for CQs expressed as SPARQL queries, this is the maximum
arity achievable), among many characteristics, also the hypertree width was computed by using
the original DetKDecomp program from Reference [30]. Out of 6,959,510 CQs of arity 3, only 86
(i.e., 0.01‰) turned out to have hw = 2 and 8 queries had hw = 3 , while all other CQs of arity 3
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are acyclic. Our analysis confirms that, also for non-random CQs of arity > 3, the hypertree width
indeed tends to be low, with the majority of queries being even acyclic.

Bonifati et al. continued on this line of work and analyzed in Reference [13] a yet bigger col-
lection of SPARQL queries coming from Wikidata. This repository of 208,215,209 queries was first
made available by Malyshev et al. for the work in Reference [42]. Bonifati et al. divided this dataset
into four disjoint sets: queries for which the HTTP request was successful, further partitioned
into organic and robotic queries; and timeout queries, again further partitioned into organic and
robotic queries. Organic queries are the ones classified by Malyshev et al. as posed by humans,
while robotic queries have been classified as produced by synthetic algorithms. While Malyshev
et al. analyzed only the sets of successful queries, Bonifati et al. extended their study to timeout
queries. The latter turned out to be the most interesting w.r.t. structural analysis. As in Refer-
ence [12], the focus of Reference [13] is on examining property paths of SPARQL queries and, in
particular, having a clear picture of the structural characteristics of recursive properties.

In Reference [13], structural analysis builds upon conjunctive queries and variants thereof. In
total, Bonifati et al. identify 176,679,495 robotic and 342,576 organic queries for the largest fragment
of CQs (namely, C2RPQ+), which constitutes circa 85% of the whole dataset. Structural analysis
showed that these queries are mildly cyclic, i.e., their treewidth is bounded by a small constant. In
particular, for all these queries tw ≤ 4 holds. For a different fragment of CQs (namely, CQOF+), a
structural analysis based on hypergraphs is more suitable, thus they computed hw for a total of
1,915,550 CQOF+ queries. It turns out that 590,005 queries have hw = 2, while the rest has hw = 1,
i.e., they are acyclic.

For the analysis of CSPs, much less work has been done. Although it has been shown that
exploiting (hyper-)tree decompositions may significantly improve the performance of CSP solving
References [4, 33, 35, 39], a systematic study on the (generalized) hypertree width of CSP instances
has only been carried out by few works [30, 39, 51]. To the best of our knowledge, we are the first
to analyze the hw, ghw, and fhw of circa 2,000 CSP instances, where most of these instances have
not been studied in this respect before.

It should be noted that the focus of our work is different from the above-mentioned previous
works: Above all, we wanted to test the practical feasibility of various algorithms for HD, GHD,
and FHD computation (including both, previously presented algorithms and new ones developed
as part of this work). As far as our repository of hypergraphs (obtained from CQs and CSPs) is con-
cerned, we emphasize open accessibility. Thus, users can analyze their CQs and CSPs (with our
implementations of HD, GHD, and FHD algorithms) or they can analyze new decomposition algo-
rithms (with our hypergraphs, which cover quite a broad range of characteristics). In fact, in the
recent works on HD and FHD computation via SMT solving [17, 52], the HyperBench benchmark
has already been used for the experimental evaluation. In Reference [17] a novel approach to fhw

computation via an efficient encoding of the check-problem for FHDs to SMT (SAT modulo The-
ory) is presented. The tests were carried out with 2,191 hypergraphs from the initial version of the
HyperBench. For all of these hypergraphs, we have established at least some upper bound on the
fhw either by our hw-computation or by one of our new algorithms presented in Sections 4 and 6.5.
In contrast, the exact algorithm in Reference [17] found FHDs only for 1.449 instances (66%). In
852 cases, both our algorithms and the algorithm in Reference [17] found FHDs of the same width;
in 560 cases, an FHD of lower width was found in Reference [17]. By using the same benchmark
for the tests, the results in Reference [17] and ours are comparable and have thus provided valu-
able input for future improvements of the algorithms by combining the different strengths and
weaknesses of the two approaches.

The use of the same benchmark has also allowed us to provide feedback to the authors of
Reference [17] for debugging their system: In 9 out of 2,191 cases, the “optimal” value for the fhw
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computed in Reference [17] was apparently erroneous, since it was higher than the hw found out by
our analysis; note that upper bounds on the width are, in general, more reliable than lower bounds,
since it is easy to verify if a given decomposition indeed has the desired properties, whereas ruling
out the existence of a decomposition of a certain width is a complex and error-prone task.

The work in Reference [29] represents a follow-up of this article and the conference version [18].
The main goal of Reference [29] consists in providing major improvements in computing GHDs.
To this aim, the authors present a parallel algorithm for computing GHDs based on the balanced
separator method described in this article and a hybrid approach that combines the parallel and se-
quential decomposition algorithms. More specifically, the hybrid approach uses a parallel version
of the balanced separator algorithm to split a large hypergraph into smaller components and then
uses the sequential version of DetKDecomp from Reference [30] to quickly decompose them. More-
over, the authors of Reference [29] propose new methods to simplify the input hypergraph and
apply new heuristics to reduce the search space. Our HyperBench benchmark was fundamental for
the experimental evaluation of all these techniques. Indeed, the version of HyperBench presented
in Reference [18] was used as a baseline to show that the newly proposed algorithms can be used
to efficiently compute GHDs on modern machines for a wide range of CSP instances.

Similarly to our analysis of properties that make Check(decomposition,k ) tractable or easy to
approximate, HyperBench has been used to empirically test the validity of theoretical hypotheses.
In Reference [38], the edge clique cover size of a graph is identified as a parameter allowing fixed-
parameter-tractable algorithms for enumerating potential maximal cliques. The latter can be used
to compute exact ghw and fhw. An edge clique cover of a graph is a set of cliques of the graph that
covers all of its edges. In case of a CSP with n variables and m constraints, the set of constraints
is an edge clique cover of the underlying (hyper)graph. Thus, this property can be exploited for
CSPs having n > m and HyperBench has been used to verify that it happens in circa 23% of the
instances.

3 PRELIMINARIES

3.1 CQs, CSPs, and Hypergraphs

We treat conjunctive queries(CQs) and constraint satisfaction problems(CSPs) as first-order
formulae using only connectives in {∃,∧} and disallowing {∀,∨,¬}.

A hypergraph H = (V (H ),E (H )) is a pair consisting of a set of vertices V (H ) and a set of non-
empty (hyper)edges E (H ) ⊆ 2V (H ) . We assume w.l.o.g. that there are no isolated vertices, i.e., for
each v ∈ V (H ), there is at least one edge e ∈ E (H ) such that v ∈ e . We can thus identify a hy-
pergraph H with its set of edges E (H ) with the understanding that V (H ) = {v ∈ e | e ∈ E (H )}. A
subhypergraph H ′ of H is then simply a subset of (the edges of) H .

Given a formula ϕ corresponding to either a CQ or a CSP, the hypergraph Hϕ corresponding to
ϕ has V (Hϕ ) = vars(ϕ) and, for each atom a of ϕ, vars(a) ∈ E (Hϕ ).

We are frequently dealing with sets of sets of vertices (e.g., sets of edges). For S ⊆ 2V (H ) , we
write

⋃
S and

⋂
S as a short-hand for taking the union or intersection, respectively, of this set of

sets of vertices, i.e., for S = {s1, . . . , s� }, we have
⋃
S =
⋃�

i=1 si and
⋂
S =
⋂�

i=1 si .

Example 1. Consider the following Boolean conjunctive query Q0:

Q0 ← e1 (v1,v2), e2 (v2,v3,v9), e3 (v3,v4,v10), e4 (v4,v5), e5 (v5,v6,v9),

e6 (v6,v7,v10), e7 (v7,v8,v9), e8 (v1,v8,v10).

The hypergraph H0 underlying this query is shown in Figure 1.
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1.6:8 W. Fischl et al.

Fig. 1. Hypergraph H0 of Example 3.1.

3.2 Hypergraph Decompositions and Width Measures

We consider here three notions of hypergraph decompositions with their associated notions of
width. To this end, we first introduce the notion of (fractional) edge covers.

Let H = (V (H ),E (H )) be a hypergraph and consider an edge weight function γ : E (H ) → [0, 1].
We define the set B (γ ) of all vertices covered by γ and the weight of γ as

B (γ ) =
⎧⎪⎪⎨⎪⎪⎩
v ∈ V (H ) |

∑

e ∈E (H ),v ∈e
γ (e ) ≥ 1

⎫⎪⎪⎬⎪⎪⎭
,

weight (γ ) =
∑

e ∈E (H )

γ (e ).

We call γ a fractional edge cover of a set X ∈ V (H ) by edges in E (H ), if X ⊆ B (γ ). We also consider
an integral edge cover as a function λ : E (H ) → {0, 1}, i.e., a fractional edge cover whose values are
restricted to {0, 1} values. Following Reference [27], we can also treat λ as a set with λ ⊆ E (H )
(namely, the set of edges e with λ(e ) = 1) and the weight as the cardinality of such a set of edges.
In the following, to emphasize the nature of the function we are dealing with, we will use γ for
fractional edge covers and λ for integral edge covers.

We now introduce some relevant notions of decompositions.
A tuple 〈T , (Bu )u ∈T 〉 is a tree decomposition(TD) of hypergraph H = (V (H ),E (H )), if T =

(N (T ),E (T )) is a tree, every Bu is a subset of V (H ), and the following conditions are satisfied:

(1) For every edge e ∈ E (H ), there is a node u in T , such that e ⊆ Bu , and
(2) for every vertex v ∈ V (H ), {u ∈ T | v ∈ Bu } is connected in T .

The vertex sets Bu are usually referred to as the bags of the TD. By slight abuse of notation, we
write u ∈ T to express that u is a node in N (T ). Condition (2) is also called the “connectedness
condition.”

We use the following notational conventions throughout this article: To avoid confusion, we
will consequently refer to the elements in V (H ) as vertices of the hypergraph and to the elements
in N (T ) as the nodes of the decomposition. For a node u ∈ T , we writeTu to denote the subtree of
T rooted at u. By slight abuse of notation, we will often write u ′ ∈ Tu to denote that u ′ is a node
in the subtree Tu of T . Finally, we define V (Tu ) =

⋃
u′ ∈Tu

Bu′ .
A fractional hypertree decomposition(FHD) of a hypergraph H = (V (H ),E (H )) is a tuple〈

T , (Bu )u ∈T , (γu )u ∈T
〉
, such that 〈T , (Bu )u ∈T 〉 is a TD of H and the following condition holds:
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Fig. 2. Comparison between a GHD and an HD of H0.

Fig. 3. Comparison between a GHD and an FHD of Ht .

(3) For each u ∈ T , Bu ⊆ B (γu ) holds, i.e., γu is a fractional edge cover of Bu .

Following our notational convention, a generalized hypertree decomposition(GHD) is an
FHD, where λu is an integral edge weight function for every u ∈ T . Hence, by condition (3), λu

is an integral edge cover of Bu . A hypertree decomposition(HD) of H is a GHD with the follow-
ing additional condition (referred to as the “special condition” in Reference [27]):

(4) For each u ∈ T , V (Tu ) ∩ B (γu ) ⊆ Bu , where V (Tu ) denotes the union of all bags in the
subtree of T rooted at u.

Because of condition (4), it is important to consider T as a rooted tree in case of HDs. For TDs,
FHDs, and GHDs, the root of T can be arbitrarily chosen or simply ignored. The width of an
FHD, GHD, or HD is defined as the maximum weight of the functions γu over all nodes u ∈ T .
The fractional hypertree width, generalized hypertree width, and hypertree width of H (denoted
fhw (H ), ghw (H ), and hw (H )) is the minimum width over all FHDs, GHDs, and HDs of H .

Example 2. Figure 2 shows two decompositions of the hypergraph H0 of Figure 1. In particular,
Figure 2(a) is a GHD of H0, while Figure 2(b) is an HD of H0. It is easy to check that the two
decompositions satisfy Conditions (1)–(3), but only Figure 2(b) satisfies Condition (4). In fact, while
Figure 2(b) is also a GHD (by definition), Figure 2(a) is not an HD. Indeed, the λ-label of the root
of Figure 2(a) contains the edge e2, which in turn contains the vertex v2. Nevertheless, this vertex
does not appear in the bag of the root. While this is allowed in a GHD, it violates Condition (4)
of HDs, as v2 could have been “covered” already in the root, but it appears only in a leaf of the
decomposition. Moreover, the two decompositions have different widths. In fact, it can be proved
that ghw (H0) = 2 and hw (H0) = 3.

Example 3. Figure 3 shows the difference between a GHD and an FHD of the simple triangle
hypergraph Ht in Figure 3(a). Figure 3(b) is a GHD of Ht of width 2 and, since Ht is cyclic, no GHD
of Ht of width 1 exists. However, Figure 3(c) is an FHD of Ht of width 1.5. This is possible because
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in an FHD, we consider fractional edge covers of the bags instead of (integral) edge covers. Thus,
for the hypergraph Ht , fhw (Ht ) < ghw (Ht ) holds.

3.3 Components and Separators

For a set U ⊆ V (H ) of vertices, we define [U ]-components of a hypergraph H as follows:

• We define [U ]-adjacency as a binary relation on E (H ) as follows: two edges e1, e2 ∈ E (H )
are [U ]-adjacent, if (e1 ∩ e2) \U � ∅ holds.

• We define [U ]-connectedness as the transitive closure of the [U ]-adjacency relation.
• A [U ]-component of H is a maximally [U ]-connected subset C ⊆ E (H ) .

For a set of edges S ⊆ E (H ), we say that C is “[S]-connected” or an “[S]-component” as a short-
cut for C is “[W ]-connected” or a “[W ]-component,” respectively, withW =

⋃
e ∈S e . We also call

S a separator in this context. The size of an [S]-component C is defined as the number of edges
in the component. For a hypergraph H and a set of edges S ⊆ E (H ), we say that S is a balanced

separator if all [S]-components of H have a size ≤ |E (H ) |
2 . It was shown in Reference [3] that, for

every GHD 〈T , (Bu )u ∈T , (λu )u ∈T 〉 of a hypergraph H , there exists a node u ∈ T such that λu is a
balanced separator of H . This property can be made use of when searching for a GHD of size k of
a hypergraph H , as we shall show in Section 4.4 below.

3.4 Computing Hypertree Decompositions (HDs)

We briefly recall the basic principles of the DetKDecomp program from Reference [30] for comput-
ing HDs. It is relevant for our work in that it is the first implementation of the original top-down
nondeterministic HD algorithm presented in Reference [27]. Even though the first implementation
of a deterministic HD algorithm is OptKDecomp [26], it is based on a different characterization of
hw, which is not suitable for our purposes.

For fixed k ≥ 1, DetKDecomp tries to construct an HD of a hypergraph H in a top-down manner.
It thus maintains a setC of edges, which is initialized toC = E (H ). For a nodeu in the HD (initially,
this is the root of the HD), it “guesses” an edge cover λu , i.e., λu ⊆ E (H ) and |λu | ≤ k . For fixed k ,
there are only polynomially many possible values λu . DetKDecomp then proceeds by determining
all [λu ]-componentsCi withCi ⊆ C . The special condition of HDs restricts the possible choices for
Bu and thus guarantees that the [λu ]-components insideC and the [Bu ]-components insideC coin-
cide. This is the crucial property for ensuring polynomial time complexity of HD-computation—at
the price of possibly missing GHDs with a lower width.

Now letC1, . . . ,C� denote the [λu ]-components withCi ⊆ C . By the maximality of components,
these sets Ci are pairwise disjoint. Moreover, it was shown in Reference [27] that if H has an HD
of width ≤ k , then it also has an HD of width ≤ k such that the edges in each Ci are “covered”
in different subtrees below u. More precisely, this means that u has � child nodes u1, . . . ,u� , such
that for every i and every e ∈ Ci , there exists a node ue in the subtree rooted at ui with e ⊆ Bue

.
Hence, DetKDecomp recursively searches for an HD of the hypergraphs Hi with E (Hi ) = Ci and
V (Hi ) =

⋃
Ci with the slight extra feature that also edges from E (H ) \Ci are allowed to be used

in the λ-labels of these HDs.

Example 4. Consider again the hypergraph H0 of Figure 1 and its HD in Figure 2(b). The HD
tells us exactly what are the choices made by the algorithm while constructing the tree. Let us
thus simulate the run of DetKDecomp, which produced the HD in Figure 2(b), for k = 3. The input
of DetKDecomp is the whole setC = E (H0) of edges of H0. At the beginning, the algorithm guesses
the edge cover λu = {e1, e2, e6} and determines the respective bag Bu =

⋃
λu . Then, it uses λu to

separateC in two componentsC1 = {e3, e4, e5},C2 = {e7, e8}, which we show in Figure 4. Since each
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Fig. 4. The two components C1,C2 of Example 3.4 obtained by removing {e1, e2, e6} from H0.

of these components can be “covered” by at most two edges, DetKDecomp creates the two leaves
of Figure 2(b), attaches them to the root node previously created, and outputs the resulting HD.

3.5 Favorable Properties of Hypergraphs

We are interested in certain structural properties of hypergraphs that make the Check(GHD,k )
and Check(FHD,k ) problems tractable or efficient to approximate for large classes of hypergraphs.
We refer to the terminology of Reference [25], as it makes uniform the one originally introduced
in Reference [19].

Definition 1. For c ≥ 1, d ≥ 0, a hypergraph H = (V (H ),E (H )) is a (c,d )-hypergraph if the in-
tersection of any c edges in E (H ) has at most d elements, i.e., for every subset E ′ ⊆ E (H ) with
|E ′ | = c , we have |⋂E ′ | ≤ d .

Definition 2. A hypergraph H = (V (H ),E (H )) has c-multi-intersection size d if H is a (c,d )-
hypergraph. In the special case of c = 2, we speak of intersection size of H , while if we do not
have a particular c in mind, we simply speak of multi-intersection size of H .

Definition 3. A class C of hypergraphs satisfies the bounded multi-intersection property (BMIP),
if there exist c ≥ 1 and d ≥ 0, such that every H in C is a (c,d )-hypergraph. As a special case, C
satisfies the bounded intersection property (BIP), if there exists d ≥ 0, such that every H in C is a
(2,d )-hypergraph.

There are further relevant properties of (classes of) hypergraphs: bounded degree and bounded
Vapnik–Chervonenkis dimension (VC-dimension).

Definition 4. The degree deg(H ) of a hypergraph H is defined as he maximum number δ of
hyperedges in which a vertex occurs, i.e., δ = maxv ∈V (H ) |{e ∈ E (H ) | v ∈ E (H )}|. A class C of
hypergraphs has bounded degree, if there exists δ ≥ 1, such that every hypergraph H in C has
degree ≤ δ .
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Definition 5 ([56]). Let H = (V (H ),E (H )) be a hypergraph, and X ⊆ V (H ) a set of ver-
tices. Denote by E (H ) |X = {X ∩ e | e ∈ E (H )}. X is called shattered if E (H ) |X = 2X . The Vapnik-

Chervonenkis dimension (VC dimension) of H is the maximum cardinality of a shattered subset of
V . We say that a class C of hypergraphs has bounded VC-dimension, if there exists v ≥ 1, such
that every hypergraph H ∈ C has VC-dimension ≤ v .

Note that a hypergraph H with degree bounded by δ is a (δ + 1, 0)-hypergraph. Thus, bounded
degree implies the BMIP, which in turn implies bounded VC-dimension [19].

The aforementioned properties help to solve or approximate the Check(GHD,k ) and
Check(FHD,k ) problems:

Theorem 1 ([19, 25]). Let C be a class of hypergraphs.

• If C has the BMIP, then the Check(GHD,k ) problem is solvable in polynomial time for arbi-

trary k ≥ 1. Consequently, this tractability holds if C has bounded degree or the BIP (which

each imply the BMIP) [19].

• If C has bounded degree or the BIP, then the Check(FHD,k ) problem is solvable in polynomial

time for arbitrary k ≥ 1 [19, 25].

• If C has bounded VC-dimension, then the fhw can be approximated in polynomial time up to

a log-factor [19].

4 GHD ALGORITHMS

In this section, we present two different ways to implement the tractable algorithm for computing
GHDs in case of BIP [19]. We shall refer to these two implementations as GlobalBIP and LocalBIP
. Moreover, we shall present a completely new approach to computing GHDs, which will be re-
ferred to as BalSep. These variants exploit low intersection size to compute a GHD of width ≤ k
of a hypergraph in polynomial time. While GlobalBIP and LocalBIP differ in the time of the
computation of certain sets of subedges, the BalSep algorithm is a novel approach in computing
decompositions by means of balanced separators.

4.1 Theoretical Background

In Reference [19], the Check(GHD,k ) problem was proved to be intractable for k ≥ 2, but the au-
thors also identified tractable fragments corresponding to classes of hypergraphs having bounded
(multi-)intersection size. In the following, we focus on the intersection size, i.e., the maximum in-
tersection size of any two edges in a hypergraph, and explain how this property can be used for
tractable ghw computation. Since the three variants presented later rely on the same central idea,
we refer to the theoretical algorithm as the дhw-algorithm.

For a given hypergraph H = (V (H ),E (H )), the ghw-algorithm adds a polynomial-time com-
putable set f (H ,k ) of subedges of edges in E (H ) to the hypergraph H . The set f (H ,k ) has the
property that ghw (H ) = k if and only if hw (H ′) = k , where H ′ = (V (H ),E (H ) ∪ f (H ,k )). Thus, it
is possible to use Check(HD,k ) to solve Check(GHD,k ) and achieve tractability. The particular
set

f (H ,k ) =
⋃

e ∈E (H )

	



⋃

e1, ...,ej ∈(E (H )\{e }), j≤k

2(e∩(e1∪···∪ej ))�
�

(1)

contains, for each e ∈ E (H ), all subsets of intersections of e with up to k edges of H different from
e . Although f (H ,k ) could in general contain an exponential number of elements, for fixed k and
intersection size of H bounded by d , the set e ∩ (e1 ∪ · · · ∪ ej ) contains at most d · k elements and,
therefore, | f (H ,k ) | is polynomially bounded.
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Since the ghw-algorithm relies on the computation of HDs, we implemented a new version of
the hw-algorithm in Reference [30] and called it NewDetKDecomp. Our program contains also the
implementations of all the algorithms in this section, but we defer a detailed discussion of the
complete library to Section 6.

4.2 The GlobalBIP Algorithm

GivenH and k ≥ 1, a straightforward implementation of the ghw-algorithm consists in computing
the set f (H ,k ), creating the hypergraph H ′ = (V (H ),E (H ) ∪ f (H ,k )), and finally computing an
HD of H of width ≤ k , if it exists. Since here we compute the set f (H ,k ) a priori globally for the
whole hypergraph, we call this algorithm GlobalBIP.

Algorithm 1 is a detailed description of GlobalBIP. The input consists of a hypergraph H and
a constant k , while the output is a GHD of H of width ≤ k , if it exists, and null otherwise. In line
2, we first compute f (H ,k ) as in Equation (1) and then, in line 3, we create the hypergraph H ′,
which is obtained by adding the subedges in f (H ,k ) to H . In line 4, we call NewDetKDecomp on H ′

and k as a black box and store its output in the variable HD. If HD is null, then a GHD of width
≤ k of H does not exist, therefore, we return null. Otherwise, we need to “fix” the decomposition
as described in lines 6–10. In particular, for each node u of HD, and for each edge of f (H ,k ) in
λu , i.e., e ′ ∈ (λu ∩ f (H ,k )) that is not an edge in the original hypergraph H , we substitute e with
an edge e ′ ∈ E (H ) such that e ⊆ e ′. In this way, we obtain a new edge cover λ′u such that Bu ⊆
B (λu ) ⊆ B (λ′u ), but also |λu | = |λ′u |. Thus, the new decomposition still satisfies all the properties
of a GHD and its width is still ≤ k . Eventually, in line 11, we return HD.

ALGORITHM 1: GlobalBIP
Input: A hypergraph H .
Parameter: An integer k ≥ 1.
Output: A GHD of H of width ≤ k if it exists, null otherwise.

1 begin

2 f (H ,k ) ← compute as in Equation (1);

3 H ′ ← (V (H ),E (H ) ∪ f (H ,k ));

4 HD ← NewDetKDecomp(H ′,k);

5 if HD � null then

6 foreach u ∈ HD do

7 foreach e ∈ (λu ∩ f (H ,k )) do

8 e ′ ← e ′ ∈ E (H ) such that e ⊆ e ′;
9 λu (e ) ← 0;

10 λu (e ′) ← 1;

11 return HD

4.3 The LocalBIP Algorithm

The main drawback of GlobalBIP is that the size of f (H ,k ), though polynomial, could be huge
for practical purposes. Therefore, we looked at ways to reduce the number of edges to add to H
by restricting the computation only to those edges that might be actually necessary. The approach
we used follows from an observation about the role played by f (H ,k ) in the tractability proof
in Reference [19].

Recall that the proof uses Check(HD,k ) on the hypergraph H ′ to answer Check(GHD,k ) for
the hypergraph H . To do this in a sound way, the set f (H ,k ) has to contain all the edges that
could be used to cover possible bags of H ′ in an HD without changing the width. Consider a top-
down construction of a GHD of H . At some point, we might want to choose, for some node u, a
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bag Bu such that x � Bu for some variable x ∈ B (λu ) ∩V (Tu ). This choice would violate condition
(4) of HDs and would not be allowed for the computation of an HD. In particular, there is an
edge e with x ∈ e and λu (e ) = 1. For this reason, the set f (H ,k ) contains an edge e ′ such that
e ′ ⊂ e and x � e ′. Hence, we can substitute e with e ′ in the cover λu (i.e., λu (e ) = 0, λu (e ′) = 1) to
eliminate the violation of condition (4). Moreover, because of the connectedness condition, there
is no need to look at the intersection of e with arbitrary edges in E (H ); instead, we consider only
the intersections of e with unions of edges that may possibly occur in bags of Tu . In other words,
for each node u of the decomposition, we consider only an appropriate subset fu (H ,k ) ⊆ f (H ,k ).
More specifically, for the current node u, let Hu ⊆ H be the component we want to decompose.
Then, we define fu (H ,k ) as follows:

fu (H ,k ) =
⋃

e ∈E (H )

	



⋃

e1, ...,ej ∈(E (Hu )\{e }), j≤k

2(e∩(e1∪···∪ej ))�
�
. (2)

We call the resulting algorithm LocalBIP , because the set of edges fu (H ,k ) is computed locally

for each node u during the construction of the decomposition. It follows NewDetKDecomp closely,
but it differs in the search of the separators. In particular, while decomposing H , the algorithm
first tries all possible �-combinations of edges in E (H ) (with � ≤ k) and only if the search does not
succeed, it tries �-combinations of subedges in fu (H ,k ).

4.4 The BalSep Algorithm

So far, we have presented two adaptations of the theoretical ghw-algorithm from Reference [19].
On the one hand, they extend NewDetKDecomp to compute GHDs and exploit bounded intersection
size for tractability. On the other hand, they do not introduce any significant algorithmic innova-
tion. In the following, we describe a novel approach to compute GHDs that makes use of sets of
edges called balanced separators. We first extend the terminology of Section 3, then give a detailed
description of the algorithm, and finally prove that our algorithm is sound and complete.

4.4.1 Balanced Separators and Special Edges. Recall that a hypergraph is a pair H =
(V (H ),E (H )), consisting of a set V (H ) of vertices and a set E (H ) of hyperedges (or, simply edges),
which are non-empty subsets of V (H ). Since we assume that hypergraphs do not have isolated
vertices, we can identify a hypergraph H with its set of edges E (H ). Then, a subhypergraph H ′ of
H is a subset of (the edges of) H .

Starting off with a hypergraphH , the BalSep algorithm has to deal with subhypergraphsH ′ ⊆ H
augmented by a set Sp of special edges. A special edge is simply a set of vertices fromH . Intuitively,
special edges correspond to bags Bu in a GHD of H . Thus, an extended subhypergraph of H is of
the form H ′ ∪ Sp , where H ′ ⊆ H is a subhypergraph and Sp is a set of special edges.

We now extend three crucial definitions from hypergraphs to extended subhypergraphs, namely,
components, balanced separators, and GHDs. We recall that, even though a separator is a set of ver-
tices, it can be defined as a set of edges. Then, for S ⊆ E (H ), an [S]-component is a [W ]-component
withW =

⋃
e ∈S e . In our algorithm, we use the fact that, because of the edges in f (H ,K ), it is al-

ways possible to choose a separator λu such that B (λu ) = Bu [19]. Hence, there will not be any
need to distinguish between vertex and edge separators. We start with components.

Definition 6 (Components of Extended Subhypergraphs). For a setU ⊆ V (H ) of vertices, we define
[U ]-components of an extended subhypergraph H ′ ∪ Sp of H as follows:

• We define [U ]-adjacency as a binary relation on H ′ ∪ Sp as follows: two (possibly special)
edges f1, f2 ∈ H ′ ∪ Sp are [U ]-adjacent, if ( f1 ∩ f2) \U � ∅ holds.

• We define [U ]-connectedness as the transitive closure of the [U ]-adjacency relation.
• A [U ]-component of H ′ ∪ Sp is a maximally [U ]-connected subset C ⊆ H ′ ∪ Sp .
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Hence, if C1, . . . ,C� are the [U ]-components of H ′ ∪ Sp , then H ′ ∪ Sp is partitioned into C0 ∪
C1 ∪ · · · ∪C� , such that C0 = { f ∈ H ′ ∪ Sp | f ⊆ U }.

We next define balanced separators. While we give a definition w.r.t. sets of verticesU ⊆ V (H ),
they can be alternatively defined in terms of sets of edges S ⊆ E (H ).

Definition 7 (Balanced Separators). Let H ′ ∪ Sp be an extended subhypergraph of a hypergraph
H and let U ⊆ V (H ) be a set of vertices of H . The set U is a balanced separator of H ′ ∪ Sp if for

each [U ]-component Ci of H ′ ∪ Sp , |Ci | ≤
|H ′∪Sp |

2 holds. In other words, no [U ]-component must
contain more than half the edges of H ′ ∪ Sp .

Finally, we extend GHDs to extended subhypergraphs.

Definition 8 (GHDs of Extended Subhypergraphs). Let H be a hypergraph and H ′ ∪ Sp an ex-
tended subhypergraph of H . A GHD of H ′ ∪ Sp is a tuple 〈T , (Bu )u ∈T , (λu )u ∈T 〉, where T =
(N (T ),E (T )) is a tree, and Bu and λu are labeling functions, which map to each node u ∈ T two
sets, Bu ⊆ V (H ) and λu ⊆ E (H ) ∪ Sp . For a node u, we call Bu the bag and λu the edge cover of u.
The set B (λu ) of vertices “covered” by λu is defined as B (λu ) = {v ∈ V (H ) | v ∈ f , f ∈ λu }. The
functions λu and Bu have to satisfy the following conditions:

(1) For each node u ∈ T , either
(a) λu ⊆ E (H ) and Bu ⊆ B (λu ), or
(b) λu = {s} for some s ∈ Sp and Bu = s .

(2) If, for some u ∈ T , λu = {s} for some s ∈ Sp , then u is a leaf node.
(3) For each e ∈ H ′ ∪ Sp , there is a node u ∈ T s.t. e ⊆ Bu .
(4) For each vertex v ∈ V (H ), {u ∈ T | v ∈ Bu } is a connected subtree of T .

The width of a GHD is defined as max{|λu | : u ∈ T }.

Clearly, also H itself is an extended subhypergraph of H with H ′ = H and Sp = ∅. It is readily
verified that the above definition of GHD of an extended subhypergraphH ′ ∪ Sp and the definition
of GHD of a hypergraphH coincide for the special case of taking H as an extended subhypergraph
of itself.

In Reference [27], a normal form of hypertree decompositions was introduced. We will carry
the notion of normal form over to GHDs of extended subhypergraph. To this end, it is convenient
to first define the set of edges exclusively covered by some subtree of a GHD:

Definition 9. Let H ′ ∪ Sp be an extended subhypergraph of some hypergraph H and D =
〈T , (Bu )u ∈T , (λu )u ∈T 〉 a GHD for H ′ ∪ Sp . For a node u ∈ T , we write Tu to denote the subtree
of T rooted at u. Moreover, we define the set of edges exclusively covered by Tu as exCov (Tu ) =
{ f ∈ H ′ ∪ Sp | ∃v ∈ Tu : f ⊆ Bv ∧ f � Bu }.

Our normal form of GHDs is then defined as follows:

Definition 10 (GHD of Extended Subhypergraphs Normal form). We say that a GHD
〈T , (Bu )u ∈T , (λu )u ∈T 〉 of an extended subhypergraphH ′ ∪ Sp is in normal form, if for the root node
r of T , the following property holds: let u1, . . . ,u� be the child nodes of r in T and let Tu1 , . . . ,Tu�

denote the subtrees in T rooted at u1, . . . ,u� , respectively. Then exCov (Tu1 ), . . . , exCov (Tu� ) are
precisely the [V (λr )]-components of H ′ ∪ Sp . Intuitively, each subtree Ti below the root “covers”
the edges of precisely one[Br ]-component of H ′ ∪ Sp .

The following lemma is an immediate extensions of previous results for hypergraphs to ex-
tended subhypergraphs:
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Lemma 1. LetH ′ ∪ Sp be an extended subhypergraph of some hypergraphH and suppose that there

exists a GHD D of width ≤ k for H ′ ∪ Sp . Then there also exists a GHD D′ in normal form of width

≤ k for H ′ ∪ Sp , such that Br is a balanced separator of H ′ ∪ Sp for the root node r of D′.

Proof. The lemma combines two results from References [27] and [3], respectively.
Our normal form relaxes the normal form of HDs introduced in Definition 5.1 in Reference [27].

The transformation into normal form can be taken over almost literally from the proof of Theorem
5.4 in Reference [27] for establishing the normal form of HDs.

The existence of a balanced separator as the root of a GHD is implicit in the definition of “hy-
perlinkedness” and Theorem 19 in Reference [3]. Again, it can be easily taken over to our case of
an extended subhypergraph (i.e., to take also special edges into account). Actually, it can also be
easily proved directly by starting off at the root r of an arbitrary GHD of H ′ ∪ Sp in normal form

and checking if the components covered by the subtrees below all have size at most
|H ′∪Sp |

2 . If so,
then we already have the desired form. If not, then there must be one subtreeTr ′ rooted at a child

r ′ of r , such that exCov (Tr ′ ) is greater than
|H ′∪Sp |

2 . We then apply the normal form transformation
also toTr ′ and check recursively if all the components covered by the subtrees below all have size

at most
|H ′∪Sp |

2 . By repeating this recursive step, we will eventually reach a node u, such that Bu

is a balanced separator. Then, we simply take this node as the root and again apply the normal
form transformation of the proof of Theorem 5.4 in Reference [27] to this new root node and the
subtrees immediately below it. �

4.4.2 Algorithm Description. Here, we describe Algorithm 2, which we call BalSep. For a fixed
integer k ≥ 1, it takes as input a hypergraph H and computes a GHD of H of width ≤ k if it exists,
or returns null otherwise. The main of Algorithm 2 consists of a call to the Function Decompose
with parameters H and an empty set of special edges.

The recursive Function Decompose constitutes the core of the algorithm and, given as input a
hypergraph H ′ and a set of special edges Sp , computes a GHD of H ′ ∪ Sp of width ≤ k if it exists.
Lines 5–12 deal with the two base cases of the algorithm. If H ′ ∪ Sp has only one edge, then we
create a decomposition made of a single node u whose label λu contains the only edge of H ′ ∪ Sp

and the bag Bu = V (H ′ ∪ Sp ), i.e., all the vertices of the extended subhypergraph, which are also
the ones covered by λu . In a similar way, we deal with the case |E (H ′ ∪ Sp ) | = 2. We simply create
two nodes u,v , one for each edge of H ′ ∪ Sp , and then attach v as a child of u and return the
decomposition.

If the extended subhypergraph has at least three edges, then we have to decompose it until we
reach one of the two base cases. In line 13, we initialize the object BalSepIt, which is an iterator
over the balanced separators of size ≤ k ofH ′ ∪ Sp with edges inH . The iterator BalSepIt produces,
one-by-one, all the �-combinations of edges in H , for each � ≤ k , to find a balanced separator for
H ′ ∪ Sp . Moreover, if all the combinations of full edges fail, then the function uses subedges of H
to generate separators corresponding to elements of the set f (H ,k ) of Equation (1).

In the while loop in lines 14–27, we recursively decompose H ′ ∪ Sp . We are now creating the
current node u of the GHD, and we have to compute λu , Bu and the children of u. In line 15, we set
λu as the next balanced separator and, in line 16, we fix the bag Bu = B (λu ), as discussed above. We
want to compute a GHD for each [Bu ]-component of H ′ ∪ Sp in such a way that it will be possible
to attach each of them to the current node u without violating any condition of Definition 8.

Function ComputeSubhypergraphs computes the set of extended subhypergraphs correspond-
ing to [Bu ]-components of H ′ ∪ Sp and introduces, in each of them, a new special edge
Bu for connectedness. We assume here the existence of a function ConnectedComponents,
which computes the connected components of a hypergraph in a standard way. First, Function
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ComputeSubhypergraphs computes the hypergraph Hu = (Vu ,Eu ) resulting from the removal of
all vertices in Bu from H ′ ∪ Sp . Then, in lines 5–11, it creates a new subhypergraph of H ′ ∪ Sp for
each connected component of Hu . The new subhypergraph is stored in a variable c , which is a
pair consisting of a hypergraph H and a set of special edges Sp . For a single subhypergraph, the
new set of special edges c .Sp is composed of the edges of Sp intersecting the current component
comp plus a new special edge s = Bu corresponding to the separator Bu . We can then compute the
hypergraph c .H . Its set of edges E contains the edges of H ′ intersecting the current component
comp and its set of vertices is the union of E and c .Sp . We then add c to the set of results res, which
we finally return in line 12.

Back in Function Decompose, in lines 18–24, we recursively compute a GHD for each extended
subhypergraph returned by Function ComputeSubhypergraphs. If the decomposition D returned
in line 19 is not null, then we add it to the set subDecomps of the children of the current node
u; otherwise, we set subDecomps to null and break the loop. At the end of the loop, we check
whether subDecomps is null. If this is the case, it means that one of the recursive calls of Func-
tion Decompose was unsuccessful. We then have to continue the while loop of lines 14–27 and try
the next balanced separator. In case all the recursive calls of Function Decompose were successful,
Function BuildGHD builds the resulting GHD and returns it in line 27. If the algorithm exhausts
all the choices of balanced separators for H ′ ∪ Sp and exits the while loop of lines 14–27, then
it means that it is impossible to create a GHD of width ≤ k for H ′ ∪ Sp and we return null in
line 28.

Finally, we describe the Function BuildGHD that, given a bag Bu , an edge cover λu , and a set
children of GHDs, returns a GHD with root u and children children. We start off creating the node
u with labels Bu and λu . Then, for each childD ∈ children, we find the node r inT (the tree ofD)
having Br = Bu and rerootT to r . Now, for each child cr of r , we attach cr as a child of u. In other
words, we attach every subtree rooted at a child node of r to u. Finally, we return the resulting
decomposition.

4.4.3 Soundness and Completeness. Here, we prove that Algorithm 2 is sound and complete.

Theorem 2. Let H be a hypergraph and k ≥ 1 an integer. Algorithm 2 called on H with parameter

k returns a GHD of H of width ≤ k if and only if ghw (H ) ≤ k .

We prove the soundness and the completeness of Algorithm 2 separately. Nevertheless, we want
to point out that the main procedure of the algorithm consists of a call to Function Decompose
with input H and an empty set of special edges. Thus, in the next proofs, we will actually prove
that Function Decompose called on (H ′, Sp ) with parameter k returns a GHD of H ′ ∪ Sp of width
≤ k if and only if ghw (H ′ ∪ Sp ) ≤ k w.r.t. Definition 8. Note that in case of a hypergraph H and a
set of special edges Sp = ∅, Definition 8 coincides with the usual definition of GHD.

Proof (Soundness). We show that if Function Decompose called on (H ′, Sp ) with parameter k
returns a GHD of H ′ ∪ Sp of width ≤ k , then such a decomposition actually exists and ghw (H ′ ∪
Sp ) ≤ k . We proceed by induction over the size of H ′ ∪ Sp , i.e., |E (H ′ ∪ Sp ) |. For the base case,
we assume |H ′ ∪ Sp | ≤ 2. In case |H ′ ∪ Sp | = 1, we return a GHD made of a single node whose
λ-label consists of the only edge H ′ ∪ Sp , which also cover all of the vertices of the hypergraph.
Such a decomposition has width 1 and clearly satisfies all the conditions of Definition 8. In case
|H ′ ∪ Sp | = 2, we create two nodes u,v , each one corresponding to an edge of H ′ ∪ Sp and we
attach v as a child of u. Note that both u and v are leaf nodes. It is easy to verify that also, in this
case, we return a valid GHD of H ′ ∪ Sp .

For the induction step, suppose that the recursive function Decompose correctly returns a GHD
of H ′ ∪ Sp of width ≤ k for each H ′ ∪ Sp such that |H ′ ∪ Sp | ≤ j, for some j ≥ 2. Now suppose that
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ALGORITHM 2: BalSep

Input: A hypergraph H .
Parameter: An integer k ≥ 1.
Output: A GHD of H of width ≤ k if it exists, null otherwise.

1 Main

2 Make H globally visible

3 return Decompose(H , ∅)
4 FUNCTION Decompose(H ′: hypergraph, Sp : set of special edges)
5 if |E (H ′ ∪ Sp ) | == 1 then

6 return node u with Bu ← V (H ′ ∪ Sp ) and λu ← E (H ′ ∪ Sp )

7 if |E (H ′ ∪ Sp ) | == 2 then

8 Let e1, e2 be the two edges of H ′ ∪ Sp

9 Create node u with Bu ← e1 and λu ← {e1}
10 Create node v with Bv ← e2 and λv ← {e2}
11 AttachChild(u,v)

12 return u;

13 BalSepIt ← InitBalSepIterator(H ,H ′, Sp ,k)

14 while HasNext(BalSepIt) do

15 λu ← Next(BalSepIt)

16 Bu ← B (λu )

17 subDecomps ← {}
18 foreach c ∈ ComputeSubhypergraphs(H ′, Sp ,Bu) do

19 D ← Decompose(c .H , c .Sp)

20 if D � null then

21 subDecomps ← subDecomps ∪ {D}
22 else

23 subDecomps ← null

24 break

25 if subDecomps == null then

26 continue

27 return BuildGHD(Bu , λu , subDecomps)

28 return null

Function BuildGHD(Bu , λu , children)

Input: A set of vertices Bu , a set of λu , a set of GHDs children.
Output: A GHD with root u and children children.

1 begin

2 Create node u with Bu and λu

3 foreach D ∈ children do

4 Let T be the tree structure of D
5 r̂ ← Reroot(T ,Bu)

6 foreach cr̂ ∈ Children(r̂) do

7 AttachChild(u, cr̂ )

8 return u
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Function ComputeSubhypergraphs(H ′, Sp ,Bu )

Input: A hypergraph H ′, a set of special edges Sp , a set of vertices Bu .
Output: The set of subhypergraphs of H ′ ∪ Sp w.r.t. Bu .

1 begin

2 Vu ← V (H ′) \ Bu

3 Eu ← {e ∩Vu | e ∈ E (H ′ ∪ Sp )}
4 res ← {}
5 foreach comp ∈ ConnectedComponents(Vu ,Eu) do

6 c ← initialize pair (H = null, Sp = null)

7 c .Sp ← {s ∈ Sp | s ∩ comp � ∅} ∪ {Bu }
8 E ← {e | e ∈ E (H ′) ∧ e ∩ comp � ∅}
9 V ← V (E) ∪V (c .Sp )

10 c .H ← (V ,E)

11 res ← res ∪ {c}
12 return res

|H ′ ∪ Sp | = j + 1 ≥ 3 and that Function Decompose(H ′, Sp ) returns a GHD ofH ′ ∪ Sp of width ≤ k .
We have to show that then there indeed exists such a GHD.

Algorithm 2 only returns a GHD in line 27. The program successfully reaches this line only if
the following happens:

• In line 15, a balanced separator λu of H ′ ∪ Sp is chosen.
• In line 18, the extended subhypergraphs of H ′ ∪ Sp w.r.t. Bu = B (λu ) are computed; in par-

ticular, each extended subhypergraph corresponds to a [Bu ]-component of H ′ ∪ Sp plus a
new special edge s = Bu .

• For each extended subhypergraph c .H ∪ c .Sp , the call to Function Decompose in line 19 is
successful, i.e., it returns a GHD of c .H ∪ c .Sp of width ≤ k .

We are assuming |H ′ ∪ Sp | ≥ 3 and λu is a balanced separator of H ′ ∪ Sp . Let C1, . . . ,C� be the
� [Bu ]-components of H ′ ∪ Sp . All extended subhypergraphs Ci ∪ {Bu } are strictly smaller than
j. Hence, by the induction hypothesis, for each i ∈ {1, . . . , �}, there indeed exists a GHD Di =

〈Ti , (Bi,u )u ∈T , (λi,u )u ∈T 〉 of width ≤ k for the extended subhypergraph Ci ∪ {Bu }.
It is left to show that Function BuildGHD correctly constructs a GHD of width ≤ k of H ′ ∪ Sp .

For each Di , let r̂i be the node of Ti with Bi, r̂i
= Bu and λi, r̂i

= {Bu }. By construction, the node
r̂i exists in every Di ; it is always a leaf and it has the same bag and λ-label everywhere. Let
Ti = (N (Ti ),E (Ti )) be the tree structure of Di and, w.l.o.g., assume that the node sets N (Ti ) are
pairwise disjoint. We define the tree structureT = (N (T ),E (T )) and the functions Bu and λu ofD
as follows:

• N = (N (T1) \ {r̂1}) ∪ · · · ∪ (N (T� ) \ {r̂� }) ∪ {r }, where r is a new (root) node.
• For the definition of E (T ) recall that each r̂i is a leaf node in its decomposition. Let ei denote

the edge between r̂i and its parent. Then, we define E (T ) as E (T ) = (E (T1) \ {e1}) ∪ · · · ∪
(E (T� ) \ {e� }) ∪ R with R = {[r , r̂1], . . . , [r , r̂�]}.

• λr = λu and Br = Bu .
• For every v ∈ N \ {r }, there exists exactly one i , such that v ∈ N (Ti ). We set λv = λi,v and

Bv = Bi,v .
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Intuitively, the GHD D is obtained by taking in each GHD Di the node r̂i as the root node and
combining all GHDs Di to a single GHD by merging their root nodes to a single node r . This is
possible, since all nodes r̂i have the same λ-labels and bags. It is easy to verify that the resulting
GHD is indeed a GHD of width ≤ k of the extended subhypergraph H ′ ∪ Sp. �

Proof (Completeness). For any hypergraph H ′ and set of special edges Sp , we prove that if
ghw (H ′ ∪ Sp ) ≤ k , then Function Decompose on input (H ′, Sp ) returns a GHD of width ≤ k of
H ′ ∪ Sp . Again, we proceed by induction on |H ′ ∪ Sp |.

The base case of |H ′ ∪ Sp | ≤ 2 is dealt with in lines 5–12 of Algorithm 2. In this case, we simply
construct a GHD of width 1 for |H ′ ∪ Sp | and return it.

For the induction step, suppose |H ′ ∪ Sp | ≤ j, for some j ≥ 2, and ghw (H ′ ∪ Sp ) ≤ k . Then,
Function Decompose on input (H ′, Sp ) returns a GHD of width ≤ k of H ′ ∪ Sp . Now assume that
|H ′ ∪ Sp | = j + 1 ≥ 3 and that ghw (H ′ ∪ Sp ) ≤ k . We have to show that Function Decompose on
input (H ′, Sp ) returns a GHD of width ≤ k of H ′ ∪ Sp .

By Lemma 1, we may assume w.l.o.g., that GHD D = 〈T , (Bu )u ∈T , (λu )u ∈T 〉 is in normal form
and that Br is a balanced separator of H ′ ∪ Sp for the root node r of D. Let S ⊆ E (H ) denote the
λ-label of r , i.e., λr = S .

When Function Decompose is called on input (H ′, Sp ), the while loop in lines 14–27 eventually
generates all possible balanced separators of size ≤ k of H ′ ∪ Sp , unless it returns on line 27 before
the end of the loop. Remember that the object BalSepIt not only generates edge separators with
edges in E (H ), i.e., the original hypergraph on which Algorithm 2 is called, but it also uses edges
in f (H ,k ), i.e., subedges of edges in E (H ). Thus, at some point, in line 15, we will choose the
separator λu = S , equivalently, Bu = Br .

LetC1, . . . ,C� denote the [Bu ]-components of H ′ ∪ S . SinceD is in normal form, we know that
the root node r has � child nodes such that Ci = exCov (Ti ), where Ti is the subtree in T rooted at
ni for i ∈ {1, . . . , �}. Recall from Definition 9 that we write exCov (Ti ) to denote the set of edges
exclusively covered by Ti .

Now consider the extended subhypergraph Ci ∪ {Bu } for arbitrary i ∈ {1, . . . , �}. Since Br is
a balanced separator of H ′ ∪ Sp , we have |Ci ∪ {Bu }| ≤ j. Moreover, there exists a GHD Di of
Ci ∪ {Bu }, namely, the subtree of D induced by the nodes in Ti plus r . Hence, by the induction
hypothesis, calling Function Decompose with the input corresponding to the extended subhyper-
graph Ci ∪ {Bu } returns a valid GHD. This means that, in our call of Function Decompose with
input (H ′, Sp), we have the following behavior:

• On line 19, Function Decompose is called recursively for all extended subhypergraphsCi ∪
{Bu }.

• Each call of the Function Decompose returns a GHD for the respective extended subhyper-
graph.

• The results of these recursive calls are collected in line 21 in the variable subDecomps.
• Hence, after exiting the loop in lines 18–26, the return statement in line 27 is executed.

The call to Function BuildGHD correctly produces the desired GHD, as discussed in the sound-
ness proof. Finally, Function Decompose indeed returns a GHD of width ≤ k of H ′ ∪ Sp . �

5 HYPERBENCH BENCHMARK AND TOOL

In this section, we describe HyperBench—our new benchmark and web tool. We first introduce our
system and test environment used for the experiments, then we present a new method to extract
simple conjunctive queries from complex SQL queries. Finally, we describe the CQs and CSPs we
have collected.
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5.1 System and Test Environment

Our system is composed of two libraries: a C++ library with implementations of the algorithms
and a Java library for processing of SQL queries and hypergraphs. We have extended the algorithm
DetKDecomp from Reference [30] and based our program on a new implementation, which we
call NewDetKDecomp. The resulting C++ library comprising around 8,500 lines of code has been
improved in many ways. While the underlying hw algorithm is still the one from Reference [30],
the implementation makes use of modern C++ constructs such as smart pointers for better memory
management and maintainability. The code itself has also been optimized in several parts, thus
improving overall performance w.r.t. the previous release. The software now also goes beyond the
computation of HDs and it has been expanded to compute GHDs through the algorithms presented
in Section 4. Moreover, NewDetKDecomp can also compute an approximated form of FHDs, which
will be described in Section 6.5. We designed our Java library hg-tools for preprocessing of SQL
queries and collecting hypergraph statistics. It uses the open source libraries JSqlParser [57] for
SQL processing and JGraphT [44] to deal with graph data structures. Our two libraries are available
at https://github.com/dmlongo/newdetkdecomp and https://github.com/dmlongo/hgtools.

All the experiments reported in this article were performed on a cluster of 10 workstations each
running Ubuntu 16.04. Every workstation has the same specification and is equipped with two Intel
Xeon E5-2650 (v4) processors each having 12 cores and 256 GB main memory. Since all algorithms
are single-threaded, we could run several experiments in parallel. For all upcoming runs of our
algorithms, we set a timeout of 3,600 s.

5.2 Translation of Complex SQL Queries into Hypergraphs

Since the applicability of structural decomposition methods is limited to conjunctive queries, we
have devised a strategy to transform also more complex queries into (a collection of) hypergraphs.
Our program hg-tools takes as input a complex SQL query and produces a collection of simpler SQL
queries. When facing a complex query, e.g., one containing nested queries, the idea is to identify
simple queries, extract them, and transform them separately.

A conjunctive query can be expressed in SQL as a SELECT-FROM-WHERE statement in which
the WHERE clause is only allowed to be a conjunction of equality conditions. Moreover, such
a query must not contain negation, disjunction, and subqueries, i.e., nested SELECT statements.
For our purposes, we neglect the SELECT clause, because in our experiments, we focus on com-
puting decompositions instead of answering the queries. Hence, only the hypergraph structure
determined by the FROM and WHERE clauses is important.

Query 1 is an example of an SQL query. The FROM clause uses two instances of the relation
tab(a, b, c) and in the WHERE clause there are some conditions on the two relation instances. The
condition on line 3 is a join and falls in the scope of conjunctive queries. Though the condition on
line 4 is not conjunctive, it is just a comparison with a constant value and it does not influence the
query structure. Nevertheless, the condition on line 5 involves a negation, thus Query 1 is not a
conjunctive query. This kind of query is not allowed by our framework.

Listing 1. A simple SQL query.
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Nevertheless, what really matters in defining the query structure are the relationships between
the different variables involved in the query, in particular, join conditions. For this reason, when
faced with a query that is not conjunctive, we consider a simplified version that contains the
conjunctive core of the original query. In case of Query 1, we drop lines 4–5 and perform our
experiments on the rest of the query.

Real-world SQL queries can be rather complicated and, in particular, they can contain nested
SELECT statements, which we simply call subqueries. The presence of subqueries automatically
makes the query non conjunctive, but we have decided to extract the single queries and analyze
their conjunctive cores separately. Query 2 is a query with nested SELECT statements. The sub-
query on lines 4–6 can be examined separately. The subquery on lines 7–9 cannot be examined
separately, because it contains a reference to a table defined in an external query and, more pre-
cisely, it requires the evaluation of the subquery for the value of the current row of that table.

Listing 2. A complex SQL query.

In SQL, a subquery can appear in different places in a query. Depending in which statement or
condition it appears, we treat it differently:

• If a query is of the form q1 ◦ · · · ◦ qn , where each qi is a query and ◦ ∈ {∪,∩, \}, then we
extract the single queries qi and process them separately.

• If a subquery appears in the FROM clause, then we convert it into a view (see Section 5.4).
• If a subquery contains a reference to an external query, as in lines 7–9 of Query 2, then it

must be discarded.

5.3 Extracting Simple Queries

In general, an SQL query can contain subqueries. We want to extract them and either integrate
them into the main query, when possible, or analyze them separately. To do that in such a way
that the end result closely resembles the original query as much as possible, we build a graph rep-
resenting the dependencies between the subqueries. At the end of the process, we extract queries
that are independent and eliminate those that are mutually dependent.

We say that a subquery s1 depends on a subquery s2 if the result of q1 can be computed only after
computing the result of q2. The dependency graph of a queryQ is a graphG = (S,D) where the set
S contains the nodes corresponding to subqueries of Q and (s1, s2) ∈ D is an arrow, for s1, s2 ∈ S ,
if s1 depends on s2. Given a query Q , we create its dependency graph G as follows:

(1) Create a node q ∈ S representing the outer query.
(2) For each nested query si of q, create a new node si ∈ S and an edge (q, si ) ∈ D.
(3) If si contains a reference to a table defined in any ancestor sj , then create an edge (si , sj ).
(4) Recursively examine si for nested queries.
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Fig. 5. Dependency graph of Query 2.

Once we have built the graph, we identify the nodes that are involved in cycles and eliminate them.
In particular, we consider q as a root and navigate the graph. Whenever we find a node having an
edge pointing at an ancestor, we eliminate it together with all of its incoming and outgoing edges.
Eventually, we end up with a forest in which we extract a query from each node.

The dependency graph G of Query 2 is shown in Figure 5. The node q corresponds to the outer
query and it is the root of the graph. The nodes s1 and s2 represent the subqueries in lines 4–6 and
lines 7–9 of Query 2, respectively. As the result of Query 2 can be computed only after computing
the subqueries, the two edges (q, s1) and (q, s2) are present in the graph. Since s2 refers to the table
t1 defined in q (line 9), G contains also the edge (s2,q). After the creation, we look for cycles in
the graph. In this case, we see that there is no way to evaluate s2 independently from q. Then, we
remove s2 and all of its incident edges. Finally, we extract a simple query from each node of the
remaining graph.

5.4 Converting Simple Queries into Hypergraphs

Once we have extracted and simplified subqueries, we are left with simple SQL queries of the type

SELECT ri1 .Aj1 , . . . , riz
.Ajz

FROM r1, . . . , rm WHERE cond (3)

such that cond is a conjunction of conditions of the form ri .A = r j .B or ri .A = c , where c is a
constant. Such queries are equivalent to conjunctive queries, thus it is easy to draw a connection
to a CQ and transform it into a hypergraph. Nevertheless, in our case it makes more sense to go
directly from an SQL query to the hypergraph.

Let Q be an SQL query of the form ((3)), then the hypergraph HQ = (V (HQ ),E (HQ )) corre-
sponding to Q is obtained as follows: We first build the hypergraph induced by the FROM clause.
Consider a relation r (A1, . . . ,A� ) in the FROM clause. For each attributeAi of r , we create a vertex
vAi
∈ V (HQ ). Then, we create the edge r = {vA1 , . . . ,vA� } ∈ E (HQ ). Now, we modify the hyper-

graph according to the conditions in the WHERE clause. Let cond be such a condition. It can be of
two forms:

• If cond is of the form ri .A = r j .B, then we merge verticesvA andvb and modify their incident
edges. W.l.o.g. assume vA itself becomes the merged vertex. For each edge r ∈ {e ∈ E (HQ ) |
vB ∈ e}, we remove r from E (HQ ) and add a new edge r ′ = (r \ {vB }) ∪ {vA}.

• If cond is of the form ri .A = c , with c constant, then we removevA fromV (HQ ) and, for each
edge r ∈ {e ∈ E (HQ ) | vA ∈ e}, we remove r from E (HQ ) and add a new edge r ′ = r \ {vA}.

At the end of this procedure, we eliminate empty edges and multiple edges. Also, in our setting
SELECT clauses do not contribute to the query structure, thus we simply ignore them.

We also take into account logical views. SQL views are virtual tables that are recreated every
time the view is called; thus, we have decided to expand the main query by adding the view inside
it. Consider Query 3. The view crossView has a cross structure composed by the two relations t1, t2
intersecting in the node b in the middle (see Figure 6(a)). The main query adds two relations t1, t2
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Fig. 6. Hypergraphs for Query 3.

that are distinct from the ones in the view crossView and intersect it in four points, thus creating
two cycles. The end result is depicted in Figure 6(b). The resulting query can finally be converted
into a hypergraph with the algorithm described above.

Listing 3. An SQL query with a view.

5.5 From CSPs to Hypergraphs

An important part of our benchmark consists of instances of Constraint Satisfaction Problems.
The set we have collected presents different characteristics w.r.t. the ones found in CQs, thus their
analysis offers a more varied picture of the hypergraphs encountered in applications. For this
reason, we have retrieved CSP instances that have a significant practical aspect.

The source of most of our CSPs is the website XCSP [7]. XCSP3 is an XML-based format used to
represent constraint satisfaction problems. The language offers a wide variety of options to repre-
sent the most common constraints and frameworks, making it a solid intermediate format between
different solvers. They also organize solver competitions for which they use their instances as a
benchmark.

From XCSP, we have selected a total of 1,953 instances with less than 100 extensional constraints
such that all constraints are extensional. The choice on the number of constraints allows us to have
an adequate number of instances of increasing difficulty. Moreover, algorithms that use GHDs to
solve CSPs typically need the constraints in a relational form. Therefore, we picked only CSPs
such that all constraints are extensional, i.e., the constraints are provided in the form of a relation.
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These instances are divided into CSPs from concrete applications, called CSP Application in the
sequel (1,090 instances), and randomly generated CSPs, called CSP Random below (863 instances).

The instances we have fetched from the website are written in well-structured XML files in
which variables and constraints are explicitly defined through the use of specific XML tags. The
transformation of these instances into hypergraphs did not require a specific methodology, since
the authors of the XCSP3 format provide an extensive library for parsing the instances where most
of the process is already automatized. Obviously, we still had to convert the object in memory
into a hypergraph. To this end, we have reimplemented the behavior of some callback methods
in such a way that, whenever the program reads a variable, it adds a vertex to the hypergraph,
and, whenever it reads a constraint, it adds an edge containing the vertices corresponding to the
variables affected by the constraint.

Our collection of CSPs also includes a third class, which we call CSP Other. These instances have
been used in previous hypertree width analyses available at https://www.dbai.tuwien.ac.at/proj/
hypertree/. This set contains interesting examples coming from industry and a variety of different
test examples [20]. In particular, a part of the hypergraphs is obtained from Daimler Chrysler and
represents circuits and systems. A second part is a hypergraph translation of the circuits belong-
ing to the well-known benchmark library of the IEEE International Symposium on Circuits

and Systems (ISCAS). Finally, some hypergraphs correspond to grids extracted from pebbling
problems. Since the instances are provided already as hypergraphs, no additional processing was
necessary to incorporate them.

5.6 Hypergraph Benchmark

Our benchmark contains 3,648 hypergraphs, which have been converted from CQs and CSPs col-
lected from various sources. Out of these 3,648 hypergraphs, 3,142 hypergraphs have never been
used in a hypertree width analysis before. The hypertree width of 424 CQs and of 82 CSPs has been
analyzed in References [30], [11], and/or [12, 13]. In particular, the hypergraphs of the SPARQL
queries from References [12, 13] have been kindly shared with us by the authors, and their hw has
already been analyzed in those papers. An overview of all instances of CQs and CSPs is given in
Table 1. They have been collected from various publicly available benchmarks and repositories of
CQs and CSPs. In the first column, the names of each collection of CQs and CSPs are given together
with references where they were first published. In the second column, we display the number of
hypergraphs extracted from each collection. The hw of the CQs and CSPs in our benchmark will
be discussed in detail in Section 6.1. To get a first feeling of the hw of the various sources, we men-
tion the number of cyclic hypergraphs (i.e., those with hw ≥ 2) in the last column. When gathering
the CQs, we proceeded as follows: Of the huge benchmark reported in Reference [12], we have
only included CQs, which were detected as having hw ≥ 2 in Reference [12]. Of the other huge
repository reported in Reference [13], we included the hypergraphs corresponding to the 273,974
unique SPARQL queries with hw ≥ 2. Even though the queries are unique, most of them share the
same hypergraph structure. Thus, after removing duplicates on the hypergraph level, we ended
up with 354 unique hypergraphs with hw ≥ 2. Of the big repository reported in Reference [34],
we have included those CQs, which are not trivially acyclic (i.e., they have at least three atoms).
Of all the small collections of queries, we have included all. It follows a detailed description of the
different benchmarks.

Our benchmark contains 1,113 CQs from five main sources [9, 10, 12, 13, 34] and a set of 500 ran-
domly generated queries using the query generator of Reference [49]. In the sequel, we shall refer
to the former queries as CQ Application and to the latter as CQ Random. The CQs analyzed in Ref-
erence [12] constitute a big repository of CQs—namely, 26,157,880 CQs stemming from SPARQL
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Table 1. Overview of Benchmark Instances

Benchmark No. instances hw ≥ 2

C
Q

s
SPARQL [12] 70 (out of 26,157,880) 70
Wikidata [13] 354 (out of 273,947) 354
LUBM [10, 32] 14 2
iBench [6, 10] 40 0
Doctors [10, 21] 14 0
Deep [10] 41 0
JOB (IMDB) [41] 33 7
TPC-H [9, 54] 29 1
TPC-DS [53] 228 5
SQLShare [34] 290 (out of 15,170) 1
Random [49] 500 464

C
SP

s Application [7] 1,090 1,090
Random [7] 863 863
Other [11, 30] 82 82
Total: 3,648 2,939

queries. The queries come from real users of SPARQL endpoints and their hypertree width was
already determined in Reference [12]. Almost all of these CQs were shown to be acyclic. Our anal-
ysis comprises 70 CQs from Reference [12], which (apart from few exceptions) are essentially the
ones in Reference [12] with hw ≥ 2. In particular, we have analyzed all eight CQs with highest hw

among the CQs analyzed in Reference [12] (namely, hw = 3). Bonifati et al. carried on this line of
work and examined a bigger repository of SPARQL queries coming from Wikidata in Reference
[13]. This repository of 208,215,209 SPARQL queries was originally released by Malyshev et al.
with the study in Reference [42]. Bonifati et al. kindly sent us the unique 273,947 SPARQL queries
with hw ≥ 2 examined in Reference [42]. We extracted 354 different hypergraphs and all of them
have hw = 2.

The LUBM [32], iBench [6], Doctors [21], and Deep scenarios have been recently used to eval-
uate the performance of chase-based systems [10]. Their queries were especially tailored towards
the evaluation of query answering tasks of such systems. Note that the LUBM benchmark [32] is a
widely used standard benchmark for the evaluation of Semantic Web repositories. Its queries are
designed to measure the performance of those repositories over large datasets. Strictly speaking,
the iBench is a tool for generating schemas, constraints, and mappings for data integration tasks.
However, in Reference [10], 40 queries were created for tests with the iBench. We therefore re-
fer to these queries as iBench-CQs here. In summary, we have incorporated all queries that were
either contained in the original benchmarks or created/adapted for the tests in Reference [10].

The goal of the Join Order Benchmark (JOB) [41] was to evaluate the impact of a good join
order on the performance of query evaluation in standard RDBMSs. Those queries were formulated
over the real-world dataset Internet Movie Database (IMDB). All of the queries have between 3
and 16 joins. Clearly, as the goal was to measure the impact of a good join order, those 33 queries
are of higher complexity, hence 7 out of the 33 queries have hw ≥ 2.

The Transaction Processing Performance Council (TPC) is a well-known non-profit orga-
nization that develops benchmarks for the evaluation of DBMSs. Given their broad industry-wide
relevance and since they reflect common workloads in decision support systems, we included the
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TPC-H [54] and the TPC-DS [53] benchmarks. In Reference [18], we analyzed the TPC-H queries
from the GitHub repository originally provided by Michael Benedikt and Efthymia Tsamoura [9]
for the work on Reference [10]. Nevertheless, for this article, we downloaded the original dataset
from Reference [54] and extracted the queries according to the methodology introduced in Sec-
tions 5.2–5.4. From the original set of 22 complex queries, we extracted 29 simple queries. The
TPC-DS benchamrk is more complex than TPC-H and it contains more queries. Indeed, from the
original set of 113 complex queries, we extracted 228 simple queries.

From SQLShare [34], a multi-year SQL-as-a-service experiment with a large set of real-world
queries, we extracted 15,170 queries by considering all queries in the log files. These queries are
divided into two sets: materialized views and usual queries, which could possibly make use of
the materialized views. Also, the whole dataset gathers data from different databases and the link
between queries and databases is not explicitly defined. To execute the experiments, we had to
clean the queries from trivial errors impeding the parsing, link the queries to the right database
schema, incorporate the materialized views, and resolve ambiguities in the query semantics. After
removing queries with complex syntactical errors, we obtained 12,483 queries. As a next step, we
used the algorithm from Section 5.3 to obtain a set of CQs and, after removing duplicates, we got a
collection of 6,086 simple SQL queries. From this set, we eliminated 5,796 queries with ≤ 2 atoms
(whose acyclicity is immediate) and ended up with 290 queries.

The random queries were generated with a tool that stems from the work on query answer-
ing using views in Reference [49]. The query generator allows three options: chain/star/random
queries. Since the former two types are trivially acyclic, we only used the third option. Here, it
is possible to supply several parameters for the size of the generated queries. In terms of the re-
sulting hypergraphs, one can thus fix the number of vertices, number of edges, and arity. We have
generated 500 CQs with 5—100 vertices, 3–50 edges, and arities from 3 to 20. These values cor-
respond to the values observed for the CQ Application hypergraphs. However, even though these
size values have been chosen similarly, the structural properties of the hypergraphs in the two
groups CQ Application and CQ Random differ significantly, as will become clear from our analysis
in Section 6.1.

As was detailed in Section 5.5, our benchmark currently contains 2,035 hypergraphs from CSP
instances, out of which 1,953 instances were obtained from xcsp.org (see also Reference [7]).
These instances, in turn, are divided into CSPs from concrete applications, called CSP Applica-

tion in the sequel (1,090 instances), and randomly generated CSPs, called CSP Random below (863
instances). In addition, we have included 82 CSP instances, which were already used in previ-
ous hw experiments [20, 30]. These instances, which we refer to as CSP Other, are provided at
https://www.dbai.tuwien.ac.at/proj/hypertree/.

Our HyperBench benchmark consists of the CQ and CSP instances converted to hypergraphs.
In Figure 7, we show the number of vertices, the number of edges, and the arity (i.e., the maximum
size of the edges) as three important metrics of the size of each hypergraph. The smallest are those
coming from CQ Application (most of them have up to 10 edges), while the hypergraphs coming
from CSPs can be significantly larger (up to 2,993 edges). Although some hypergraphs are very
big, more than 50% of all hypergraphs have maximum arity less than 5. In Figure 7, we can easily
compare the different types of hypergraphs, e.g., hypergraphs of arity greater than 20 only exist
in the application classes; the CSP Other class contains the highest portion of hypergraphs with a
big number of vertices and edges, and so on.

The hypergraphs and the results of our analysis can be accessed through our web tool, available
at http://hyperbench.dbai.tuwien.ac.at.
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Fig. 7. Hypergraph sizes.

6 EXPERIMENTS

In this section, we present the empirical results obtained with the HyperBench benchmark. On the
one hand, we want to get an overview of the hypertree width of the various types of hypergraphs
in our benchmark (cf. Subgoal 1 in Section 1). On the other hand, we want to find out how realistic
the restriction to low values for certain hypergraph invariants is (cf. Subgoal 2 stated in Section 1).
After this first analysis of the structural properties of the hypergraphs we collected, we perform an
evaluation of the different ghw algorithms presented in Section 4. Finally, we propose and evaluate
two algorithms for computing approximated FHDs.

6.1 Hypergraph Properties

In References [19, 25], several invariants of hypergraphs were used to make the Check(GHD,k )
and Check(FHD,k ) problems tractable or, at least, easier to approximate. We thus investigate the
following properties (cf. Definitions 3–5):

• Deg: the degree of the underlying hypergraph
• BIP: the intersection size
• c-BMIP: the c-multi-intersection size for c ∈ {3, 4}
• VC-dim: the VC-dimension
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Table 2. Properties of All Benchmark Instances

The results obtained from computing Deg, BIP, 3-BMIP, 4-BMIP, and VC-dim for the hypergraphs
in the HyperBench benchmark are shown in Table 2.

Table 2 has to be read as follows: In the first column, we distinguish different values of the
various hypergraph metrics. In the columns labeled “Deg,” “BIP,” and so on, we indicate for how
many instances each metric has a particular value. For instance, by the last row in the second
column, only 212 non-random CQs have degree > 5. Actually, for most CQs, the degree is less than
10. Moreover, for the BMIP, already with intersections of three edges, we get 3-multi-intersection
size ≤ 2 for almost all non-random CQs. Also the VC-dimension is ≤ 2.

For CSPs, all properties may have higher values. However, we note a significant difference be-
tween randomly generated CSPs and the rest: For hypergraphs in the groups CSP Application and
CSP Other, 543 (46%) hypergraphs have a high degree (>5), but nearly all instances have BIP or
BMIP of less than 3. And most instances have a VC-dimension of at most 2. In contrast, nearly all
random instances have a significantly higher degree (843 out of 863 instances with a degree > 5).
Nevertheless, many instances have small BIP and BMIP. For nearly all hypergraphs (838 out of 863),
we have 4-multi-intersection size ≤ 4. For seven instances the computation of the VC-dimension
timed out. For all others, the VC-dimension is ≤ 5 for random CSPs. Clearly, as seen in Table 2, the
random CQs resemble the random CSPs a lot more than the CQ and CSP Application instances.
For example, random CQs have similar to random CSPs high degree (382, corresponding to 76%,
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with degree > 5), higher BIP and BMIP. Nevertheless, similar to random CSPs, the values for BIP
and BMIP are still small for many random CQ instances.

To conclude, for the proposed properties—in particular, BIP/BMIP and VC-dimension—most of
the hypergraphs in our benchmark indeed have low values.

6.2 Hypertree Width

We have systematically applied the hw-computation from Reference [30] to all hypergraphs in
the benchmark. The results are summarized in Figure 8. In our experiments, we proceeded as
follows: We used the same classification of instances we used in the previous experiments, i.e., we
distinguish the following classes: CQ Application, CQ Random, CSP Application, CSP Random, and
CSP Other. For every hypergraph H , we first tried to solve the Check(HD,k ) problem for k = 1. In
case of CQ Application, we thus got 673 yes-answers and 440 no-answers. The number in each bar
indicates the average runtime to find these yes- and no-instances, respectively. Here, the average
runtime was “0” (i.e., less than 1 second). For CQ Random, we got 36 yes- and 464 no-instances
with an average runtime below 1 second. For all CSP-instances, we only got no-answers.

In the second round, we tried to solve the Check(HD,k ) problem for k = 2 for all hypergraphs
that yielded a no-answer for k = 1. Now the picture is a bit more diverse: 432 of the remaining 440
CQs from CQ Application yielded a yes-answer in less than 1 second. For the hypergraphs stem-
ming from CQ Random, only 68 instances yielded a yes-answer (in less than 1 second, on average),
while 396 instances yielded a no-answer in less than 7 seconds, on average. The hypergraphs rel-
ative to CSP offer a different picture. The classes CSP Application, CSP Random, and CSP Other

have 29, 47, and 19 yes-instances, respectively. Only eight instances from CSP Other give rise to
a timeout (i.e., the program did not terminate within 3,600 seconds), while all the other instances
give a no-answer within the timeout. Interestingly, our hw-algorithm gives a no-answer for 1,877
instances of CSP Application and CSP Random in less than 1 second, while it took the algorithm
219 seconds on average to answer “no” for 55 instances of CSP Other. This shows that the class
CSP Other contains instances that are difficult to decompose.

This procedure is iterated by incrementing k and running the hw-computation for all instances,
that either yielded a no-answer or a timeout in the previous round. For instance, for queries from
CQ Application, one further round is needed after the second round. In other words, we confirm
the observation of low hw, which was already made for CQs of arity ≤ 3 in References [12, 13,
48]. For the hypergraphs stemming from CQ Random (respectively, CSPs), 396 (respectively, 1,940)
instances are left in the third round, of which 70 (respectively, 232) yield a yes-answer in less than
1 second, on average; 326 (respectively, 1,415) instances yield a no-answer in 32 (respectively, 988)
seconds, on average; and no (respectively, 293) instances yield a timeout. Note that, as we increase
k , the average runtime and the percentage of timeouts first increase up to a certain point and then
they decrease. This is due to the fact that, as we increase k , the number of combinations of edges to
be considered in each λ-label (i.e., the function λu at each node u of the decomposition) increases.
In principle, we have to test O (nk ) combinations, where n is the number of edges. However, if k
increases beyond a certain point, then it gets easier to “guess” a λ-label, since an increasing portion
of the O (nk ) possible combinations leads to a solution (i.e., an HD of desired width).

To answer the question in Subgoal 1, it is indeed the case that for a big number of instances, the
hypertree width is small enough to allow for efficient evaluation of CQs or CSPs: All instances of
non-random CQs have hw ≤ 3 no matter whether their arity is bounded by 3 (as in case of SPARQL
queries) or not; and a large portion (at least 1,027, i.e., circa 50%) of all 2,035 CSP instances have
hw ≤ 5. In total, including random CQs, 2,427 (66.5%) out of 3,648 instances have hw ≤ 5. And, out
of these, we could determine the exact hypertree width for 2,356 instances; the others may even
have lower hw.
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Fig. 8. HW analysis (labels are avg. runtimes in s).
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Fig. 9. Correlation analysis.

6.3 Correlation Analysis

Finally, we have analyzed the pairwise correlation between all properties. Of course, the different
intersection sizes (BIP, 3-BMIP, 4-BMIP) are highly correlated. Other than that, we observe quite
a strong correlation of the arity with the number of vertices and the hypertree width. Moreover,
there is a significant correlation between number of vertices and arity and between number of
vertices and hypertree width. Clearly, the correlation between arity and hypertree width is mainly
due to the CSP instances and the random CQs, since, for non-random CQs, the hw never increases
beyond 3, independently of the arity.

A graphical presentation of all pairwise correlations is given in Figure 9. Here, large, dark circles
indicate a high correlation, while small, light circles stand for low correlation. Blue circles indicate
a positive correlation, while red circles stand for a negative correlation. In Reference [19], it has
been argued that Deg, BIP, 3-BMIP, 4-BMIP, and VC-dim are non-trivial restrictions to achieve
tractability. It is interesting to note that, according to the correlations shown in Figure 9, these
properties have almost no impact on the hypertree width of our hypergraphs. This underlines the
usefulness of these restrictions in the sense that (a) they make the GHD computation and FHD
approximation easier [19] but (b) low values of degree, (multi-)intersection-size, or VC-dimension
do not pre-determine low values of the widths.

6.4 Comparison of ghw Algorithms

Here, we report on empirical results for the three ghw-algorithms described in Section 4. We have
run the programs on each hypergraph from the HyperBench up to hypertree width 6, trying to get
a smaller ghw than hw. We have thus run the ghw-algorithms with the following parameters: For
all hypergraphsH with hw (H ) = k (or hw ≤ k and, due to timeouts, we do not know if hw ≤ k − 1
holds), where k ∈ {3, 4, 5, 6}, try to solve the Check(GHD,k − 1) problem. In other words, we just
tried to improve the width by 1. Clearly, for hw (H ) ∈ {1, 2}, no improvement is possible, since, in
this case, hw (H ) = ghw (H ) holds.
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Table 3. GHW Algorithms with Avg. Runtimes in s

hw → ghw Total
GlobalBIP LocalBIP BalSep

yes (s) no (s) yes (s) no (s) yes (s) no (s)

3→ 2 310 - 128 (537) - 195 (162) - 307 (12)
4→ 3 386 - 137 (2,809) - 54 (2606) - 249 (54)
5→ 4 427 - - - - - 148 (13)
6→ 5 459 13 (162) - 13 (60) - - 180 (288)

In Table 3, for each algorithm, we report on the number of “successful” attempts to solve the
Check(GHD,k − 1) problem for hypergraphs with hw = k . Here, “successful” means that the pro-
gram terminated within one hour. For instance, for the 310 hypergraphs with hw = 3 in the Hy-
perBench, GlobalBIP terminated in 128 cases (i.e., 41%) when trying to solve Check(GHD, 2). The
average runtime of these “successful” runs was 537 seconds. For the 386 hypergraphs with hw = 4,
GlobalBIP terminated in 137 cases (i.e., 35%) with average runtime 2,809 when trying to solve the
Check(GHD, 3) problem. For the 886 hypergraphs with hw ∈ {5, 6}, GlobalBIP only terminated
in 13 cases (i.e., 1.4%). Overall, it turns out that the set f (H ,k ) may be very big (even though it
is polynomial if k and i are constants). Hence, H ′ can become considerably bigger than H . This
explains the frequent timeouts in the GlobalBIP column in Table 3.

The results obtained with LocalBIP are shown in the corresponding column. Interestingly, for
the hypergraphs with hw = 3, the “local” computation performs significantly better (namely, 63%
solved with average runtime 162 seconds rather than 41% with average runtime 537 seconds). In
contrast, for the hypergraphs with hw = 4, the “global” computation is significantly more success-
ful. For hw ∈ {5, 6}, the “global” and “local” computations are equally bad. A possible explanation
for the reverse behavior of “global” and “local” computation in case of hw = 3 as opposed to hw = 4
is that the restriction of the “global” set f (H ,k ) of subedges to the “local” set fu (H ,k ) at each node
u seems to be quite effective for the hypergraphs with hw = 3. In contrast, the additional cost of
having to compute fu (H ,k ) at each node u becomes counter-productive, when the set of subedges
thus eliminated is not significant. It is interesting to note that the sets of solved instances of the
global computation and the local computation are incomparable, i.e., in some cases one method is
better, while in other cases the other method is better.

If we look at the number of solved instances in Table 3, then we see that the recursive algorithm
via balanced separators (reported in the last column labeled BalSep) has the least number of time-
outs due to the fast identification of negative instances (i.e., those with no-answer), where it often
detects quite fast that a given hypergraph does not have a balanced separator of desired width. As
k increases, the performance of the balanced separators approach deteriorates. This is due to k in
the exponent of the running time of our algorithm, i.e., we need to check for each of the possible
O (nk+1) combinations of ≤ k edges if it constitutes a balanced separator. Note that the balanced
separators approach only terminated in case of no-answers.

We now look at Table 4, where we report for all hypergraphs with hw ≤ k and k ∈ {3, 4, 5, 6},
whether ghw ≤ k − 1 could be verified. To this end, we run our three algorithms (GlobalBIP,
LocalBIP, and BalSep) in parallel and stop the computation as soon as one terminates (with an-
swer “yes” or “no”). The number in parentheses refers to the average runtime needed by the fastest
of the three algorithms in each case. A timeout occurs if none of the three algorithms terminates
within 3,600 seconds. It is interesting to note that in the vast majority of cases, no improvement
of the width is possible when we switch from hw to ghw: In 97% of the solved cases with hw ≤ 6,
which form 65% of all instances, hw and ghw have identical values. Actually, we think that the
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Table 4. GHW of Instances with Average

Runtime in s

hw → ghw yes no timeout
3→ 2 0 309 (10) 1
4→ 3 0 262 (57) 124
5→ 4 0 148 (13) 279
6→ 5 18 (129) 180 (288) 261

high percentage of the solved cases gives a more realistic picture than the percentage of all cases

for the following reason: Our algorithms (in particular, the “global” and “local” computations) need
a particularly long time for negative instances. This is due to the fact that in a negative case, “all”
possible choices of λ-labels for a nodeu in the GHD have to be tested before we can be sure that no
GHD ofH (or, equivalently, no HD ofH ′) of desired width exists. Hence, it seems plausible that the
timeouts are mainly due to negative instances. This also explains why our new BalSep algorithm,
which is particularly well suited for negative instances, has the least number of timeouts.

A closer comparison of Table 3 and Table 4 makes clear that BalSep is superior to GlobalBIP and
LocalBIP in solving negative instances. Indeed, the combined approach summarized in Table 4 re-
lies almost completely on the runs of BalSep . The algorithms GlobalBIP and LocalBIP managed
to solve only 15 out of 571 negative instances for k ∈ {3, 4}, while they could not give any nega-
tive answer for k ∈ {5, 6}. However, GlobalBIP and LocalBIP solved 18 positive instances, while
BalSep did not terminate at all. Nevertheless, this does not significantly diminish the strength of
BalSep as a powerful tool for negative instances.

We conclude this section with a final observation: In Figure 8, we had many cases for which
only some upper bound k on the hw could be determined, namely, those cases where the at-
tempt to solve Check(HD,k ) yields a yes-answer and the attempt to solve Check(HD,k − 1)
gives a timeout. In several such cases, we could get (with the balanced separator approach) a no-
answer for the Check(GHD,k − 1) problem, which implicitly gives a no-answer for the problem
Check(HD,k − 1). In this way, our new ghw-algorithm is also profitable for the hw-computation:
For 827 instances with hw ≤ 6, we were not able to determine the exact hypertree width. Using
our new ghw-algorithm, we closed this gap for 297 instances; for these instances hw = ghw holds.

To sum up, we now have a total of 2,356 (64.5%) instances for which we determined the exact hw

and a total of 1,984 instances (54.4%) for which we determined the exact ghw. Out of these, 1,968
instances had identical values for hw and ghw. In 16 cases, we found an improvement of the width
by 1 when moving from hw to ghw, namely, from hw = 6 to ghw = 5. In 2 further cases, we could
show hw ≤ 6 and ghw ≤ 5, but the attempt to check hw = 5 or ghw = 4 led to a timeout. Hence,
in response to Subgoal 5, hw is equal to ghw in 54.4% of the cases if we consider all instances and
in 68.2% of the cases (1,968 of 2,886) with small width (hw ≤ 6). However, if we consider the fully
solved cases (i.e., where we have the precise value of hw and ghw), then hw and ghw coincide in
99.2% of the cases (1,968 of 1,984).

6.5 Fractionally Improved Decompositions

The algorithms for computing FHDs in the literature are very expensive and even the tractability
result presented in Reference [19] involves a double exponential “constant.” Here, we propose two
algorithms for computing an FHD of a hypergraph when we already have a GHD: ImproveHD ,
and FracImproveHD . They differ in the compromise between computational cost and quality of
the approximation.
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Table 5. Instances Solved with ImproveHD

hw ≥1 [0.5, 1) [0.1, 0.5) no timeout
2 0 136 40 419 0
3 12 104 25 169 0
4 9 55 11 311 0
5 20 14 11 382 0
6 12 60 80 307 0

Table 6. Instances Solved with FracImproveHD

hw ≥1 [0.5, 1) [0.1, 0.5) no timeout
2 0 194 46 353 2
3 14 116 21 135 24
4 11 81 2 8 284
5 18 126 59 2 222
6 28 149 95 4 183

The first algorithm we present is based on a simple observation: Given an (G)HD, we could
substitute its integral edge covers with fractional edge covers and obtain an FHD. Formally, let
D = 〈T , (Bu )u ∈T , (λu )u ∈T 〉 be either a GHD or an HD. Our algorithm ImproveHD computes an
FHD D′ = 〈T ′, (B′u )u ∈T ′, (γu )u ∈T ′〉 where:

• The tree T ′ is the same as T .
• For each node u ∈ T ′, the bag B′u = Bu .
• For each node u ∈ T ′, γu is a minimum-weight fractional edge cover of B′u .

To obtain the FHDD′, we iterate over the nodes ofD and, for each Bu , we compute a minimum-
weight fractional edge cover of Bu . Since computing such a fractional edge cover is polynomial and
we assume to have already computed an HD to start with, the whole algorithm is very efficient.
Nevertheless, it is clear that there is a strong dependence on the starting HD. This is unsatisfactory,
and so we devised a more sophisticated algorithm.

The algorithm we describe here gets rid of the dependence on a particular HD and com-
putes a fractionally improved (G)HD with a fixed improvement threshold. We call this algorithm
FracImproveHD . It searches for an FHD D′ with D′ = SimpleImproveHD(D) for some HD D of
H with width(D) ≤ k and width(D′) ≤ k ′. Here, k is an upper bound on the hw and k ′ the de-
sired fractionally improved hw. In other words, this algorithm searches for the best fractionally
improved HD over all HDs of width ≤ k . Hence, the result is independent of any concrete HD.

The algorithm FracImproveHD is built on top of the HD construction described in Section 3.4.
Recall that, given a hypergraph H , this algorithm maintains a set of edges C ⊆ E (H ), which rep-
resents the current component to decompose. While searching for a separator λu of C , we do not
only want that |λu | ≤ k , but we also require that, among all possible choices of λu , we choose one
such that weight (γu ) ≤ k ′, where γu is a fractional edge cover of B (λu ). We thus guarantee that
the output of the algorithm is the desired FHD.

The experimental results with these algorithms for computing fractionally improved HDs are
summarized in Tables 5 and 6. We have applied these algorithms to all hypergraphs for which
hw ≤ k with k ∈ {2, 3, 4, 5, 6} is known from Figure 8. The various columns of the Tables 5 and 6

ACM Journal of Experimental Algorithmics, Vol. 26, No. 1, Article 1.6. Publication date: July 2021.



1.6:36 W. Fischl et al.

are as follows: The first column (labeled hw) refers to the (upper bound on the) hw according
to Figure 8. The next three columns, labeled ≥ 1, [0.5, 1), and [0.1, 0.5) tell us, by how much the
width can be improved (if at all), if we compute an FHD by one of the two algorithms. We thus
distinguish the three cases if, for a hypergraph of hw ≤ k , we manage to construct an FHD of
width k − c for c ≥ 1, c ∈ [0.5, 1), or c ∈ [0.1, 0.5). The column with label “no” refers to the cases
where no improvement at all or at least no improvement by c ≥ 0.1 was possible. The last column
counts the number of timeouts.

For instance, in the first row of Table 5, we see that (with the ImproveHD algorithm and starting
from the HD obtained by the hw-computation of Figure 8) out of 595 hypergraphs with hw = 2,
no improvement was possible in 419 cases. In the remaining 176 cases, an improvement to a width
of at most 2 − 0.5 was possible in 40 cases and an improvement to k − c with c ∈ [0.1, 0.5) was
possible in 136 cases. For the hypergraphs with hw = 3 in Figure 8, almost half of the hypergraphs
(141 out of 310) allowed at least some improvement, in particular, 104 by c ∈ [0.5, 1) and 12 even
by at least 1. The improvements achieved for the hypergraphs with hw ≤ 4 and hw ≤ 5 are less
significant.

The results obtained with our FracImproveHD implementation are displayed in Table 6. We see
that the number of hypergraphs that allow for a fractional improvement of the width by at least
0.5 or even by 1 is often bigger than with ImproveHD —in particular, in the cases where k ′ ≤ k with
k ∈ {4, 5} holds. In the other cases, the results obtained with the naive ImproveHD algorithm are
not much worse than with the more sophisticated FracImproveHD algorithm.

7 CONCLUSION

In this work, we have presented HyperBench, a new and comprehensive benchmark of hyper-
graphs derived from CQs and CSPs from various areas, together with the results of extensive
empirical analyses with this benchmark.

Lessons learned. The empirical study has brought many insights. Below, we summarize the
most important lessons learned from our studies.
• The finding of References [12, 13, 48] that non-random CQs have low hypertree width has

been confirmed by our analysis, even if (in contrast to SPARQL queries) the arity of the CQs is not
bounded by 3. For random CQs and CSPs, we have detected a correlation between the arity and
the hypertree width, although also in this case, the increase of the hw with increased arity is not
dramatic.
• In Reference [19], several hypergraph invariants were identified, which make the computation

of GHDs and the approximation of FHDs tractable. We have seen that, at least for non-random
instances, these invariants indeed tend to have low values.
• The reduction of the ghw-computation problem to the hw-computation problem in case of

low intersection size turned out to be more problematical than the theoretical tractability results
from Reference [19] had suggested. Even the improvement by “local” computation of the additional
subedges did not help much. However, we were able to improve this significantly by presenting
a new algorithm based on “balanced separators.” In particular, for negative instances (i.e., those
with a no-answer), this approach proved very effective.
• An additional benefit of the new ghw-algorithm based on “balanced separators” is that it

allowed us to also fill gaps in the hw-computation. Indeed, in several cases, we managed to verify
hw ≤ k for some k but we could not show hw �≤ k − 1, due to a timeout for Check(HD,k − 1).
By establishing ghw �≤ k − 1 with our new GHD-algorithm, we have implicitly shown hw �≤ k − 1.
This allowed us to compute the exact hw of many further hypergraphs.
•Most surprisingly, the discrepancy between hw and ghw is much lower than expected. Theo-

retically, only the upper bound hw ≤ 3 · ghw + 1 is known. However, in practice, when considering
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hypergraphs of hw ≤ 6, we could show that in circa 54% of all cases, hw and ghw are simply iden-
tical. Moreover, in all cases when one of our implementations of ghw-computation terminated on
instances with hw ≤ 5, we got identical values for hw and ghw.

Future work. Our empirical study has also given us many hints for future directions of research.
We find the following tasks particularly urgent and/or rewarding:
• So far, we have only implemented the ghw-computation in case of low intersection size. In Ref-

erence [19], tractability of the Check(GHD,k ) problem was also proved for the more relaxed
bounded multi-intersection size. Our empirical results in Table 2 show that, apart from the random
CQs and random CSPs, the 3-multi-intersection size is ≤ 2 in almost all cases. It seems therefore
worthwhile to implement and test also the BMIP-algorithm from Reference [19].
• The three approaches for ghw-computation presented here turned out to have complemen-

tary strengths and weaknesses. This was profitable when running all three algorithms in parallel
and taking the result of the first one that terminates (see Table 4). In the future, we also want to
implement a more sophisticated combination of the various approaches: For instance, one could
try to apply our new “balanced separator” algorithm recursively only down to a certain recursion
depth (say, depth 2 or 3) to split a big given hypergraph into smaller subhypergraphs and then
continue with the “global” or “local” computation from Section 4. First promising results in this
direction have recently been obtained in Reference [29].
•Our new approach to ghw-computation via “balanced separators” proved quite effective in our

experiments. However, further theoretical underpinning of this approach is missing. The empirical
results obtained for our new GHD algorithm via balanced separators suggest that the number of
balanced separators is often drastically smaller than the number of arbitrary separators. We want
to determine a realistic upper bound on the number of balanced separators in terms of n (the
number of edges) and k (an upper bound on the width). This will then allow us to compute also a
realistic upper bound on the runtime of this new algorithm.
•We want to further extend the HyperBench benchmark and tool in several directions. We will

thus incorporate further implementations of decomposition algorithms from the literature such as
the GHD- and FHD computation in Reference [45] or the polynomial-time FHD computation for
hypergraphs of bounded multi-intersection size in Reference [25]. Moreover, we will continue to
fill in hypergraphs from further sources of CSPs and CQs. For instance, in References [1, 14, 22,
23], a collection of CQs for the experimental evaluations in those papers is mentioned. We will
invite the authors to disclose these CQs and incorporate them into the HyperBench benchmark.
•We also want to include hypergraphs coming from diverse domains and different applications.

As a first step toward this aim, we plan to release an extended version of our software hg-tools for
extracting hypergraphs from SPARQL queries. In this way, we hope to acquire more queries from
applications using graph databases.
• Finally, we want to make use of HyperBench to test the practical feasibility of using decompo-

sitions to evaluate CQs and solving CSPs. To this end, we will extend our collection of hypergraphs
with the data of these problems. In other words, we want to include in our benchmark the rela-
tions corresponding to the database for CQs and constraints for CSPs. Such a study would have
as a primary goal to assess the usefulness of decompositions in solving related problems, but it
would also help identify which characteristics should decompositions have to serve this purpose.
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