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Conjunctive queries (CQs) fail to provide an answer when the pattern described by the query does not ex-

actly match the data. CQs might thus be too restrictive as a querying mechanism when data is semistructured

or incomplete. The semantic web therefore provides a formalism—known as (projected) well-designed pattern

trees (pWDPTs)—that tackles this problem: pWDPTs allow us to formulate queries that match parts of the

query over the data if available, but do not ignore answers of the remaining query otherwise. Here we ab-

stract away the specifics of semantic web applications and study pWDPTs over arbitrary relational schemas.

Since the language of pWDPTs subsumes CQs, their evaluation problem is intractable. We identify structural

properties of pWDPTs that lead to (fixed-parameter) tractability of various variants of the evaluation prob-

lem. We also show that checking if a pWDPT is equivalent to one in our tractable class is in 2EXPTIME. As

a corollary, we obtain fixed-parameter tractability of evaluation for pWDPTs with such good behavior. Our

techniques also allow us to develop a theory of approximations for pWDPTs.
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1 INTRODUCTION

Conjunctive queries (CQs) constitute the core of the query languages for relational databases and
also the most intensively studied querying mechanism in the database theory community. But CQs
suffer from a serious drawback when dealing with information that is semistructured or incom-
plete, or when users do not have a good understanding of the schema that underlies the data: CQs
fail to provide an answer when the pattern described by the query does not exactly match the data.
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Fig. 1. WDPT representing query (1) from Example 1.1.

The semantic web therefore provides formalisms to overcome this problem [39]. We concen-
trate on the simplest such formalism, which corresponds to the {AND,OPTIONAL}-fragment of
SPARQL—the standard query language for the semantic web data model, the Resource Description
Framework (RDF). This fragment allows one not only to specify patterns by taking conjunctions
of atoms (using the AND operator)—in the same way as CQs do—but also to match patterns over
the data, if available, without failing to give an answer otherwise. This is precisely the role of the
OPTIONAL operator, which allows for optional matching and essentially corresponds to the left
outer join in relational algebra.

Example 1.1. Consider the following {AND,OPTIONAL}-SPARQL query that is posed over a
database storing information about bands and records:

{ {?x recorded_by ?y . ?x published “after_2010”} OPTIONAL {?x NME_rating ?z} }
OPTIONAL {?y formed_in ?z′}. (1)

This query retrieves all values (b, r ) such that r is a record of band b that was published after
2010 (as specified by the pattern {?x recorded_by ?y . ?x published “after_2010”}), and, whenever
possible, (one or both of) the following pieces of data: the rating s of record r as declared by the
NME magazine and the year s ′ in which band b was formed. In other words, in addition to (b, r )
we also retrieve s and/or s ′ if they can be found in the database. This is specified by the patterns
{?x NME_rating ?z} and {?y formed_in ?z′} following the respective OPTIONAL operators.

Pérez et al. [36] noticed that the unconstrained interaction of AND and OPTIONAL in SPARQL
may lead to undesired behavior. This motivated the definition of a better behaved restriction of
the language, known as well-designed {AND,OPTIONAL}-SPARQL; e.g., the query in Example 1.1 is
well-designed. Among other things, queries in this fragment have a lower complexity of evaluation
[36] and lend themselves to optimization techniques [31, 38]. Moreover, they allow for a natural
tree representation, known as well-designed pattern trees, or WDPTs [31]. Overall, several aspects
of well-designed queries have been studied in recent years [3, 44], including an extension of this
fragment that subsumes many of the queries encountered in practice [29].

Intuitively, a WDPT p consists of a tree T rooted in a distinguished node r and a function that
labels each node of T with a set of triple patterns. The condition of being well-designed requires
that occurrences of the same variable in different nodes ofT are connected. Each node of a WDPT
p represents a conjunction of triples, while the nesting of optional matching is represented by the
tree structure of p. For instance, the query in Example 1.1 can be represented as the WDPT in
Figure 1. Observe that, unlike in Example 1.1, in the following we use the algebraic-style notation
from Pérez et al. [36] rather than the official SPARQL syntax.

In intuitive terms, the semantics of a WDPTp is as follows. With each subtreeT ′ ofT rooted in r ,
we associate a CQ qT ′ defined by the conjunction of all atoms in the nodes ofT ′, where we identify
triples with atoms over a single ternary relation symbol. Then the evaluation of p over database
D consists of all “maximal” answers to the CQs of the form qT ′ . That is, we take the union of all
answers to the CQs of the form qT ′ , forT ′ a subtree ofT rooted in r , and then remove all answers
for which this union contains an “extension.” We revisit Example 1.1 to illustrate these ideas.
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Example 1.2. Consider an RDF database D consisting of the following triples:

(“Our_love”, recorded_by, “Caribou”), (“Our_love”, published, “after_2010”),

(“Swim”, recorded_by, “Caribou”), (“Swim”, published, “after_2010”),

(“Swim”, NME_rating, “8”).

The evaluation of the WDPT in Figure 1 over D, and, thus, of the query in Equation (1), consists
of partial mappings h1 and h2 defined on variables x ,y, z, z ′ such that h1 is defined on x and y
in such a way that h1 (x ) = “Our_love” and h1 (y) = “Caribou,” and h2 is defined on x , y and z
with h2 (x ) = “Swim”, h2 (y) = “Caribou,” and h2 (z) = “8.” Observe that h3 defined on x and y as
h3 (x ) = “Swim” and h3 (y) = “Caribou” is not in the result: while it is an answer to the CQ defined
from the set of atoms at the root node, it is not maximal in the sense that h2 (an answer to the CQ
for the subtree consisting of the root node and the left child node) is an extension of h3.

The expressive power of WDPTs is limited due to the absence of projection, a feature that CQs
enjoy. Consequently, WDPTs are often enhanced with projection as a way to increase their ex-
pressiveness and obtain a proper extension of the class of CQs over RDF [31, 38]. In this article,
we concentrate on this extended class of WDPTs, which we call pWDPTs.

Example 1.3. For the WDPT from Example 1.1, suppose that we want to project out the variable
x . This results in restricting the mappings h1 and h2 from Example 1.2 to h′1 and h′2 in such a way
that: h′1 is only defined on y with h′1 (y) = “Caribou,” and h′2 is defined on y and z with h′2 (y) =
“Caribou” and h′2 (z) = “8.” Observe that both mappings are part of the result, despite the fact that
h′2 is an extension of h′1 (but they originate from different mappings on the existential variables).
This is a crucial difference between WDPTs and pWDPTs.

pWDPTs are of interest not only for semantic web applications, but also for applications that
need to handle semistructured or incomplete data (e.g., graph databases and noSQL stores such
as MongoDB). This motivates our study of pWDPTs over arbitrary relational schemas, abstracting
away from the specifics of the semantic web data model RDF, which only allows for triples in the
nodes of pWDPTs.

Despite the importance of pWDPTs, very little is known about some fundamental problems
related to them. In particular, no in-depth study has been carried out regarding efficient evalua-
tion of these queries, a problem that permeates the literature on CQs and extensions in terms of
both classical complexity [10, 22, 23, 27, 43] and parameterized complexity [26, 28, 35]. Likewise,
restrictions on pWDPTs to reduce the complexity of basic static query analysis tasks, such as test-
ing containment [38], are largely unexplored. Other topics strongly related to the identification
of tractable fragments of query evaluation correspond to the reformulation and approximation in
such tractable classes. There we ask if some query is equivalent to, or can at least be “approxi-
mated” by, a query from a tractable class. These questions have received considerable attention in
case of CQs and conjunctive regular path queries over graph databases [6, 10, 16]. So far, nothing
is known in the case of pWDPTs.

Goals and Contributions. The main goal of this article is to initiate a systematic study of tractable
fragments of pWDPTs for query evaluation and to apply these fragments to fundamental questions
in the areas of static query analysis and approximation. We now explain the different aspects of
the problem we study and our main results related to them.

Efficient Evaluation of pWDPTs. Evaluation of pWDPTs is defined in terms of CQ evaluation,
which is an intractable problem in general. Therefore, our goal of identifying tractable classes of
pWDPTs naturally calls for a restriction of the classes of CQ patterns allowed in them. In particular,
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there has been a flurry of activity around the topic of determining which classes of CQs admit
efficient evaluation that could be reused in our scenario [22, 23, 43]. We concentrate here on two
of the most fundamental classes: those of bounded treewidth [14, 16] and hypertreewidth [23].
We denote by TW(k ) and HW(k ) the CQs of treewidth and hypertreewidth at most k , for k ≥ 1.
Queries in these classes even lie in the parallelizable class LogCFL [22, 23].

The restriction to tractable classes of CQ evaluation has already been successfully applied in the
context of (projection-free) WDPTs. In particular, a very mild condition known as local tractability
leads to efficient evaluation [31]. This condition enforces each node in the WDPT to contain a set of
relational atoms from one of our tractable classes of CQs, namely TW(k ) or HW(k ). Nevertheless,
this condition does not lead to tractability for the more expressive pWDPTs with projection that we
study here [31]. Then the question remains: When is the evaluation of pWDPTs tractable or, more
precisely, which natural conditions can be added to local tractability to achieve tractable pWDPT
evaluation? We show that one only needs to add a mild condition—called bounded interface—that
limits by a constant the number of variables that each node can share with other nodes in a pWDPT.
More specifically, our results imply that:

(1) pWDPTs that enjoy local tractability and bounded interface can be evaluated efficiently,
more precisely, in LogCFL.

Since our classes properly contain CQs of bounded treewidth and hypertreewidth, we obtain rel-
evant extensions of these well-known tractable classes of CQs. Interestingly, conditions very sim-
ilar to bounded interface have been applied to obtain good bounds for the containment problem
of Datalog into CQs [9] and fine-grained tractability conditions in constraint satisfaction [12].

Due to the nature of pWDPTs, two other evaluation problems—called the partial and maximal
evaluation problems—are of importance [2, 5, 36]. The first refers to checking whether a mapping
h is a partial answer to the evaluation p (D) of a pWDPT p over a databaseD; i.e., whether there is
a mapping h′ ∈ p (D) that “extends” h. The second problem asks if h is maximal among all answers
in p (D). (As discussed in Example 1.3, in the presence of projection a partial mapping and also
a proper extension thereof may be solutions of a pWDPT.) We shall identify tractable fragments
also for these problems by introducing the notion of global tractability. This notion restricts every
CQ qT ′ represented by a subtree T ′ of the tree structure T of the pWDPT p to belong to TW(k ) or
HW(k ). More specifically, our results imply that:

(2) Global tractability ensures tractability of the partial and maximal evaluation problems.

This is interesting since we also show that global tractability does not suffice to obtain tractability
for the exact evaluation problem. In fact, global tractability is strictly weaker than local tractability
plus bounded interface.

Parameterized Complexity. Parameterized complexity theory [17] has developed into a well es-
tablished approach to dealing with intractability. The ideal result of a parameterized complex-
ity analysis is fixed-parameter tractability. This means that the problem can be solved in time

f (k ) · nO (1) , where n is the size of the input and f (k ) is a function depending solely on the pa-
rameter k . In other words, the exponential explosion can thus be confined to the parameter. The
class of problems with this behavior is denoted by FPT. If such a behavior cannot be achieved, we
speak of fixed-parameter intractability (a notion which depends on the generally agreed assump-
tion that FPT�W[1]—for a definition of W[1], see Section 2). This means that we can at best get

an upper bound O (nf (k ) ) on the time complexity. In other words, the size of the parameter occurs
in the exponent of the input size n. As customary in the database theory literature, we take the
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size of the query as parameter. The parameterized complexity approach allows us to obtain a more
fine-grained picture of the intractable cases by exploring the boundary between FPT-evaluation
and fixed-parameter intractable evaluation of pWDPTs.

We introduce a new kind of restriction on pWDPTs, which we will call semi-bounded inter-
face (this notion relaxes the bounded interface restriction introduced above). Together with global
tractability, it will allow us to delineate the border between fixed-parameter tractability and fixed-
parameter intractability. In particular, we show that:

(3) To obtain fixed-parameter tractability for the evaluation of pWDPTs we only require
global tractability and semi-bounded interface.

This is in contrast to the classical complexity-theoretical setting, where the semi-bounded interface
does not allow us to define further tractable classes of pWDPT evaluation (in particular, even under
such restrictions, pWDPT evaluation is NP-complete).

Containment and Subsumption. Containment is a crucial static analysis task that amounts to
checking whether the answers to a query q1 are necessarily contained in the answers to another
query q2 (often written as q1 ⊆ q2). The containment problem for CQs is NP-complete [13]. In
contrast, it becomes undecidable for pWDPTs [38], and remains so even for our restriction to local
tractability and bounded interface. The same holds for the equivalence problem (i.e., checking
whether the answers to q1 necessarily coincide with the answers to q2).

It is known that pWDPT containment may display some unintuitive behavior, which motivated
the introduction of a meaningful variant of it known as subsumption [4]. This is the problem of
checking whether every answer of a pWDPT p1 over any database D can be “extended” to an an-
swer of pWDPT p2 over D (we denote this by p1 � p2). Then, the corresponding notion of equiv-
alence is subsumption-equivalence, where we ask if both directions p1 � p2 and p2 � p1 hold. In
sharp contrast to containment, subsumption for pWDPTs is known to be decidable and complete
for the class ΠP

2 [31]. Subsumption-equivalence can be shown to have the same behavior. We in-
vestigate in this context to what extent the restriction to tractable classes of pWDPT evaluation
alleviates the complexity of checking subsumption or subsumption-equivalence. In particular, we
establish the following:

(4) The restriction to tractable classes of query evaluation reduces the complexity of sub-
sumption and subsumption-equivalence to coNP.

Reformulation in Tractable Classes of pWDPTs. We introduce syntactic restrictions on pWDPTs
that lead to tractability of evaluation. A general method for finding larger classes of queries with
good evaluation properties is to explore the semantic space defined by these syntactical restrictions;
this space is defined by all queries that are equivalent to ones in the syntactically defined class (see,
e.g., References [10, 16]). In this context, the two most important questions are:

(a) Is it decidable to check whether a query is equivalent to one in the desired, syntactically
defined class? That is, can the query be reformulated as one in such classes?

(b) Can the evaluation problem be solved more efficiently for queries equivalent to one in
such a “well-behaved” class?

Positive answers to these questions have been provided in the context of CQs [16]. In particular,
regarding question (a), it is known that verifying if a CQ is equivalent to one in TW(k ) is in NP.
For question (b), it can be proved that the evaluation problem for those CQs that are equivalent to
one in TW(k ) is in Ptime [16]. Here we investigate these questions for pWDPTs.
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Some care is required in fixing the appropriate setting for this investigation. For instance,
since classical equivalence is undecidable for pWDPTs [38], we have to content ourselves with
the relaxed notion of equivalence based on subsumption introduced above. But subsumption-
equivalence only preserves partial and maximal answers. We shall therefore focus on the partial
and maximal evaluation problems and choose global tractability as the corresponding tractability
criterion of pWDPTs. Our main finding will be a positive answer to both questions (a) and (b) in
this setting. In particular, our main result in this regard establishes the following:

(5) The problem of checking whether a pWDPT is subsumption-equivalent to one from a
globally tractable class (under mild restrictions) is decidable in double-exponential time
(more specifically, in NExpTimeNP).

(6) The partial and maximal evaluation problems for the pWDPTs that are subsumption-
equivalent to one from a globally tractable class are fixed-parameter tractable (again tak-
ing the size of the pWDPTas parameter).

Approximations of pWDPTs. When a CQq is not equivalent to one in a desired classQ, it might be
convenient to compute aQ-approximation ofq. This is a CQq′ ∈ Q that is maximal (with respect to
query containment ⊆) among all queries in Q that are contained in q. Intuitively, q′ is sound with
respect to q (since q′ ⊆ q) and provides the best under-approximation of q among all queries in Q
that are sound for q. Approximations of CQs are well understood [6]; e.g., HW(k )-approximations
of CQs always exist and can be computed in exponential time. These results allow us to explain
the role of approximations. In general, the evaluation of a CQ q on a database D is of the order

|D|O ( |q |) , which is very expensive for a large dataset D even if q is small. On the other hand, the
previous properties imply that computing and running an approximation of a CQ q on a database

D takes time |D| · 2pol ( |q |) , for some polynomial pol. This is much faster than |D|O ( |q |) on large
databases. Thus, if the quality of the approximation is good, we may prefer to run this faster query
instead of q.

Our techniques allow us to develop a thorough theory of approximations for pWDPTs. Again,
we define approximations via subsumption instead of containment. Furthermore, we look for ap-
proximations by pWDPTs of the globally tractable classes. Our main result in this context is the
following:

(7) Approximations in globally tractable classes of pWDPTs (under mild restrictions) al-
ways exist, can be computed in double-exponential time, and have at most single-
exponential size.

Unions of pWDPTs. We finally study unions of pWDPTs (UpWDPTs) as a natural extension of
pWDPTs. For the variants of query evaluation considered here, all results on pWDPTs easily carry
over to UpWDPTs. In contrast, for reformulation and approximation by tractable classes of Up-
WDPTs, we shall reveal a huge difference between pWDPTs and UpWDPTs. By establishing a
close connection between UpWDPTs and unions of CQs, we can apply the theory of approxima-
tions of CQs to pWDPTs. This will allow us to prove significantly better complexity bounds for
the problems studied in the context of reformulation and approximation. In particular:

(8) Checking if a UpWDPT ρ is equivalent to a union ρ ′ of globally tractable pWDPTs, and
checking if such a ρ ′ is an approximation of ρ, can be solved in single-exponential time
(more precisely, in ΠP

3 ).

This is in stark contrast to single pWDPTs, where we obtain double-exponential upper bounds for
the analogous problems.
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Relevance for Practice. As shown in Reference [37], the queries in the {AND,OPTIONAL}-
fragment of SPARQL form the backbone of the SPARQL queries posed in practice, and a big part
of such real-world {AND,OPTIONAL}-SPARQL queries can be represented as WDPTs. As with
respect to projection, close to 15% of the SPARQL queries posed in practice make use of such a
feature [11]. In addition, the combination of projection with AND and OPTIONAL operators is
present in other popular query languages for semistructured data; in particular, in the Cypher lan-
guage used by the graph database Neo4J [34] and in the standard query language for MongoDB
[33]. All these facts naturally call for a deeper understanding of when pWDPTs can be evaluated
efficiently. Our work not only provides such an understanding, but also develops algorithms for
efficient evaluation of pWDPTs. We believe that such algorithms are rather simple and have the
potential to inspire practical evaluation methods.

The conditions we develop for tractability are also meaningful from a practical point of view.
In fact, we can think of the strictest such condition that corresponds to the combination of local
tractability and bounded interface. The former states that the hypertreewidth of the CQs that
appear in the nodes of a pWDPT is bounded (ideally by a small value). It is known that, in practice,
CQs are often of small hypertreewidth [11, 21], so one would expect a similar property to hold for
the ones that label nodes in pWDPTs. This has been recently confirmed for the case of the pWDPTs
that appear in SPARQL practice: the vast majority of such queries are acyclic, and most of the rest
are of (hyper)treewidth two [11]. Interface values, on the other hand, are also small for real-world
SPARQL queries; in fact, close to 90% of such queries have an interface value of one [11].

Interestingly, also some of our negative results about the complexity of pWDPT evaluation have
a practical meaning. For instance, in practice it is common to find {AND,OPTIONAL}-SPARQL
queries with only a few occurrences of the OPTIONAL operator. We show that in restricted cases
(e.g., if either local tractability or bounded interface fails), evaluation for pWDPTs is intractable
even if restricted to pWDPTs that consist of two nodes only. Notice that such pWDPTs correspond
to {AND,OPTIONAL}-SPARQL queries with a single occurrence of the OPTIONAL operator.

The static analysis tasks we study in the article, namely, containment, reformulation, and ap-
proximation, are directly motivated by the practical problems of optimization and efficient evalu-
ation of pWDPTs. While the algorithms we develop for such problems can hardly be considered
practical, we believe that some of our complexity results open the possibility for better algorithms
to be developed. For instance, we establish that the reformulation problem for UpWDPTs can be
solved in single-exponential time, and also approximations can be computed in single-exponential
time. This is a reasonable bound for such static analysis tasks, as the input (the pWDPT) is usually
small.

Previous Work. This article extends and enhances the work in Reference [7] and parts of Ref-
erence [30]. By combining these two papers, it provides a thorough analysis of the complexity of
pWDPT evaluation, both in terms of combined and parameterized complexity, and of some of its
static analysis tasks, e.g., subsumption and approximation. Moreover, several results from these
papers have been extended or generalized, such as Theorems 5.5, 5.6, and Corollaries 3.14, 3.18;
and some results are completely new such as Theorems 3.13, 3.17, and Proposition 4.2. Moreover,
many additional proof details and explanations have been added to the article.

Organization. In Section 2, we recall the basics on CQs and pWDPTs. The problem of finding
tractable classes of pWDPTs is studied in Section 3. In Section 4, we look at pWDPT evaluation from
a parameterized complexity-theoretic point of view. In Section 5, we consider containment and
subsumption. Section 6 contains our investigation of reformulations and approximations. Finally,
in Section 7, we study unions of pWDPTs. A conclusion and outlook to future work are given in
Section 8. Due to space constraints, several of our proofs are provided in the online appendix.
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2 PRELIMINARIES

Let U and X be disjoint countably infinite sets of constants and variables, respectively. Assume that
σ is a relational schema. A relational atom over σ is an expression of the form R (�v ), where R is a
relation symbol in σ of arity n > 0 and �v is an n-tuple over U ∪ X. For an atom τ = R (�v ), let var(τ )
denote the set of variables occurring in τ . We extend this notion to sets R of atoms {τ1, . . . ,τm }
as var(R ) =

⋃m
i=1 var(τi ). Similarly, we use const(R ) to refer to the constants occurring in R. A

database D over σ is a finite set of relational atoms without variables over σ .

Conjunctive Queries. A conjunctive query (CQ) q over σ is a rule of the form

Ans(�x ) ← R1 (�v1), . . . ,Rm (�vm ), (2)

where each Ri (�vi ) (1 ≤ i ≤ m) is a relational atom over σ and �x is a tuple of distinct variables
among the ones that appear in the �vi ’s. We often write CQsas q(�x ) to denote that �x is the tuple of
the free variables of q.

The semantics of CQs is defined in terms of homomorphisms. Let D be a database over σ . A
homomorphism from a CQ q(�x ) of the form Equation (2) to D is a partial mapping h : X→ U

defined precisely on the variables mentioned in q(�x ) such that Ri (h(�vi )) ∈ D, for each 1 ≤ i ≤ m.1

We denote by h�x the restriction of h to the variables in �x . The evaluation q(D) of q(�x ) over D is
the set of all mappings h�x such that h is a homomorphism from q(�x ) to D.

Subsumption. For a partial mapping h, we write dom(h) to denote the set of variables on which h
is defined. For comparing partial mappings, the notion of subsumption is useful. Formally, for par-
tial mappings h,h′ : X→ U, we say that h is subsumed by h′, denoted h � h′, if dom(h) ⊆ dom(h′)
and h(x ) = h′(x ), for each x ∈ dom(h). If h � h′ but not h′ � h, then we write h � h′.

Graphs. Throughout this article, we assume all graphs to be simple and undirected. Consider a
graph G = (V ,E). We write V (G ) to refer to the set V of nodes, and E (G ) for the set E of edges.
We often write v ∈ G to refer to a node v ∈ V (G ), but, when necessary, may writeV (G ) and E (G )
explicitly. A graphG ′ = (V ′,E ′) is a subgraph ofG ifV ′ ⊆ V and E ′ ⊆ E. For a setV ′ ⊆ V of nodes,
the induced subgraph of G, denoted by G[V ′], is the graph (V ′, {{u,v} ∈ E | u,v ∈ V ′}). A tree is a
connected, acyclic graph. A subtree is a connected, acyclic subgraph. A rooted treeT is a tree with
a distinguished node marked as its root. Given two nodes t , t̂ ∈ V (T ), we say that t̂ is an ancestor
of t if t̂ lies on the path from t to the root, and t̂ is the parent of t (t is a child of t̂ ) if t̂ is an ancestor
of t and {t , t̂ } ∈ E (T ).

Pattern Trees. Intuitively, a pattern tree allows one to specify patterns over the data that should be
retrieved, if available, but do not force the query to fail to give an answer otherwise. We concentrate
here on the class of WDPTs extended by projection (pWDPTs), which has received considerable
attention in the semantic web literature. As shown by Letelier et al. [31], pWDPTs provide an
intuitive representation of well-designed {AND,OPTIONAL}-SPARQL with projection [36]. They
have proved useful in analyzing query evaluation and static query analysis of SPARQL [31, 38].
Intuitively, the nodes of a pWDPT represent projection-free CQs (called “basic graph patterns” in
the semantic web context) while the tree structure of a pWDPT represents the nesting of optional
matching.

Definition 2.1 (The Class of pWDPTs). A projected well-designed pattern tree (pWDPT) over a
relational schema σ is a tuple (T , λ, �x ) such that the following holds:

(1) T is a tree rooted in a distinguished node r , and λ maps each node t inT to a set of relational
atoms over σ ;

1As usual, we write h (v1, . . . , vn ) for (h (v1), . . . , h (vn )), and define h (u ) = u for each constant u ∈ U.
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(2) for every variable y that appears inT , the set of nodes ofT where y appears is connected;
(3) �x is a tuple of distinct variables occurring inT , which are the free variables of the pWDPT.

We say that (T , λ, �x ) is projection-free if �x contains all variables occurring in T . Projection-free
pWDPTs are called simply WDPTs. We sometimes write (T , λ) instead of (T , λ, �x ).

Pairs (T , λ) that satisfy condition Equation (1) correspond to the extension of pattern trees stud-
ied in the semantic web context [31] to arbitrary schemas. Condition Equation (2) defines well-
designedness [36].

Assume p = (T , λ, �x ) is a pWDPT over σ . We define atoms(p) =
⋃

t ∈T λ(t ). The definitions
of var(·) and const(·) extend naturally to pWDPTs as var(p) = var(atoms(p)), and const(p) =
const(atoms(p)). We define dom(p) = var(p) ∪ const(p). In some cases, to increase readability, it
is convenient to overload this notation and write atoms(T ) and var(T ) instead of atoms(p) and
var(p), respectively. In such cases, the pWDPT p corresponding to the tree structureT will always
be clear from the context. All these notions naturally extend to subtrees of p.

For a subtree T ′ of T , we use pT ′ to refer to the pattern tree (T ′, λ |V (T ′), fvar(T ′)), where λ |V (T ′)

is the restriction of λ to the nodes in T ′. Also, we use fvar(pT ′ ), or fvar(T ′) if p is clear from the
context, to denote the free variables var(pT ′ ) ∩ �x in pT ′ . We also define

qT ′ to be the CQ Ans(�y) ← R1 (�v1), . . . ,Rm (�vm ),

where {R1 (�v1), . . . ,Rm (�vm )} = atoms(T ′), and �y = var(T ′). If T ′ consists of a single node t ∈ T ,
then we write qt instead of qT ′ .

The size of a node t ∈ T is the size of (a reasonable encoding of) the CQqt . We write |p | to denote
the size of p, i.e., the sum of the sizes of nodes t ∈ T .

Minimal Subtrees. Given a pWDPT p = (T , λ, �x ) and a set Y of variables, one is often looking for
the minimal subtree T ′ of T rooted in r (the root node of T ) such that Y ⊆ var(pT ′ ). It is easy to
see (and was shown e.g., by Letelier et al. [31]), that if Y ⊆ var(p), then T ′ exists and is uniquely
defined: just observe that being well-designed implies that for each variable y ∈ var(p), among all
the nodes ti ∈ T with y ∈ var(λ(ti )) there is one with minimal distance from r that is an ancestor
to all the others. In summary:

Proposition 2.2 ([31]). Let p = (T , λ, �x ) be a pWDPT, r the root of T , and Y a set of variables.

(1) The existence of a subtreeT ′ ofT containing r withY ⊆ var(pT ′ ) can be decided in polynomial
time.

(2) If any such subtree exists, then the minimal such subtree is uniquely defined.
(3) This minimal subtree can be computed in polynomial time.

We use minSubtree(p,Y ) to refer to this unique minimal subtree, in case it exists.

Semantics of pWDPTs. We define the semantics of pWDPTs by naturally extending their interpre-
tation under RDF triples and SPARQL triple patterns [31, 38]. The intuition behind the semantics
of a pWDPT (T , λ, �x ) is as follows. Each subtree T ′ of T rooted in r (where r is the root node of
T ) describes a pattern, namely the CQ qT ′ . A mapping h satisfies (T , λ) over a database D, if it is
“maximal” among the mappings that satisfy the patterns defined by the subtrees ofT . This means
that h satisfies the pattern defined by some subtree T ′ of T , and there is no way to “extend” h to
satisfy the pattern of a bigger subtree T ′′ of T . The evaluation of a pWDPT (T , λ, �x ) over D is the
projection over �x of the mappings h that satisfy (T , λ) over D.

Definition 2.3 (Semantics of pWDPTs). Let p = (T , λ, �x ) be a pWDPT, r the root node ofT , andD
a database over σ .
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—A homomorphism from p to D is a partial mapping h : X→ U, for which there is a subtree
T ′ of T rooted in r such that h ∈ qT ′ (D).

—The homomorphism h is maximal if there is no homomorphism h′ from p to D such that
h � h′.

The evaluation of a pWDPT p = (T , λ, �x ) overD, denoted p (D), is the set of all mappings of the
form h�x , such that h is a maximal homomorphism from p to D.

Notice that pWDPTs properly extend CQs. In fact, assume q(�x ) is a CQ of the form Ans(�x ) ←
R1 (�v1), . . . ,Rm (�vm ). Then q(�x ) is equivalent to the pWDPT p = (T , λ, �x ), where T consists of a
single node r , and λ(r ) = {R1 (�v1), . . . ,Rm (�vm )}. That is, q(D) = p (D), for every database D. We
typically do not distinguish between a CQ and the single-node pWDPT that represents it. On the
other hand, as illustrated in Example 1.1, pWDPTs express interesting properties that cannot be
expressed as CQs.

RDF Well-Designed Pattern Trees. By the nature of RDF triples and SPARQL triple patterns,
pWDPTs are defined in such a context over a schema that consists of a single ternary relation.
Although all lower bounds obtained in our article can be proven to hold even for RDF pWDPTs,
for the sake of readability we will sometimes use atoms with higher arities.

Parameterized Complexity. Let Σ be a finite alphabet. A parameterization of Σ∗ is a polynomial-
time computable mappingκ : Σ∗ → N. A parameterized problem over Σ is a pair (L,κ), whereL ⊆ Σ∗

and κ is a parameterization of Σ∗. We refer to w ∈ Σ∗ as the instances of a problem and to the
integers κ (w ) as the parameters. The following well-known problems will play an important role
in our parameterized-complexity analysis:

p-Cliqe

Input: A graph G and k ∈ N.
Parameter: k
Question: Is there a clique

of size k in G?

p-Dominating Set

Input: A graph G and k ∈ N.
Parameter: k
Question: Does G have a

dominating set of size k?

In the literature on parameterized complexity, PARAMETER: k is a common shorthand notation
for PARAMETERIZATION: κ (G,k ) 
→ k , which we follow for readability.

A parameterized problem E = (L,κ) belongs to the class FPT of fixed-parameter tractable prob-
lems, if there exists an algorithmA deciding L, a polynomial pol : N→ N, and a computable func-
tion f : N→ N, such that the running time of A on input w ∈ Σ∗ is at most f (κ (w )) · pol ( |w |).

Parameterized complexity theory also provides notions of intractability. Toward one of these no-
tions, we first recall the definition of fpt-reductions. Let E = (L,κ) and E ′ = (L′,κ ′) be parameter-
ized problems over the alphabets Σ and Σ′, respectively. An fpt-reduction from E to E ′ is a mapping
R : Σ∗ → (Σ′)∗ such that (1) for all w ∈ Σ∗ we have w ∈ L iff R (w ) ∈ L′, (2) there is a computable
function f and a polynomial pol such that R (w ) can be computed in time f (κ (w )) · pol ( |w |), and
(3) there is a computable function д : N→ N such that κ ′(R (w )) ≤ д(κ (w )) for all w ∈ Σ∗.

One notion of intractability for parameterized problems is provided by the classes W[i] (for
i ≥ 1) of the W-hierarchy. Since we are here only interested in the classes W[1] and W[2], we omit
a discussion of the W-hierarchy and only recall the following facts: a parameterized problem E is in
W[1] if there is an fpt-reduction of E to p-Cliqe. Similarly, E is in W[2] if there is an fpt-reduction
of E to p-Dominating Set. Also, E is W[1]-hard or W[2]-hard if there exists an fpt-reduction of
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p-Cliqe or p-Dominating Set, respectively. It is strongly believed that problems that are hard
for W[1] or W[2] are not in FPT. For details, see Flum and Grohe [20].

3 EFFICIENT EVALUATION OF PWDPTS

In this section, we study the complexity of the evaluation problem for different classes C of
pWDPTs. This problem is formally defined as follows:

Eval(C)
Input: A pWDPTp ∈ C, a partial mapping h : X→ U, and a database D.
Question: Is h ∈ p (D)?

The complexity of Eval(C) has been studied for classes C of all pWDPTs and (projection-free)
WDPTs.

Theorem 3.1. Eval (pWDPTs) is ΣP
2 -complete [31] and Eval(WDPTs) is coNP-complete [36].

The intractability of the evaluation problem leads to the natural question as to which classes of
pWDPTs can be evaluated in polynomial time. Recall that evaluation of pWDPTs is defined in terms
of CQ evaluation, which is also an intractable problem in general. Therefore, our goal of identifying
tractable classes of pWDPTs naturally calls for a restriction of the classes of CQ patterns allowed
in them. This idea has already been successfully applied for obtaining tractable classes of WDPTs
[31]. With further extensions, it was later used to characterize all tractable classes of WDPTs [40].
For pWDPTs, restricting the classes of CQ patterns requires new conditions to provide tractability,
which we develop in this section. But first we review some of the classes of CQs that can be
evaluated efficiently.

3.1 Tractable Evaluation for CQs

The evaluation problem for a class Q of CQs, denoted CQ-Eval(Q), is defined analogously to
the case of pWDPTs. That is, CQ-Eval(Q) is the problem of checking whether h ∈ q(D), given a
database D, a CQ q(�x ) ∈ Q, and a mapping h : �x → U.

CQ-Eval(Q) is NP-complete when Q is the class of all CQs. Due to intensive research in the last
two decades, we have by now a very good understanding of which classes of CQs admit tractable
evaluation. In this work, we concentrate on two fundamental tractable classes of CQs: the class of
CQs of bounded treewidth [14] and of bounded (generalized) hypertreewidth [23].

CQs of Bounded Treewidth. A tractable class of CQs can be obtained by restricting the treewidth
of the hypergraph of queries [14]. A hypergraphH is a pair (V (H ),E (H )), whereV (H ) is a finite set
of nodes and E (H ) is a finite set of hyperedges, i.e., subsets of V (H ). If H is clear from the context,
we simply write (V ,E).

A tree decomposition of a hypergraph H = (V (H ),E (H )) is a pair (S,ν ), where S = (V (S ),E (S ))
is a tree and ν : V (S ) → 2V (H ) is a mapping satisfying the following:

(1) For each u ∈ V (H ) the nodes in {s ∈ V (S ) | u ∈ ν (s )} form a subtree of S , and
(2) each hyperedge of E (H ) is contained in at least one of the sets ν (s ), for s ∈ V (S ).

The width of (S,ν ) is maxs ∈V (S ) |ν (s ) | − 1. The treewidth of H is the minimum width of its tree
decompositions. Intuitively, the treewidth of H measures its tree-likeness. In particular, an undi-
rected graph H is acyclic if and only if its treewidth is one. On the other hand, if H contains a
clique of size k , then its treewidth is (k − 1).

Let q be a CQ Ans(�x ) ← R1 (�v1), . . . ,Rm (�vm ). Its underlying hypergraph Hq is the pair (V ,E),
where V is the set of variables mentioned in q and E consists precisely of the sets of variables in
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the atoms Ri (�vi ), for 1 ≤ i ≤ m. For example, for the CQ Ans() ← R (x ,y, z),R (x ,v,v ),E (v, z), the
hyperedges are {x ,y, z}, {x ,v}, and {v, z}. The treewidth of a CQ q is the treewidth of Hq . We then
define TW(k ) as the class of CQs of treewidth at most k , for k ≥ 1.

Theorem 3.2 [14, 16]. CQ-Eval(TW(k )) can be solved in polynomial time, for each k ≥ 1.

CQs of Bounded Generalized Hypertreewidth. The notion of treewidth is too restrictive when
the arity of the schemas is not fixed in advance. To overcome this limitation, Gottlob et al. [23]
proposed syntactic restrictions of the class of CQs based on decompositions of their hypergraphs.
The analogue of treewidth in this context is the notion of generalized hypertreewidth, which also
leads to tractability of query evaluation.

A generalized hypertree decomposition of a hypergraph H = (V (H ),E (H )) is a triple (S,ν , ξ ),
where S is a tree, ν is a map from V (S ) to 2V (H ) , and ξ is a map from V (S ) to 2E (H ) , such that

(1) (S,ν ) is a tree decomposition of H ;
(2) ν (s ) ⊆ ⋃ ξ (s ) holds for every s ∈ V (S ). In other words, the set ν (s ) is covered by the edges

in ξ (s ).

The width of (S,ν , ξ ) is defined as maxs ∈V (S ) |ξ (s ) |. The generalized hypertreewidth of a hypergraph
is the minimum width over all its generalized hypertree decompositions.

The generalized hypertreewidth of a CQq is the generalized hypertreewidth of Hq . We denote
by HW(k ) the class of all CQs with generalized hypertreewidth at most k . Notably, HW(1) cor-
responds to the well-studied class of acyclic CQs [43]. Moreover, bounded treewidth is subsumed
by bounded generalized hypertreewidth: TW(k ) ⊆ HW(k + 1), for every k ≥ 1 [1]. In contrast,
HW(1) (i.e., the class of acyclic CQs) is not subsumed by any of the classes TW(k ).

Evaluation of CQs of bounded generalized hypertreewidth is not only polynomial but can be
solved in the parallelizable complexity class LogCFL, which lies in between NL and AC.1 Formally,
this corresponds to the class of languages that can be reduced in logarithmic space to a context-free
language.

Theorem 3.3 [23]. The problem CQ-Eval(HW(k )) is complete for LogCFL under logspace reduc-
tions, for every k ≥ 1.

3.2 Tractable Evaluation of pWDPTs

We now return to the main question of this section: When is the evaluation of pWDPTs tractable?
A condition that has been shown to help with identifying relevant tractable fragments of WDPTs
is local tractability [31].

Local Tractability. The idea is to restrict the CQ defined by each node in a pWDPT to belong to
a certain class of CQs. Formally, let Q be a class of CQs.

Definition 3.4 (Locally in Q). A pWDPT (T , λ, �x ) is locally in Q, if for each node t ∈ T such that
λ(t ) = {R1 (�v1), . . . ,Rm (�vm )} the Boolean CQ Ans() ← R1 (�v1), . . . ,Rm (�vm ) is in Q. We write �-Q
for the set of pWDPTs that are locally in Q.

For tractability to carry over from classes of CQsto classes of pWDPTs, it is often necessary
to consider classes of CQs that are closed under replacing all occurrences of a variable by the
same constant. We call such classes of CQsrobust. Formally, a class Q of CQsis robust if every
q ∈ Q satisfies the following property: for every variable x in q and an arbitrary constant c (not
necessarily from q), the query derived from q by replacing all occurrences of x by c is also in Q.
This is both a natural and very weak restriction which, to the best of our knowledge, is satisfied by
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all reasonable tractable classes of CQs. In particular, it is satisfied by the CQs of bounded treewidth
as well as the CQs of bounded generalized hypertreewidth.

We use the term “local tractability” to denote the property that a pWDPT is locally in Q for
some tractable, robust class Q of CQs. It is known that local tractability leads to tractability of
evaluation for (projection-free) WDPTs.

Theorem 3.5 [31]. Let Q be a robust class of CQs. If CQ-Eval(Q) is in Ptime, then Eval(�-Q ∩
WDPTs) is also in Ptime.

In the presence of projection local tractability does not guarantee tractability, even when Q is
the class of acyclic CQs [31]. We strengthen this result.

Theorem 3.6. Both Eval(�-TW(k )) and Eval(�-HW(k )) are NP-complete for every k ≥ 1. They
remain NP-hard even when restricted to pWDPTs consisting of two nodes.

Proof. Membership was already shown by Letelier et al. [31]. Hardness is shown for the case
k = 1 by reduction of Dominating Set. Let an instance of Dominating Set be given by a graph
G = (V ,E) and integer d ∈ N, and assume |V | = n. We construct a pWDPT p = (T , λ, �x ), a database
D, and a partial mapping h as follows:

—T consists of a root node r with a single child t ,
—λ(r ) = {s (u1), . . . , s (ud ),map(x0)},
—λ(t ) = {neq(u0,ui ), nonedge(u0,ui ) | 1 ≤ i ≤ d } ∪ {map(x1)},
—all the ui ’s, x0, and x1 are variables, with x0 and x1 being the free variables �x ,
—D = {s (vi ) | vi ∈ V } ∪ {neq(vi ,vj ) | vi ,vj ∈ V with vi � vj } ∪
{nonedge(vi ,vj ) | vi ,vj ∈ V and {vi ,vj } � E} ∪ {map(1)}, where by slight abuse of notation
we identify constants in D with nodes in V , and

—the mapping h satisfies h(x0) = 1 and is undefined on all other variables.

Clearly, p,D, and h can be constructed in polynomial time fromG. Furthermore, it is easy to verify
that p belongs to �-TW(1) and �-HW(1).

We claim thatG contains a dominating set of size at mostd iffh ∈ p (D). This is a consequence of
the one-to-one correspondence between mappings h′ : {u1, . . . ,ud } → {v1, . . . ,vn } such that h ∪
h′ is a maximal homomorphism from p to D and dominating sets DS ⊆ V of G. That is, for every
dominating set DS there exists such a mapping h′ with DS = {h′(ui ) | 1 ≤ i ≤ d }, and for every
such mappingh′, the set {h′(ui ) | 1 ≤ i ≤ d } is a dominating set. To see this, consider a dominating
set DS . The existence of a corresponding h′ is obvious. Toward a contradiction of its maximality,
assume that there is an extension h′′ of h′ ∪ h that is a homomorphism from p intoD and consider
h′′(u0). Clearly, h′′(u0) ∈ V . We derive a contradiction by distinguishing two cases: (1) If h′′(u0) ∈
DS , then neq(h′′(u0),h′′(ui )) � D for some 1 ≤ i ≤ d . This contradicts the assumption that h′′ is a
homomorphism from p (and, hence, in particular, from λ(t )) intoD. (2) If h′′(u0) � DS , then there
is at least one vj ∈ DS such that {h′′(u0),vj } ∈ E. But then nonedge(h′′(u0),h′′(ui )) � D for the ui

such that h′′(ui ) = h′(ui ) = vj , which is again a contradiction.
Next, consider a maximal mapping h′ ∪ h. If, for DS = {h′(ui ) | 1 ≤ i ≤ d }, there exists a node

vj ∈ V \ DS that shares no edge with at least one node in DS , it can be easily checked that the
extension h′′ of h′ ∪ h with h′′(u0) = vj and h′′(x1) = 1 contradicts the maximality of h ∪ h′. �

This raises the question of which further restrictions are needed to achieve tractability. Here we
identify a natural such restriction, called bounded interface.

Bounded Interface. Intuitively, the idea is to restrict the number of variables shared by any node
in the pWDPT with all other nodes in the pWDPT. Formally, for a pWDPT p = (T , λ, �x ) and a node
t ∈ T , we define the interface It of t in p as It = var(λ(t )) ∩⋃t ′ ∈T \{t } var(λ(t ′)).
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Definition 3.7 (Bounded Interface). Let c ≥ 1. A pWDPT (T , λ, �x ) has c-bounded interface if |It | ≤
c for each t ∈ T . We denote by BI(c ) the set of pWDPTs of c-bounded interface.

When not referring to a particular c , we may use the term bounded interface instead.

Example 3.8. Recall the pWDPT p from Figure 1, and let r denote the root node of p, let t1 be the
“left” child of r , and t2 the “right” child of r . Then p ∈ �-TW(1) and p ∈ BI(2). In fact, since each
node contains exactly two variables, the treewidth of each node is trivially one. Concerning the
number of shared variables, observe that x occurs in both in r and t1, while y occurs in r and t2.
Thus, Ir = {x ,y}, It1 = {x }, It2 = {y}, and thus p has two-bounded interface.

For pWDPTs, due to the well-designedness condition, it is actually the case that It contains
exactly those variables that t shares with its direct neighbors, i.e., its parent and its children. Hence,
saying that a pWDPT has c-bounded interface is equivalent to saying that every node shares at
most c variables with all of its neighbors.

Our main result of the section states that local tractability and bounded interface yield tractabil-
ity of pWDPT evaluation. Even more, recall that the evaluation problem for the CQclasses TW(k )
and HW(k ), for k ≥ 1, is not only tractable but lies in the parallelizable class LogCFL. In fact, it
turns out that in the cases where the CQ evaluation problem is in LogCFL, local tractability and
bounded interface are sufficient to carry over LogCFL-membership.

Theorem 3.9. Let c ≥ 1 be a positive integer and Q a robust class of CQs.

(1) If CQ-Eval(Q) is in Ptime, then Eval(�-Q ∩ BI(c )) is also in Ptime.
(2) If CQ-Eval(Q) is in LogCFL, then Eval(�-Q ∩ BI(c )) is also in LogCFL.

Thus, Eval(�-TW(k ) ∩ BI(c )) and Eval(�-HW(k ) ∩ BI(c )) are in LogCFL for each k, c ≥ 1.

Recall that CQs can be considered as pWDPTs consisting of the root node only. Hence, TW(k ) ⊆
�-TW(k ) ∩ BI(c ) and HW(k ) ⊆ �-HW(k ) ∩ BI(c ) hold for each c ≥ 1. Therefore, by Theorem 3.9, �-
TW(k ) ∩ BI(c ) and �-HW(k ) ∩ BI(c ) define relevant extensions of TW(k ) and HW(k ), respectively,
that do not increase the complexity of evaluation. It follows from Reference [22] that both Eval(�-
TW(k ) ∩ BI(c )) and Eval(�-HW(k ) ∩ BI(c )) are LogCFL-hard under logspace reductions.

One possibility to show (1) is by reduction to the evaluation problem for acyclic CQs. However,
below, we first give a proof for (2). From this, (1) follows almost immediately (a short discussion
on this is provided in Section A.1 of the online appendix). The proof of the LogCFL-membership
uses the characterization of LogCFL via nondeterministic auxiliary pushdown automata, which we
recall briefly. A nondeterministic auxiliary pushdown automaton (NAuxPDA) consists of a nondeter-
ministic Turing machine with a single, read-only input tape, several worktapes (read/write), and
an additional stack (pushdown store). For the space consumption of an NAuxPDA, only the space
occupied on the worktapes matters—the size used on the stack does not count for space bounds.
LogCFL coincides with the class of languages accepted by NAuxPDAs in logarithmic space and
polynomial time [41, 42].

Proof sketch of Theorem 3.9. We concentrate on item (2). Let p = (T , λ, �x ) be a pWDPT in
�-Q ∩ BI(c ), D a database, and h a mapping. In addition, let p ′ be the WDPT p ′ = (T , λ, var(T )),
i.e., p ′ is the same pattern tree as p but without projection. Recall that h ∈ p (D) if and only if there
is some extension h′ of h with dom(h′) ∩ �x = dom(h) and h′ ∈ p ′(D). This, in turn, is the case if
there exists some subtreeT ′ ofT containing the distinguished root node ofT such thath′ ∈ qT ′ (D)
and there is no subtree T ′′ (containing T ′) and extension h′′ of h′ such that h′′ ∈ qT ′′ (D).
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A straightforward, nondeterministic algorithm to check whether h ∈ p (D) is thus to guess the
subtree T ′ and the mapping h′, and then to check that h′ ∈ qT ′ (D) and that it satisfies the max-
imality condition stated above. Of course, guessing T ′ and h′ at once is not possible using only
logarithmic space. However, due to p being well-designed and having a bounded interface, it is
possible to guess (and check)T ′ and h′ “piecewise.” We describe a logarithmic-space algorithm for
a NAuxPDA implementing this idea. A discussion of its correctness is provided in Section A.1 of
the online appendix.

The algorithm gets p, D, and h as input. In addition, it uses the following variables:

—curNode, which stores the currently visited node of the pWDPT,
—a counter f storing a value from {0, . . . , | dom(h) |}, which corresponds to the number of

different free variables encountered so far,
—a mapping γ : X→ U with | dom(γ ) | ≤ c (where γ is the mapping on the interface variables

of the current node), and
—a Boolean flag δ .

To fit into logarithmic space, curNode only stores a pointer to the current node. Also, the assign-
ments in γ are stored by maintaining pairs of pointers: the first pointer references the variable,
and the second points to the value. For readability, we will not make this explicit in the following.

The main scheme of the algorithm is a depth-first, left-to-right traversal ofT . Since this is feasible
even in LogSpace [15], and an implementation on a NAuxPDA is straightforward, we omit an
algorithm for this. We only note that the variable δ controls the traversal of the tree: if set to true,
the traversal continues to the children of the current node. Otherwise, the traversal tracks back
to the parent of the current node. Since the code for the actual tree traversal is omitted, in the
code and descriptions presented here, δ is only set, but never read. Nevertheless, we leave the
assignments to δ in the code to indicate the next step in the traversal.

In the initialization phase of the algorithm, the value of curNode is set to the root node of the
pattern tree, the value of the variable f , which is meant to count the number of free variables “seen”
during the traversal of the tree, is set to 0, and δ is set to true. The steps laid out in Algorithm 1
are executed whenever a node is accessed in a top-down step. It is described in more detail below.
Whenever a node is accessed in a bottom-up step, the only actions that need to be performed are
to restore the mapping on the interface variables of the current node from the stack (i.e., γ is set
to the value on top of the stack), and to set δ to true to make sure that the traversal of the tree
continues. Finally, the algorithm may terminate in two ways: either during the execution of the
steps presented in Algorithm 1 while returning NO, or as part of the traversal, when returning to
the root node and there is no further unvisited child of the root node. In the latter case, to finalize,
the algorithm compares f with | dom(h) |. If they match, the output is YES, otherwise the output
is NO. We discuss the rationale behind this after the discussion of Algorithm 1.

As mentioned above, whenever a node is visited for the first time (i.e., in a top-down step), the
steps described in Algorithm 1 are executed (observe that they are also applied to the root node).
First, a copy of the mapping on the interface variables of the parent is saved to the stack. Next
(lines 2–4), from the “working copy” of γ , all mappings on variables not appearing in the current
node are removed.

A crucial step is line 5, where a nondeterministic guess is made whether the current node is part
of the subtree T ′, or not. Lines 6–18 deal with the case that curNode belongs to the subtree, while
lines 19–21 deal with curNode not being part of the subtree.

If curNode is guessed to belong to the subtree, then first of all it is checked whether all free
variables occurring in the current node are actually contained in the domain of h (line 7). If this
is not the case, then clearly the current node cannot be part of T ′, and the guess was wrong. Next
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(lines 8–9), the counter f is increased by the number of “new” free variables in the current node,
i.e., free variables in the current node that do not occur in its parent. The next step is to guess
a mapping on the interface variables of the current node (lines 10–16). Of course, this mapping
must agree with the mapping on the interface variables in the parent (line 11) as well as with h
(lines 12–13). Thus, only the values for the variables x ∈ var(λ(curNode)) \ (var(λ(m)) ∪ dom(h))
are guessed (lines 14–16), where m is the parent of curNode. Afterward, this guess is verified by
checking if the partial mapping given by γ on the interface variables and by h can be extended to
a mapping on all variables in var(λ(curNode)) that maps all atoms in λ(curNode) into D (line 17).
Thus, if the execution reaches line 18, curNode is part of T ′, and thus the computation should
descend to the children of curNode, indicated by setting δ to true.

If the guess was that curNode does not belong toT ′, then it is checked that the mapping γ on the
interface variables of the parent cannot be extended to the current node (line 20). Thus, if line 21
is reached, we may indeed assume that curNode does not belong toT ′, therefore descending to its
children is not necessary.

Thus, once the traversal stops at the root node because there is no further child to visit, the
algorithm has found some maximal mapping consistent withh that maps some subtreeT ′ ofT into
D. The only property that has not been checked up to this point is if this maximal mapping actually
contains all of dom(h), or only parts of it. Note that the counter f contains the number of free
variables in those nodes that are guessed to belong to T ′. Since the algorithm stops immediately
and returns NO whenever it encounters a free variable not in dom(h) (Algorithm 1, line 7), after
finishing the traversal, f has only counted variables from dom(h). Thus f = | dom(h) | if and only
if the mapping found by the algorithm covers all of dom(h).

Finally, observe that the tests in lines 17 and 20 are in LogCFL by assumption and the fact that
LogCFL is closed under complement. �

ALGORITHM 1: EnterNodeTopDown

1: push(γ ) � Push mapping on parent interface to stack

2: for all (x ,v ) in γ do

3: if x � var(λ(curNode)) then

4: remove x 
→ v from γ

5: Nondeterministically choose in ∈ {true, false}
6: if in = true then

7: if fvar(λ(curNode)) � dom(h) then exit(NO)

8: for all x ∈ var(λ(curNode)) do

9: if x ∈ dom(h) and x � dom(γ ) thenf := f + 1

10: for all x ∈ IcurNode do

11: if x � dom(γ ) then � Does not occur in the parent

12: if x ∈ dom(h) then � In h, thus predefined value

13: add x 
→ h(x ) to γ
14: else � Neither in parent nor in h
15: Nondeterministically choose v ∈ dom(D)
16: add x 
→ v to γ

17: if γ ∪ h cannot be extended to subsume a solution to qcurNode then exit(NO)

18: δ := true � Continue traversal to children

19: else

20: if γ ∪ h can be extended to subsume a solution to qcurNode then exit(NO)

21: δ := false � Do not proceed to children, return to parent
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3.3 Partial Evaluation of pWDPTs

Given the nature of pWDPTs, it is also interesting to check whether a mappingh is a partial answer
to a pWDPT p over D [36], i.e., whether h can be extended to some answer h′ to p over D. This
gives rise to the partial evaluation problem for a class C of pWDPTs.

Partial-Eval(C)
Input: A pWDPT p ∈ C, a partial mapping h : X→ U, and a database D.
Question: Is there an h′ ∈ p (D) such that h � h′?

Partial evaluation is tractable for the class of (projection-free) WDPTs [36]. In contrast, if pro-
jection is allowed, then partial evaluation is intractable even under local tractability:

Proposition 3.10 [31]. The problem Partial-Eval(�-TW(k )) is NP-complete for every k ≥ 1.

Recall from Theorem 3.9 that the conjunction of local tractability and bounded interface leads
to efficient (exact) evaluation of pWDPTs. It is easy to modify the proof of Theorem 3.9 (property
(2)) to show that also Partial-Eval(�-TW(k ) ∩ BI(c )) and Partial-Eval(�-HW(k ) ∩ BI(c )) are in
LogCFL. However, partial evaluation is seemingly easier than exact evaluation. Hence, the ques-
tion naturally arises if tractability of partial evaluation of pWDPTs can be ensured by a weaker
condition. Indeed, we give a positive answer to this question below by introducing the notion of
global tractability.

Global Tractability. Intuitively, for some classQ of CQs, this condition states that the CQs defined
by the different subtrees of a pWDPT belong to Q.

Definition 3.11 (Globally in Q). A pWDPT (T , λ, �x ) with root node r is globally in Q, if for
each subtreeT ′ ofT rooted in r with atoms(T ′) = {R1 (�v1), . . . ,Rm (�vm )} the Boolean CQ Ans() ←
R1 (�v1), . . . ,Rm (�vm ) is in Q. We write д-Q for the set of pWDPTs that are globally in Q.

Similarly to local tractability, by “global tractability” we refer to the property of a pWDPT being
globally in Q for a tractable, robust class Q of CQs.

The following proposition formally states that for the classes of CQs of bounded treewidth and
generalized hypertreewidth, global tractability is a strictly weaker condition than the conjunction
of local tractability and bounded interface.

Proposition 3.12.

(1) For each k, c ≥ 1, �-TW(k ) ∩ BI(c ) ⊆ д-TW(k + c ), and �-HW(k ) ∩ BI(c ) ⊆ д-HW(k + c ).
(2) For every k ≥ 1, there is a family Ck of pWDPTs in д-TW(k ) (respectively, д-HW(k )) such

that Ck � BI(c ), for any c ≥ 1.

Proof.

(1) Consider an arbitrary pWDPT p = (T , λ, �x ) ∈ C, for C either �-TW(k ) ∩ BI(c ) or �-
HW(k ) ∩ BI(c ). Then, for every node t ∈ T , there exists a (tree- or generalized hypertree)
decomposition Dt of width ≤ k for the CQ defined by λ(t ). From Dt (with Dt = (S,ν )
and Dt = (S,ν , ξ ), respectively) we construct a decomposition D ′t by extending ν (s ) to
ν ′(s ) = ν (s ) ∪ It for every s ∈ S . Thus, the width of the decomposition increases at most
by c .

Given such a decomposition for each node t ∈ T and some subtree T ′ of T , we can
construct a decomposition for the complete set of atoms occurring in the nodes of T ′ by
simply combining the decompositions D ′t1

and D ′t2
of two neighboring nodes t1 and t2

in T ′ by adding an edge between an arbitrarily chosen node s1 in D ′t1
and an arbitrarily
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chosen node s2 in D ′t2
. Since both ν ′(s1) and ν ′(s2) contain all the interface variables, the

combined decomposition clearly satisfies the connectedness condition. As a result, we get
a decomposition of qT ′ with width at most k + c , which proves the claim.

(2) Let k ≥ 1 and c ≥ 1. Using unary predicates un1,un2 and a binary predicate bin, it is easy
to construct a pattern tree p = (T , λ, �x ) consisting of two nodes, such that p has a global
treewidth of k , but not c-bounded interface (a similar proof holds for generalized hyper-
treewidth). For example, let T consist of a root r and a child t , with
—λ(r ) = {bin(zi , zj ) | i, j ∈ {1, . . . ,k }, i � j} ∪ {un1 (yi ) | i ∈ {1, . . . , c + 1}} and
—λ(t ) = {un2 (yi ) | i ∈ {1, . . . , c + 1}} ∪ {un1 (x )},
where x and all zi and yi are variables, and �x contains x and an arbitrary subset of the
remaining variables. �

We now formally prove that global tractability leads to tractability of the partial evaluation
problem for pWDPTs.

Theorem 3.13. Let Q be a robust class of CQs for which CQ-Eval(Q) is in Ptime. Then Partial-
Eval(д-Q) is also in Ptime.

Proof. Let p = (T , λ, �x ) be a pWDPT, let D be a database, and let h be a mapping. Also,
let T ′ be minSubtree(p, dom(h)) and atoms(T ′) = {R1 (�v1), . . . ,Rm (�vm )}. Recall that T ′ can be
computed in polynomial time (Proposition 2.2). Observe that to test whether there exists some
h′ ∈ p (D) with h � h′, it suffices to test whether there exists a mapping h′′ : var(T ′) \ dom(h) →
dom(D) such thatRi ([h ∪ h′′](�vi )) ∈ D for all 1 ≤ i ≤ m. Thus, letq(�v ) be the CQAns(dom(h)) ←
R1 (�v1), . . . ,Rm (�vm ). Thenh ∈ q(D) if and only ifh is a partial solution to p overD. Also, checking
whether h ∈ q(D) can be decided in polynomial time. In fact, this is equivalent to asking whether
the empty mapping is a solution to the CQq′ defined as Ans() ← R1 (h(�v1)), . . . ,Rm (h(�vm )), which
is in Ptime by assumption. �

Similar to the case of local tractability and bounded interface, also, in this case, membership in
LogCFL carries over.

Corollary 3.14. Let Q be a robust class of CQs for which CQ-Eval(Q) is in LogCFL. Then
Partial-Eval(д-Q) is also in LogCFL. In particular, Partial-Eval(д-TW(k )) and Partial-Eval(д-
HW(k )) are in LogCFL for every k ≥ 1.

Proof. Clearly, the reduction described in the proof of Theorem 3.13 can be implemented by a
LogSpace-transducer. Also, deciding whether the empty mapping is a solution to the CQ q′ in the
proof of Theorem 3.13 is in LogCFL by assumption. �

LogCFL-hardness for Q = TW(k ) and Q = HW(k ) follows again from the LogCFL-hardness of
CQs in Q and the observation that the evaluation problem and the partial evaluation problem
coincide for CQs.

It remains to answer the question of whether global tractability also suffices to ensure tractabil-
ity of (exact) evaluation for pWDPTs. We show that this is not the case.

Proposition 3.15. Both Eval(д-TW(k )) and Eval(д-HW(k )) are NP-complete for every k ≥ 1.
They remain NP-hard when restricted to pWDPTs consisting of two nodes.

Proof. Membership can be shown by a guess-and-check algorithm that, given p, D, and h,
guesses a subtree p ′ of p together with a mapping h′ on the existential variables in p ′, and then
checks in polynomial time whether h′ ∪ h is a maximal homomorphism. A description of such an
algorithm is provided in Section A.2 of the online appendix. For the hardness, recall the pWDPT
p defined in the proof of Theorem 3.6. It is easy to see that p ∈ д-TW(1) and p ∈ д-HW(1). �
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3.4 Semantics Based on Maximal Mappings

The semantics of (projection-free) WDPTs is only based on maximal mappings, i.e., mappings that
are not subsumed by any other mapping in the answer. This is no longer the case in the presence
of projection as demonstrated in Example 1.3.

Recent work on query answering for SPARQL under entailment regimes has established the
need for a semantics for pWDPTs that is solely based on maximal mappings [2]. Such semantics
also turned out to be essential in a recent study on so-called weakly-monotone SPARQL queries
[5]. This semantics is formalized as follows. Assume D is a database and p is a pWDPT over σ .
The evaluation of p over D under maximal mappings, denoted pm (D), contains the restriction of
p (D) to those mappings h ∈ p (D) that are maximal with respect to �.

Example 3.16. Let p be the pWDPT from Figure 1 and assume the free variables to be �x = {y, z}.
Consider the databaseD from Example 1.2. Then p (D) = {h1,h2} with h1 (y) = h2 (y) = “Caribou”
and h2 (z) = “8” while pm (D) = {h2}.

This naturally leads to the following decision problem:

Max-Eval(C)
Input: A pWDPTp ∈ C, a partial mapping h : X→ U, and a database D.
Question: Is h ∈ pm (D)?

Ahmetaj et al. [2] show that Max-Eval(C) is intractable when C is the class of all pWDPTs (in
particular, this problem is complete for DP, i.e., the class of languages defined as the intersection
of a language in NP and one in coNP). Analogously to the case of partial evaluation presented in
Theorem 3.13, it is sufficient to impose global tractability to obtain tractability also in this case:

Theorem 3.17. Let Q be a robust class of CQs for which CQ-Eval(Q) is in Ptime. Then Max-
Eval(д-Q) is also in Ptime.

Proof. Observe that, given a pWDPT p = (T , λ, �x ), a database D, and a mapping h, we have
h ∈ pm (D) if and only if

(1) h � h′ for some h′ ∈ p (D) and
(2) there does not exist a mapping h′ with h � h′ such that h′ ∈ p (D).

That is, the problem can be solved by reducing it to a polynomial number of instances of the
partial evaluation problem. Indeed, for (1) we only need to test if h is a partial solution, and for
(2) it suffices to test whether h̄ is no partial solution for all mappings of the form h̄ = h ∪ {x 
→ c},
where x ∈ �x \ dom(h) and c ∈ dom(D). �

It follows immediately from the above algorithm and the fact that LogCFL is closed under com-
plement, that whenever CQ-Eval(Q) is in LogCFL, so is Max-Eval(д-Q):

Corollary 3.18. Let Q be a robust class of CQs for which CQ-Eval(Q) is in LogCFL. Then Max-
Eval(д-Q) is also in LogCFL. In particular, Max-Eval(д-TW(k )) and Max-Eval(д-HW(k )) are in
LogCFL for every k ≥ 1.

Analogously to Partial-Eval(C), local tractability is not sufficient to ensure tractability of Max-
Eval(C):

Proposition 3.19. For every k ≥ 1 the problems Max-Eval(�-TW(k )) and Max-Eval(�-HW(k ))
are DP-complete.

Proof sketch. The DP-membership follows immediately from the general case studied by
Ahmetaj et al. [2]. The DP-hardness is shown in Section A.3 of the online appendix. �
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4 PARAMETERIZED COMPLEXITY OF PWDPT EVALUATION

In the previous section, we introduced some sufficient criteria for the different evaluation problems
on pWDPTs to be tractable, where we considered a problem to be tractable if it can be decided
in polynomial time. One main idea behind the definitions of our tractable classes was to extend
tractable restrictions from CQs to pWDPTs.

However, for CQsit is also reasonable to consider less restrictive notions of tractability, in par-
ticular fixed-parameter tractability. In general, the problem p-CQ-Eval(Q), which is the problem
CQ-Eval(Q) parameterized by the size of the query, is W[1]-complete for the set Q of all CQs [35].
In addition, the deep work of Marx [32] provided a complete understanding of which classes of
CQs admit fixed-parameter tractable evaluation.

There is one relevant scenario, however, in which the notions of tractability and fixed-parameter
tractability for CQ evaluation are equivalent (at least under widely held complexity assumptions);
namely, when the arity of schemas is fixed in advance. In fact, a surprising result by Grohe [26]
states that, under the widely accepted complexity assumption that FPT�W[1] (cf. Reference [20]),
the notion of treewidth captures, in a precise sense, the space of tractable (and also fixed-parameter
tractable) CQs over schemas of bounded arity. Formally, in this scenario of the evaluation problem
a class Q of CQs is tractable if and only if it is fixed-parameter tractable if and only if Q is of
bounded treewidth modulo equivalence. The latter means that for some k ≥ 1, every CQ in Q is
equivalent to a CQ in TW(k ) [26].

In contrast, by considering a slight extension of the conditions introduced in Section 3, we will
show in this section that the latter equality does not hold for pWDPTs. That is, there are classes
C of pWDPTs for which the evaluation problem is NP-complete, but for which the parameterized
evaluation problem is fixed-parameter tractable (even over fixed arity schemas). The condition,
which we will refer to as “semi-bounded interface,” allows us to draw a more detailed picture of
the complexity of the evaluation problem for pWDPTs.

Semi-Bounded Interface. Intuitively, the notion of c-semi-bounded interface restricts the number
of variables shared between any pair of nodes in the tree. Formally, for a pWDPT p = (T , λ, �x ), the
interface It,t ′ between nodes t , t ′ ∈ T is It,t ′ = var(λ(t )) ∩ var(λ(t ′)).

Definition 4.1 (c-semi-bounded interface). Let c ≥ 1. A pWDPT (T , λ, �x ) has c-semi-bounded in-
terface if |It,t ′ | ≤ c for all pairs t , t ′ of nodes in T . We denote by SBI(c ) the class of pWDPTs of
c-semi-bounded interface.

Observe that because of the pattern tree being well-designed, this definition is equivalent to
requesting that for all pairs of nodes t , t ′ ∈ T that are connected by an edge, the number of shared
variables is bounded.

In contrast to the class BI(c ), no property analogous to Proposition 3.12 holds for SBI(c ); that is,
�-TW(k ) ∩ SBI(c ) (or �-HW(k ) ∩ SBI(c ), respectively) does not imply д-TW(k ′) (or д-HW(k ′), re-
spectively) for any k ′ ≥ 1. For instance, consider the family (pn )n≥2 of pWDPTs, where pn contains
a root node and ( n

2 ) children ti, j with 1 ≤ i < j ≤ n. For a unary predicateun and a binary predicate
bin, we set λ(r ) = {un(x1), . . . ,un(xn )} and λ(ti, j ) = {bin(xi ,x j )}. Thenpn ∈ �-TW(1) ∩ SBI(2) and
pn ∈ �-HW(1) ∩ SBI(2) for every n ≥ 1. But for every k ′ ≥ 1, we can choose n so that pn � д-
TW(k ′) and pn � д-HW(k ′). This is because

⋃
1≤i<j≤n λ(ti, j ) contains a clique of size n. Thus, the

only relationships between these classes arise from the fact thatд-TW(k ) ⊆ �-TW(k ), since, unlike
generalized hypertreewidth, the treewidth of a graph is preserved by its subgraphs.

In terms of the classical complexity of the evaluation problem, introducing the class SBI(c ) does
not improve the situation with respect to the tractability of the problem.
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Proposition 4.2. Both Eval(д-TW(k ) ∩ SBI(c )) and Eval(�-TW(k ) ∩ SBI(c )) are NP-complete
for every k ≥ 1 and c ≥ 2. The same holds for HW(k ) instead of TW(k ).

The complexity is thus exactly the same as for Eval(�-TW(k )) and Eval(д-TW(k )) (and HW(k )),
respectively. However, for the parameterized variant of the evaluation problem, we get a much
more diverse picture. We will study the following problem:

p-Eval(C)
Input: A pWDPT p ∈ C, a partial mapping h : X→ U, and a database D
Parameter: |p |
Question: Is h ∈ p (D)?

We will show that for all four classes �-TW(k ) ∩ BI(c ), �-TW(k ) ∩ SBI(c ), д-TW(k ) ∩ SBI(c ),
and д-TW(k ), the problem p-Eval(C) exhibits a different (parameterized) complexity. For C =
�-TW(k ) ∩ BI(c ), we have shown in Section 3 that the problem is in Ptime (even in LogCFL).
For C = д-TW(k ) ∩ SBI(c ), on the other hand, the problem is actually fixed-parameter tractable:

Theorem 4.3. The problems p-Eval(д-TW(k ) ∩ SBI(c )) and p-Eval(д-HW(k ) ∩ SBI(c )) are in
FPT for every k, c ≥ 1.

Proof. We discuss the main ideas of the FPT algorithm for p-Eval(д-TW(k ) ∩ SBI(c )). The case
of p-Eval(д-HW(k ) ∩ SBI(c )) is analogous. Given some pWDPT p = (T , λ, �x ) ∈ д-TW(k ) ∩ SBI(c )
with root r , a databaseD, and a mappingh : X → dom(D), whereX ⊆ �x , it is easy to test for some
subtree p ′ of p rooted in r with fvar(p ′) = dom(h) whether there exists an extension h′ of h with
h′ : var(p ′) → dom(D) and h′(τ ) ∈ D for all atoms τ ∈ atoms(p ′). This is because p ∈ д-TW(k ).
However, in addition, we must test whether at least one of these extensions h′ of h is also maximal.

One possibility to tackle this issue is to introduce one relational atom for each node t of T ′

(whereT ′ is the tree structure of p ′) that tells us which mappings on the interface variables It can
be extended to a mapping on the complete node. This is feasible in the case of bounded interface,
since the size of these relations is bounded by a polynomial. But given that we now deal with
c-semi-bounded pWDPTs, this is no longer possible, since the size of It is no longer bounded.
However, for testing the maximality of mappings, it is sufficient to check that they cannot be
extended to the nodes ti ∈ T \T ′ whose parent t̂i is inT ′. For these nodes ti , we thus want to have
one relational atom that tells us which mappings on the interface Îti ,ti

do not extend to ti .
Unfortunately, it turns out that just introducing atoms Ri (Îti ,ti

) is not possible, since this may
increase the treewidth of the resulting CQ too much. Instead, we need to work with potentially
smaller atoms. Intuitively, we make sure that a mapping cannot be extended to some node ti by
choosing a connected component (to be made precise below) of atoms in ti to which the mapping
cannot be extended. Moreover, the number of connected components is bounded by the size of
the query. Hence, iterating over all combinations of these components is feasible in FPT. Thus, the
idea is instead of having one atom Ri (Îti ,ti

) for each node ti , to have an atom Ri (�vi ), where �vi

contains all variables (arranged in an arbitrary order) of some connected component of λ(ti ).
The tuples �vi , which play a crucial role in the FPT algorithm, are defined as follows. Let t be a

non-root node in a pWDPT (T , λ, �x ) and t̂ the parent of t . Let us denote by Gt the Gaifman graph
of the variables in λ(t ) \ Ît,t ; i.e., Gt is the undirected graph that has as nodes the variables in
λ(t ) \ Ît,t and as edges the pairs of variables that appear together in some atom of λ(t ). A critical
subset of Ît,t is a set S ⊆ Ît,t such that
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(1) either there is an atom in λ(t ) whose variables are precisely S , or
(2) there is a connected component G of Gt such that

S = {y ∈ Ît,t | there is an atom in λ(t ) that contains both y and a variable in G}.

We write CS (t ) for the set of critical subsets of Ît,t . The atoms Ri (�vi ) mentioned above will then
be obtained by taking �vi as the tuple of variables (arranged in arbitrary order) of some critical
subset Si ∈ CS (ti ).

The importance of the critical subsets stems from the fact that given some mapping ĥ on an in-

terface Ît,t , the critical subsets suffice to decide whether ĥ can be extended to t or not. Toward this
goal, we introduce the following notions. As before, let t be a non-root node in a pWDPT (T , λ, �x )
and t̂ the parent of t . For a setY ⊆ Ît,t of variables, the set stop(Y ) of non-extendable mappings is the

set of all mappings ĥ : Y → dom(D) such that there exists no mapping ĥ′ : var(λ(t )) → dom(D)

satisfying ĥ � ĥ′ and R (ĥ′(�w )) ∈ D for every R (�w ) ∈ λ(t ). Intuitively, for a subset Y of the inter-
face variables Ît,t , the set stop(Y ) contains all mappings on Y that cannot be extended so as to
map all atoms in λ(t ) intoD. For the proof of Theorem 4.3, we are interested in those sets stop(S )
where S ∈ CS (t ) is a critical subset of Ît,t .

We now have all ingredients necessary to describe the FPT algorithm. Assume we are given a
pWDPT p = (T , λ, �x ), a database D, and a mapping h, and we want to decide whether h ∈ p (D).
The main structure of the procedure is sketched in Algorithm 2. Before describing the algorithm,
we first have to define what B (T ′) (line 2) means. For a pWDPT (T , λ, �x ) and a subtreeT ′ ofT , the
set B (T ′) contains all nodes t ∈ T \T ′ such that the parent of t is inT ′. Intuitively, B (T ′) contains
the “children” of T ′ (or nodes immediately “below” T ′, thus B (T ′)).

The idea of the algorithm is to compute a potentially exponential number of CQsq (exponential
only in the size of the pWDPT p) and for each of the CQsa database D′ such that h ∈ p (D) if
and only if q(D′) � ∅ for at least one of these queries. Recall that to get h ∈ p (D), there must be
some maximal subtree T ′ of T containing the root node of T and an extension h′ of h such that
h′ ∈ qT ′ (D). Thus the algorithm iterates over all potential such subtrees T ′ of T (line 1). For each
of these subtrees it would now be easy to check whether such an h′ ∈ qT ′ (D) exists: compute qT ′ ,
replace in qT ′ all variables x ∈ dom(h) by h(x ), let the remaining variables be existential variables,
and check if the resulting Boolean CQ evaluates to true over D. However, just checking h′ ∈
qT ′ (D) is not enough, since also the maximality must be checked. This is done by exploiting the
critical subsets of B (T ′).

As a result, getCQ (T ′, css) (line 4) returns the CQq defined as follows. Let

atoms(T ′) = {R1 (�w1), . . . ,Rm (�wm )},
and assume that css = {S1, . . . , Sn }, i.e., css contains one critical subsets Si for every node ti ∈
B (T ′). Then q is of the form Ans() ← R1 (h(�w1)), . . . ,Rm (h(�wm )),R′1 (h(�s1)), . . . ,R′n (h(�sn )), where
R′1, . . . ,R

′
n are new relation symbols not occurring anywhere in p or D, and each �si is some tuple

containing exactly the variables from Si in some arbitrary order (for 1 ≤ i ≤ n).
The matching database D′ returned by getDB (css,D) (line 5) is defined as follows:

D′ := D ∪ {R′i (ĥ′(�si )) | ĥ′ ∈ stop(Si ), Si ∈ css},
where each �si is again the tuple containing the variables from Si . Hence, for each critical subset
Si , we put exactly those tuples into D′ that cannot be extended to mappings on λ(ti ).

The idea behind these definitions is as follows. Assume that q(D′) � ∅ for some q andD′. Then
each h′ ∈ q(D′) maps all atoms in atoms(T ′) into D and there exists no extension h′′ of h′ that,
for any ti ∈ B (T ′), maps λ(ti ) into D. The latter property is due to the fact that h′ is consistent
with some mapping from stop(S ) for at least one critical subset S ∈ CS (ti ) for each such node ti .
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Concerning its runtime, note that the algorithm potentially tests an exponential number of pairs
of CQsq and databasesD′. However, the number is bounded byO (2 |p | ) (recall that |p | is the param-
eter). Finally, it can be shown that the CQq is of bounded treewidth or generalized hypertreewidth,
given that p ∈ д-TW(k ) ∩ SBI(c ) or p ∈ д-HW(k ) ∩ SBI(c ) for some k, c ≥ 1, respectively. A thor-
ough discussion of this property can be found in Section B.2 of the appendix. �

ALGORITHM 2: EvalFPT(p, D, h)

1: for all subtrees T ′ of T rooted in r such that fvar(T ′) = dom(h) do � r : root node of T
2: Let B (T ′) be of the form {t1, . . . , tn }
3: for all css ∈ {{S1, . . . , Sn } | Si ∈ CS (ti ) for 1 ≤ i ≤ n} do

4: q = getCQ(T ′, css)
5: D′ = getDB(css , D)

6: if q(D′) � ∅ then exit(YES)

7: exit(NO)

Theorem 4.3 thus gives the discrepancy to the behavior of CQsmentioned above: While the
problem Eval(д-TW(k ) ∩ SBI(c )) is NP-complete for k ≥ 1 and c ≥ 2, and thus intractable, the
parameterized variant is in FPT and thus feasible. In Propositions 4.4 and 4.5 below, we show that
the case of local tractability plus semi-bounded interface and the case of global tractability display
yet another parameterized complexity behavior.

Proposition 4.4. The problems p-Eval(�-TW(k ) ∩ SBI(c )) and p-Eval(�-HW(k ) ∩ SBI(c )) are
W[1]-complete for every k ≥ 1 and c ≥ 2.

Proof. Membership is shown by reduction to the W[1]-complete problem Pos-Eval, which is
the evaluation problem for FO-queries, restricted as follows: given a FO-query built from relational
atoms using ∃,∧,∨, a database, and a mapping, is the mapping a solution to the query2; with
the size of the FO-query as parameter [35]. Let an instance of p-Eval(�-TW(k ) ∩ SBI(c )) or p-
Eval(�-HW(k ) ∩ SBI(c )) be given by a pWDPT p = (T , λ, �x ) with root node r , a database instance
D, and a partial mapping h from (a subset of) the variables in �x to dom(D). It is convenient to
introduce some notation. Let T ′ be the set of all subtrees p ′ of p containing r such that fvar(p ′) =
dom(h) (i.e., the set of possible “witnesses” for h ∈ p (D)). Also, like in the proof of Theorem 4.3,
for a subtree p ′ = (T ′, λ, �x ′) of p, let B (T ′) contain exactly the nodes t ∈ T \T ′ such that the parent
of t is inT ′. Finally, for every node t in B (T ′), let t̂ denote the parent of t , let Rp′,t be a fresh relation
symbol not occurring in p of arity |Ît,t |, and let �wt contain the variables from Ît,t in some order.

The idea of the reduction is now similar to the one in the proof of Theorem 4.3: create a positive
query which is a big disjunction over all possible CQs qT ′ corresponding to subtrees p ′ = (T ′, λ, �x ′)
in T ′. Thus, for each such p ′, let

Atp′ = atoms(T ′) ∪ {Rp′,t (�wt ) | t ∈ B (T ′)}.

The purpose of the atoms Rp′,t (�wt ) is to guarantee that only maximal answers are picked. They
will only map to such values on the interface variables Ît,t that cannot be extended to mappings
on t . Observe that unlike in the proof of Theorem 4.3, using a single atom for each node in B (T ′)
with all interface variables is feasible. This is because the resulting query is not required to have
bounded treewidth.

2Like for CQs, for convenience we consider the answers to the FO-queries as mappings rather than tuples.

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 8. Publication date: August 2018.



8:24 P. Barceló et al.

For defining the values added toD, recall from the proof of Theorem 4.3 that stop(Ît,t ) contains
those mappings on Ît,t that cannot be extended so as to map all atoms in λ(t ) into D. We define
a positive query Q and a database instance D′, while h will be corresponding mapping:

D′ = D ∪
⋃

p′ ∈T ′
p′=(T ′, λ, �x ′)

{Rp′,t (h′(�wt )) | h′ ∈ stop(Ît,t ), t ∈ B (T ′)},

Q =
∨

p′ ∈T ′
∃(var(p ′) \ dom(h))

∧

τ ∈Atp′

τ .

Clearly, the above reduction is an fpt-reduction: the size of Q is in O (2 |p | ), and the size of D′
is polynomial in the size of D since |Ît,t | < c for every t ∈ T . Finally, it follows immediately that
h ∈ p (D) if and only if h ∈ Q (D′), which proves membership.

Hardness is shown by an fpt-reduction of p-Cliqe. Let G = (V ,E) be a graph and d ∈ N. We
define a pWDPT p = (T , λ, �x ), a mapping h, and a database D as follows:

—T consists of a root r with children ti, j for 1 ≤ i < j ≤ d , with:

λ(r ) = {node(y1), . . . , node(yd ), aux (x0)},
λ(ti, j ) = {edge(yi ,yj ), aux (xi, j ) | 1 ≤ i < j ≤ d },

�x = {x0} ∪ {xi, j | 1 ≤ i < j ≤ d };

—D = {edge(u,v ) | {u,v} ∈ E} ∪ {node(v ) | v ∈ V } ∪ {aux (1)}, and
—h = {x0 
→ 1} ∪ {xi, j 
→ 1 | 1 ≤ i < j ≤ d }.

Notice that p ∈ �-TW(1) ∩ SBI(2) and that the reduction is an fpt-reduction. It is also easy to see
thatG has a clique of size d iff h ∈ p (D). In fact, observe that for every mapping h′ that maps λ(r )
into D, the values h′(y1), . . . ,h′(yd ) encode a selection of d (not necessarily distinct) nodes from
V . Also, for each child ti, j , the mappingh′ can only be extended to map all of λ(ti, j ) intoD iff there
is an edge between h′(yi ) and h′(yj ) (note that G does not contain self loops). Thus the selection
of nodes encoded by h′(y1), . . . ,h′(yd ) is a clique iff all children of r can be mapped into D. �

Proposition 4.5. Both p-Eval(д-TW(k )) and p-Eval(д-HW(k )) are W[2]-hard for every k ≥ 1.

Proof. Recall the reduction for the lower bound in Theorem 3.6. This also describes an fpt-
reduction of p-Dominating Set, and that the resulting pWDPT is in д-TW(1) and д-HW(1). �

5 CONTAINMENT AND SUBSUMPTION

Query containment and query equivalence are among the most fundamental problems in static
query analysis of any query language, i.e., given two queries q1 and q2, one wants to test if, for
every database D, the condition q1 (D) ⊆ q2 (D) or q1 (D) = q2 (D), respectively, holds. If this is
the case, we write q1 ⊆ q2 or q1 ≡ q2, respectively. For CQs, these problems are NP-complete in
general [13] and LogCFL-complete for classes TW(k ) and HW(k ) [14, 23].

Pichler and Skritek [38] carried out a detailed study of containment and equivalence of RDF
pWDPTs and showed that, in sharp contrast to CQs, both problems are undecidable. Now the
question remains if the restriction to tractable fragments of pWDPT evaluation can help. An in-
spection of the undecidability proofs shows that this is not the case.

Theorem 5.1 (Implicit in Pichler and Skritek [38]). The containment and equivalence prob-
lems of pWDPTs are undecidable. The undecidability holds even if both pWDPTs are from �-TW(k ) ∩
BI(c ) for arbitrary k ≥ 1 and appropriately chosen constant c .
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Arenas and Pérez [4] observed that containment of pWDPTs may display an unintuitive be-
havior. Consequently, they proposed subsumption as a variant of containment: a pWDPT p1 is
subsumed by p2 (written as p1 � p2) if, for every databaseD, every answer h ∈ p1 (D) is subsumed
by an answer h′ ∈ p2 (D).

Analogously, we define subsumption-equivalence (denoted as p1 ≡s p2) if both p1 � p2 and p2 �
p1 hold. We thus study the following problems, for C1,C2 classes of pWDPTs:

Subs (C1,C2)
Input: pWDPTs p1 ∈ C1 and p2 ∈ C2.
Question: Does p1 � p2 hold?

Subs-Eqiv (C1,C2)
Input : pWDPTs p1 ∈ C1 and p2 ∈ C2.
Question : Does p1 ≡s p2 hold?

Letelier et al. [31] established ΠP
2 -completeness of Subs(C1,C2) where both C1 and C2 are the

class of all pWDPTs; ΠP
2 -hardness holds even for the class of (projection-free) WDPTs.

We now recall the useful characterization of subsumption between two pWDPTs the ΠP
2 -

membership is based on, since we will use it in several proofs throughout the remainder of this
article. To do this, we first define a suitable notion of homomorphism between pWDPTs. For two
pWDPTs p1 and p2, a homomorphism μ : p1 → p2 is a mapping from var(p1) to dom(p2) such that
R (μ (�v )) ∈ atoms(p2) for all R (�v ) ∈ atoms(p1). In the next proposition, for the sake of readability,
for a pWDPT pi = (Ti , λi , �xi ) and a subtreeT ′i ofTi we write p ′i instead of (pi )T ′

i
for the restriction

of pi to the nodes in T ′i .

Proposition 5.2 [31]. Let p1 = (T1, λ1, �x1) and p2 = (T2, λ2, �x2) be two pWDPTs and r1, r2 their
roots. Then p1 � p2 if and only if, for every subtreeT ′1 ofT1 rooted in r1, there exists a subtreeT ′2 ofT2

rooted in r2 such that

(1) fvar(p ′1) ⊆ fvar(p ′2), and
(2) there exists a homomorphism μ : p ′2 → p ′1 with μ (x ) = x for all x ∈ fvar(p ′1).

In contrast to Subs (C1,C2), the problem Subs-Eqiv (C1,C2) has not been studied so far. How-
ever, Ahmetaj et al. [2] considered a closely related problem based on the maximal mappings se-
mantics from Section 3.4—the so-called MaxEqiv (C1,C2)-problem: given two pWDPTs p ∈ C1,
p ′ ∈ C2, doespm (D) = p ′m (D) hold for every databaseD? In other words, we check if two pWDPTs
p and p ′ have the same maximal solutions over everyD. If this is the case, we write p ≡max p

′. This
problem was shown to be ΠP

2 -complete [2]. An inspection of the proof shows that ΠP
2 -hardness

holds even if one of the classes Ci is restricted to �-TW(2) ∩ BI(2). Below, we show that Subs-Eqiv
(C1,C2) and MaxEqiv (C1,C2) are equivalent problems. In this way, we immediately inherit ΠP

2 -
completeness results also for Subs-Eqiv (C1,C2):

Proposition 5.3. For any pWDPTs p and p ′, p ≡s p
′ if and only if p ≡max p

′.

Proof. Suppose p ≡s p
′. LetD be an arbitrary database and let h ∈ pm (D) ⊆ p (D). Then there

exists an h′ ∈ p ′(D) such that h � h′. Without loss of generality, we may assume that h′ ∈ p ′m (D).
By p ≡s p

′, there is h′′ in p (D) such that h′ � h′′. Hence, h � h′′. By the maximality of h, we
conclude that h = h′ = h′′. Thus, h ∈ p ′m (D). The case for h ∈ p ′m (D) is symmetric.

Suppose p ≡max p
′. Let D be an arbitrary database and let h ∈ p (D). Clearly there exists h′ ∈

pm (D) with h � h′. By p ≡max p
′ we also have h′ ∈ p ′(D). Hence, for each h ∈ p (D) there exists

an h′ ∈ p ′(D) with h � h′, i.e., p � p ′. The proof that also p ′ � p holds is symmetric. �

We then immediately obtain the following from our previous remarks on the complexity of the
MaxEqiv (C1,C2)-problem:

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 8. Publication date: August 2018.



8:26 P. Barceló et al.

Corollary 5.4. The problem Subs-Eqiv(C1,C2) is ΠP
2 -complete, even if one of the classes Ci is

restricted to �-HW(k ) ∩ BI(c )(or to �-TW(k ) ∩ BI(c )) with k = c = 2, while the other is the class of
all pWDPTs.

Now the natural questions are if the restriction of C1 and/or C2 to tractable classes of pWDPT
evaluation leads to a lower complexity of Subs(C1,C2), and if the restriction of both C1 and C2 leads
to a lower complexity of Subs-Eqiv(C1, C2). We provide answers below in Theorems 5.5 and 5.6.

Theorem 5.5.

(1) Subs (C1,C2) is in coNP whenever C1 is the class of arbitrary pWDPTs and C2 is any class
such that Partial-Eval(C2) is in Ptime. In particular, this is the case when C2 = д-TW(k )
or C2 = д-HW(k ) for any k ≥ 1.

(2) Subs (C1,C2) is coNP-hard when C1 = �-HW(k ) ∩ BI(c ) or C1 = �-TW(k ) ∩ BI(c ), for any
k ≥ 1 and c ≥ 0, and C2 is the class of CQs of bounded treewidth or bounded hypertreewidth.

Proof. The first item follows from the observation that the co-problem, i.e., the problem of de-
ciding, given two pWDPTs p1 = (T1, λ1, �x1) ∈ C1 and p2 = (T2, λ2, �x2) ∈ C2, whether p1 � p2, is in
NP. To see this, we first recall the standard notion of a frozen database: for a set S of atoms, the
frozen database fr(S ) is the database obtained from S by simultaneously replacing each variable x
with a fresh constant cx . Then p1 � p2 can be tested as follows: First, guess a suitable subtreeT ′ of
T1, and, second, check that the mapping hT ′ , with hT ′ (x ) = fr(x ) for all x ∈ dom(hT ′ ) = fvar(T ′),
is not a partial answer to p2 over fr(atoms(T ′)). The correctness of this approach is an immediate
consequence of the following relationship: for two pWDPTs p1,p2 with p1 = (T , λ, �x ), subsumption
p1 � p2 holds if and only if, for every subtree T ′ of T containing the root of T , the mapping hT ′

is a partial answer to p2 over fr(atoms(T ′)). (This relationship follows immediately from Proposi-
tion 5.2; a slight variant thereof was used by Ahmetaj et al. [2].) To see that this test is actually in
NP, observe that the witness guessed in the first step is of polynomial size, while the check in the
second step is in Ptime because of the assumption that Partial-Eval(C2) in Ptime.

The second item is shown by reduction of the validity problem for propositional formulas in
3-DNF. Let an arbitrary instance of the problem be given by a formula ϕ =

∨N
i=1 (li,1 ∧ li,2 ∧ li,3),

where each li, j (1 ≤ i ≤ N , 1 ≤ j ≤ 3) is a literal over the variablesX = {x1, . . . ,xn }. For each vari-
able xi ∈ X , letγi denote the number of times xi occurs inϕ. We define two pWDPTsp1 = (T1, λ1,�z)
and p2 = (T2, λ2,�z) such that

—T1 consists of a root r with n children ti , for 1 ≤ i ≤ n,
—T2 consists of a single node r ′,
—λ1 (r ) = {vi (0, 0, 1) | 1 ≤ i ≤ n} ∪ {and (0, 0, 0, 0), and (0, 0, 1, 0), and (0, 1, 0, 0),

and (1, 0, 0, 0), and (0, 1, 1, 0), and (1, 0, 1, 0), and (1, 1, 0, 0), and (1, 1, 1, 1)} ∪
{or (0, 0, 0), or (0, 1, 1), or (1, 0, 1), or (1, 1, 1)} ∪ {true(1)} ∪ {map (u)},

—λ1 (ti ) = {vi (zi, j , 1, 0) | 1 ≤ j ≤ γi } for 1 ≤ i ≤ n,
—λ2 (r ′) = {map (u)} ∪ {vi (zi, j ,xi, j , x̄i, j ) | 1 ≤ i ≤ n, 1 ≤ j ≤ γi } ∪
{and (l∗i,1, l

∗
i,2, l

∗
i,3,yi ) | 1 ≤ i ≤ N } ∪

{or (y1,y2,y
′
2)} ∪ {or (y ′i−1,yi ,y

′
i ) | 3 ≤ i ≤ N } ∪ {true(y ′N )},

—all terms except 0 and 1 are variables and for 1 ≤ i ≤ N , 1 ≤ j ≤ 3 we have l∗i, j = xα,β if

li, j = xα is the β th occurrence of xα in ϕ, and l∗i, j = x̄α,β if li, j = ¬xα is the β th occurrence

of xα in ϕ, and
—the free variables are �z = {u, z1,1, . . . , z1,γ1 , . . . , zn,1, . . . , zn,γn

}.
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It is now easy to see that in both pattern trees, all interfaces are empty. Observe that while both p1

andp2 are clearly in �-HW(1) ∩ BI(0), they are not in �-TW(1) ∩ BI(0). This is, however, due to the
presentation using atoms of arity bigger than 2 for the sake of readability. By standard reification
techniques, one can obtain an RDF pWDPT in �-TW(1) ∩ BI(0). Even more, p2 consists of a single
node and thus represents a CQ. We further observe that the proof could be adapted to work even
if we disallowed constants, i.e., if also 0 and 1 were variables. However, the size of the interface of
p1 would then be c = 2.

In the following, we only provide a rough sketch of the correctness of the reduction. The full
proof is given in Section C.1 of the online appendix. Intuitively, each subtree T ′1 of T1 represents
a truth assignment I over X : for 1 ≤ i ≤ n, we have I (xi ) = true iff ti ∈ T ′1 . By Proposition 5.2,
p1 � p2 holds if and only if, for each subtreeT ′1 ofT1 containing r , there exists a homomorphism μ
from λ2 (r ′) to atoms(T ′1 ) that is the identity on fvar(T ′1 ). This is the case if and only if I satisfies ϕ:
observe that for all 1 ≤ i ≤ n we have that μ (zi, j ) = zi, j (and, therefore μ (xi, j ) = 1) for all 1 ≤ j ≤ γi

if ti ∈ T ′1 and μ (zi, j ) = 0 (and, therefore μ (xi, j ) = 0) otherwise. In this way, the bindings of the
variables xi, j under μ encode exactly the intended truth assignment of the propositional variable
xi . Next, observe that the atoms and () in λ2 (r ′) encode for each disjunct (represented by the first
three arguments of the and ()-atom) whether it evaluates to true or false under I (represented by the
last argument). Thus μ (yi ) = 1 for 1 ≤ i ≤ N only gives a valid homomorphism if the ith disjunct
evaluates to true under I . Finally, the or () atoms check if at least one disjunct evaluates to true
by encoding the Boolean “or” (the first two arguments are the input, the last one the result), i.e.,
setting μ (y ′N ) = 1 is only allowed if this is the case. However, μ (y ′N ) = 1 is the only possibility to
map true(y ′N ) intoT1, since λ1 (r ) only contains true(1). Thus, the required homomorphism μ exists
if and only if at least one disjunct of ϕ evaluates to true under I . �

Next, we consider Subs-Eqiv in more detail and give a similar complexity classification as in
Theorem 5.5 (see Section C.1 of the online appendix for proof details).

Theorem 5.6.

(1) Subs-Eqiv(C1,C2) is in coNP whenever C1 and C2 are classes such that Partial-Eval(C1)
and Partial-Eval(C2) is in Ptime. In particular, this is the case when C1,C2 = д-TW(k ) or
C1,C2 = д-HW(k ) for any k ≥ 1.

(2) Subs (C1,C2) is coNP-hard if C1,C2 = �-HW(k ) ∩ BI(c ), or if C1,C2 = �-TW(k ) ∩ BI(c ),
for any k, c ≥ 2.

Theorems 5.5 and 5.6, together with the ΠP
2 -completeness results of Letelier et al. [31] and Corol-

lary 5.4, leave a small gap: What if both C1 and C2 are locally tractable classes? We close this gap
below. The proof is in Section C.1 of the online appendix.

Proposition 5.7. The problems Subs(C1,C2) and Subs-Eqiv(C1,C2) remain ΠP
2 -complete even

if both C1 and C2 are restricted to �-HW(k ) ∩ SBI(c ) or to �-TW(k ) ∩ SBI(c ), for k ≥ 2 and c ≥ 3.

6 REFORMULATIONS AND APPROXIMATIONS IN TRACTABLE

CLASSES OF PWDPTS

In Sections 3 and 4, we developed conditions that ensure tractability for several variants of the
pWDPT evaluation problem. In this section, we study the semantic space defined by these condi-
tions; i.e., the space of pWDPTs that are equivalent to a pWDPT in a class defined via (hyper)tree
decompositions, respectively.

First we have to fix the right notion of equivalence. By Theorem 5.1, strict equivalence (“≡”) is
undecidable even for the most restricted fragments of pWDPTs considered here. Hence, we have
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to be contented with a relaxed notion of equivalence—subsumption-equivalence (≡s ) introduced in
Section 5.

But then we also have to choose the appropriate variant of pWDPT evaluation: subsumption-
equivalence preserves partial and maximal solutions. Hence, we shall focus on the Partial-
Eval(C) and Max-Eval(C) problems here. (It should be noted that the problems Max-Eval(C),
Partial-Eval(C), and Eval(C) coincide for CQs, i.e., pWDPTs consisting of the root node only.)

Finally, we determine the right syntactical restriction on pWDPTs to ensure tractability of these
problems. By Corollary 3.14 and Theorem 3.17, the restriction toд-TW(k ) orд-HW(k ) for constant
k is sufficient.

At this point, a discussion on two properties of generalized hypertreewidth is in order. The first
one is the complexity of the recognition problem, i.e., for fixed integer k , given a hypergraph H ,
decide whether the generalized hypertreewidth of H is at most k . This problem is NP-complete for
every k ≥ 2 [19, 24]. As a result, in the literature, instead of generalized hypertreewidth, usually a
slightly restricted notion of hypertreewidth is used. Similar to the generalized hypertreewidth, it is
defined as the minimal width of any hypertree decompositions of a hypergraph. The definition of
a hypertree decomposition in turn is almost identical to that of generalized hypertree decomposi-
tions, only that beside properties (1) and (2), it has to satisfy a third condition:

(3)
⋃

e ∈ν (s ) e ∩
⋃

v ∈Ss
ξ (v ) ⊆ ξ (s ) holds for every s ∈ S , where Ss refers to the subtree of S

rooted at s .

The recognition problem for hypertreewidth is solvable in polynomial time [23]. Concerning the
relationship between hypertreewidth htw (H ) and generalized hypertreewidth ghtw (H ) of an ar-
bitrary hypergraph H , the inequalities ghtw (H ) ≤ htw (H ) ≤ 3 · ghtw (H ) + 1 hold [1].

The second property to discuss is a significant difference between treewidth and both general-
ized hypertreewidth and hypertreewidth. While TW(k ) is closed under taking arbitrary subqueries,
HW(k ) is not. However, it will turn out convenient to choose our fragment of CQs in such a way
that it enjoys this property. Instead of the class HW(k ), in the following we will therefore consider
the class HW′(k ) consisting of all CQsq such that the hypertreewidth of each subquery q′ of q (in-
cludingq) is at mostk . This restricted notion of hypertreewidth is known as β-hypertreewidth [25],
in analogy with β-acyclicity studied by Fagin [18]. While the recognition problem for β-acyclicity
is tractable [18], the complexity of the recognition problem for β-hypertreewidth is not known. It
is obviously in coNP; but it is not known whether the problem is tractable or not. Thus, for most
problems studied below, the results obtained for TW(k ) and for HW′(k ) will be the same. How-
ever, there will also be some results (in particular upper bounds) where an additional NP-oracle
is needed in case of the class д-HW′(k ). Note that if we dropped condition (3) from the definition
of β-hypertreewidth, then we would even need a ΣP

2 -oracle instead of the NP-oracle. At any rate,
to not complicate the presentation unnecessarily, in the following we concentrate on the classes
д-TW(k ) and д-HW′(k ). The semantic space defined by these classes is defined below.

Definition 6.1 (ClassesM (C)). Let C be a class of pWDPTs and k ≥ 1. We denote byM (C) the
class of pWDPTs p for which there is a pWDPT p ′ ∈ C such that p ≡s p

′.

We show that, for C = д-TW(k ) and C = д-HW′(k ), these classes are decidable. We then apply
this result to show that the partial and maximal evaluation problems for pWDPTs inM (д-TW(k ))
andM (д-HW′(k )) are fixed-parameter tractable (when taking the size of the pWDPT as the param-
eter). This is an improvement with respect to the corresponding evaluation problems for arbitrary
pWDPTs and even for CQs. For the latter, no fixed-parameter tractable algorithm is believed to
exist. Finally, we study the notion of д-TW(k )- and д-HW′(k )-approximation for pWDPTs.

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 8. Publication date: August 2018.



Efficient Evaluation and Static Analysis for Pattern Trees with Projection 8:29

6.1 Decidability ofM(д-TW(k )) andM(д-HW′(k )) Modulo Equivalence

We start by stating the decidability of membership inM (д-TW(k )) andM (д-HW′(k )):

Theorem 6.2. Let k ≥ 1. There is an NExpTimeNP algorithm that, given a pWDPT p, decides
whether p is in M (д-HW′(k )), and, if this is the case, constructs a pWDPT p ′ ∈ д-HW′(k ) such
that p ≡s p

′ and the size of p ′ is at most exponential in the size of p. The NP-oracle is not needed for
д-TW(k ) instead of д-HW′(k ).

The correctness of this algorithm, which we will present below, follows from the next lemma
that provides an exponential bound on the size of candidate pWDPTs that we have to check for
equivalence.

Lemma 6.3. Let k ≥ 1. Let p and p1 be pWDPTs such that p1 � p and p1 ∈ д-TW(k ) or p1 ∈
д-HW′(k ). Then there is p2 ∈ д-TW(k ) or p2 ∈ д-HW′(k ), respectively, such that

(1) p1 � p2 � p,
(2) the number of nodes of p2 is at most twice the number of free variables of p, and
(3) the number of atoms of p2 is at most exponential in the size of p.

Proof. Letp = (T , λ, �x ) andp1 = (T1, λ1, �x1) be pWDPTs as above. We constructp2 = (T2, λ2, �x1)
with the desired properties by transforming and reducing p1 in four steps (for a node t , in the
following we will always use t̂ to denote its parent).

(a) Remove “dead leaves.” Let N ⊆ V (T1) be the set of nodes in T1 that introduce at least
one free variable, i.e., N = {t ∈ T1 | fvar(λ1 (t )) \ var(λ1 (t̂ )) � ∅}. Transform T1 into T ′1 by
deleting all nodes that are not on a path from the root to some node in N , and let λ′1 denote
the restriction of λ1 to the nodes in T ′1 .

(b) Collapse branches. While T ′1 contains some node t with a single child t ′ and satisfying

fvar(λ′1 (t )) \ fvar(λ′1 (t̂ )) = ∅, merge t with t ′, i.e., set λ′1 (t ) = λ′1 (t ) ∪ λ′1 (t ′), make all chil-
dren ti of t ′ to children of t , and remove t ′ fromT ′1 . Refer to the pattern tree resulting from
exhaustive application of this transformation as p ′′ = (T ′′1 , λ

′′
1 , �x1).

(c) Remove “dead atoms.” Let r ′′1 and r be the root nodes of T ′′1 and T , respectively. We have
p ′′ � p. Thus, by Proposition 5.2 for each subtree S ′′ ofT ′′1 containing r ′′1 , there is a subtree
S ofT containing r with fvar(S ′′) ⊆ fvar(S ) and a homomorphism μ : pS → p ′′S ′′ such that
μ (x ) = x for all x ∈ fvar(S ′′). For each subtree S ′′ ofT ′′1 containing r ′′1 , fix exactly one such
homomorphism. Create (T ′′′1 , λ

′′′
1 , �x1) from (T ′′1 , λ

′′
1 , �x1) by removing all atoms from labels

λ′′(t ) of nodes t ∈ T ′′1 which never occur in the image of any of these homomorphisms.
(d) Restore well-designedness. TraverseT ′′′1 in a top-down manner and exhaustively carry out

the following transformation: if a node t contains a variable z (in some atom α , say) that
occurs in some descendant of t but not in the child t ′ along the path to this descendant,
then add atom α to λ(t ′). The resulting pWDPT is p2.

First of all, it is easy to see that p1 � p2 � p. Clearly, steps (a) and (b) preserve strict equivalence
with p1, i.e., we have p1 ≡ p ′′. Step (c) may destroy well-designedness but step (d) restores it.
Steps (c) and (d) may break equivalence, but the subsumption relationships are preserved, i.e.,
p1 � p2 holds since for each subtree S of p1, the set of atoms in the corresponding subtree of p2 is
a subset of the atoms in S . This is due to the fact that, in step (d), we only copy atoms “downward”
along branches, which does not change the set of atoms in any subtree. Also, p2 � p since we keep
the images of the required homomorphisms in p2.
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We now show that the number m of nodes in p2 is bounded by 2 · |�x1 |. Together with �x1 ⊆ �x ,
this establishes property (2). Indeed, after step (b), the tree T ′′1 only contains nodes that either

introduce new free variables (i.e., nodes t such that fvar(λ′′(t )) \ var(λ′′(t̂ )) � ∅) or have at least
two children. Thus T ′′1 has at most |�x1 | leaves, restricting the overall number of nodes in T ′′1 to
m ≤ 2 · |�x1 | and, clearly, V (T2) ⊆ V (T ′′1 ).

Third, we need to show that the number of atoms of p2 is at most exponential in the size of p.
The number of subtrees S ′′ ofT ′′2 , and thus the number of homomorphisms considered in step (c),
is bounded by 2m , while the image of each homomorphism contains at most n atoms, where n is
the number of atoms in p. The number k of atoms inT ′′′1 is thus bounded by k ≤ 2m · n. Finally, in
step (d) the number of atoms added is again bounded by the number of variables in T ′′′1 times the
number of nodes of T ′′′1 . As a result the number of atoms in p2 is bounded by k + k ·m.

Finally, membership of p2 in д-TW(k ), respectively, д-HW′(k ), follows. This is because д-TW(k )
and д-HW′(k ) are closed under taking subsets, and for each subtree of p2, the set of atoms in such
a subtree is contained in some subtree of p1. �

We can now prove Theorem 6.2.

Proof of Theorem 6.2. Let p ∈ M (д-HW′(k )) be a pWDPT, i.e., there exists a pWDPT p1 ∈
д-HW′(k ) such that p ≡s p1. Thus p1 � p, and, therefore, there exists a pWDPT p2 ∈ HW′(k ) sat-
isfying Lemma 6.3. Clearly, properties (2) and (3) of the Lemma imply that the overall size of p2

is at most exponential in the size of p. Also, by (1), p � p1 � p2 � p, and thus p2 ≡s p. By proper-
ties (2) and (3), a simple NExpTimeNP algorithm can work as follows. Given a pWDPT p, (a) guess
a pWDPT p ′ (a linear number of nodes and at most an exponential number of atoms for each
node), (b) check whether p ′ ∈ HW′(k ), and (c) check whether p ′ ≡s p. Checking condition (b) re-
quires an NP-oracle. Condition (c) is satisfied if certain (exponentially many) homomorphisms exist
[31]. Such homomorphisms can be guessed alongside p ′ itself in step (a) and do not increase the
complexity.

The proof for д-TW(k ) is analogous, but checking condition (b) no longer needs an NP-oracle,
thus leading to the lower complexity. �

While the upper bound in Theorem 6.2 might not be optimal, we can prove that the problem is
at least on the second level of the polynomial hierarchy:

Proposition 6.4. Let k > 1 and assume that C = д-TW(k ) or C = д-HW′(k ). Checking whether
a pWDPT p belongs toM (C) is ΠP

2 -hard.

The proof of this proposition is based on the following lemma.

Lemma 6.5. For every k > 1 and instance of QSAT∀,2 in 3CNF such that the hypergraph of
ϕ (�x , �y) (where the nodes are the variables and the hyperedges are the clauses) is connected, there
are polynomial-time constructible pWDPTs p1 and p2 with p2 ∈ д-HW′(k ) ∩ д-TW(k ), satisfying

(1) p1 � p2;
(2) p1 ≡s p2 if and only if Φ is valid;
(3) p1 ≡s p for some p ∈ д-HW′(k ) or p ∈ д-TW(k ) if and only if p1 ≡s p2.

Proof. Let Φ be a ∀∃QBF instance Φ = ∀�x∃�yϕ (�x , �y) in 3CNF where ϕ (�x , �y) =
∧N

i=1Ci and, for
all 1 ≤ i ≤ N , we have that Ci = (li,1 ∨ li,2 ∨ li,3) with li, j being a literal over �x ∪ �y. Assume �x =
x1, . . . ,xn and �y = y1, . . . ,ym . For the construction of the pWDPTs, we define the following sets
of atoms:
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Fig. 2. Pattern trees p1 (left) and p2 (right) from the proof of Lemma 6.5.

Pxy = {vx
i (0, 1) | 1 ≤ i ≤ n} ∪ {vy

i (0, 1),v
y
i (1, 0) | 1 ≤ i ≤ m},

Pd = {clique(1, 1), clique(0, 0), false(0), true(1)} ∪ {fixi (αi ) | 2 ≤ i ≤ k },
Pc = {c (0, 0, 1), c (0, 1, 0), c (1, 0, 0), c (0, 1, 1), c (1, 0, 1), c (1, 1, 0), c (1, 1, 1)},
Pr = {map(z)} ∪ Pxy ∪ Pd ∪ Pc ,
Pti
= {vx

i (1, 0),mapi (zi )} for 1 ≤ i ≤ n.

In addition, we consider the variable sets A1 = {1, 0} ∪ {αi | 2 ≤ i ≤ k } and A = A1 ∪ {xi , x̄i | 1 ≤
i ≤ n} ∪ {yi , ȳi | 1 ≤ i ≤ m}. (Note that also 0 and 1 are variables. This is motivated by the fact
that we will reuse the construction in a context where constants are forbidden, cf. Section 6.2. For
example, see the proof of Proposition 6.9 in Section D.2 of the online appendix. For readability, we
keep the names 0 and 1, since these variables represent the truth values true and false.)

With these sets, we define the pWDPTs p1 = (T1, λ1,�z), with �z = {z} ∪ {zi | 1 ≤ i ≤ n}, and p2 =

(T2, λ2,�z) as depicted in Figure 2. Observe that all terms occurring inp1 are variables and thatp1 has
n leaves t1, . . . , tn . Finally, we have l∗i, j = xδ if li, j = xδ and l∗i, j = x̄δ if li, j = ¬xδ , and analogously

l∗i, j = yδ if li, j = yδ and l∗i, j = ȳδ if li, j = ¬yδ .

The construction of p1 and p2 is clearly feasible in polynomial time.
Properties (1), (2), and (3) are proved in Section D.1 of the online appendix. The proof of the first

two properties is somewhat standard. p1 � p2 can be easily checked, while showing p2 � p1 iff Φ is
valid works along the same lines as the ΠP

2 -hardness proof for subsumption [31]: observe that xi

must be mapped to 0 if ti is not part of the subtree, and mapped to 1 otherwise. Below we briefly
comment on the third property. First of all, we have both p2 ∈ д-HW′(k ) and p2 ∈ д-TW(k ). It
thus suffices to show that p1 ≡s p2 whenever p1 ≡s p for some p ∈ д-HW′(k ) ∪ д-TW(k ). Assume
that there exists some p ∈ д-HW′(k ) ∪ д-TW(k ) with p1 ≡s p. Since p1 � p2 always holds, we need
to show p2 � p1. Thus consider an arbitrary subtree p ′2 of p2 containing the root node. We claim
that for the uniquely defined subtree p ′1 of p1 with fvar(p ′1) = fvar(p ′2), there exists the required
homomorphism μ1 : p ′1 → p ′2 (as established in Proposition 5.2). Its existence can be shown by the
following sequence of arguments. Since the set of atoms in p ′2 is a subset of the atoms in p ′1, μ1 is
an endomorphism p ′1 → p ′1 whose image contains only atoms from p2. Because p1 � p, there exists
a subtree p ′ of p containing the root with fvar(p ′1) ⊆ fvar(p ′) and a homomorphism μ ′ : p ′ → p ′1.
Since also p � p1, there exists a subtree p ′′1 of p1 containing the root with fvar(p ′) ⊆ fvar(p ′′1 ) and a
homomorphism μ : p ′′1 → p ′. Thus, clearly μ ′(μ (·)) is a homomorphismp ′′1 → p ′1, and its restriction
to the variables in p ′1 is an endomorphism on p ′1. The fact that it is also a homomorphism from
p ′1 → p ′2 follows from the fact that every endomorphism on p1 must either be an isomorphism
on all variables, or map all xi , x̄i ,yj , ȳj onto 0,1. This is basically due to the assumption that the
formula ϕ is connected and there is no c (·, ·, ·) atom containing variables from both sets, {0, 1}
and {xi , x̄i ,yj , ȳj }. However, μ ′(μ (·)) being an isomorphism contradicts p ∈ д-HW′(k ) ∪ д-TW(k ),
since clearly p1 � д-HW′(k ) ∪ д-TW(k ), which proves the case. �
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Proof of Proposition 6.4. The proof is by reduction of QSAT∀,2 in 3CNF and an immediate
consequence of Lemma 6.5: observe that for p1 and Φ from Lemma 6.5, the relationship “p1 ∈
M (д-HW′(k )) (respectively,p1 ∈ M (д-TW(k ))) if and only if Φ is valid” follows immediately from
properties (2) and (3). �

Notice that this establishes a difference to the analogous problem of checking whether a CQ is
equivalent to one in a tractable class: for each k ≥ 1, checking whether a CQ q is equivalent to
some CQ q′ in TW(k ) is in NP [16].

Evaluation of pWDPTs in M (д-TW(k )) and M (д-HW′(k )). An important corollary of Theo-
rem 6.2 is that the partial and maximal evaluation problems for pWDPTs in both M (д-TW(k ))
and M (д-HW′(k )) are fixed-parameter tractable. Analogously to the problem p-Eval(C), let p-
Partial-Eval(C) and p-Max-Eval(C) be the parameterized variants of the problems Partial-
Eval(C) and Max-Eval(C), parameterized by the size of the pWDPT.

Corollary 6.6. Letk ≥ 1. Then p-Partial-Eval(M (д-TW(k ))) and p-Max-Eval(M (д-TW(k )))
are fixed-parameter tractable. The result also holds for д-HW′(k ) instead of д-TW(k ).

6.2 д-TW(k )/д-HW′(k )-Approximations of pWDPTs

In general, whenever a queryq is not equivalent to one in some desirable classQ, it might be useful
to compute an approximation of q in Q [6]. Recall that this is a query q′ ∈ Q that is maximally
contained in q with respect to all queries in Q. In other words, q′ ⊆ q, and there is no q′′ ∈ Q such
that q′ ⊂ q′′ ⊆ q. For the reasons given at the beginning of Section 5, we define approximations
in the pWDPT context not in terms of containment, but subsumption. Throughout this section,
we assume that pWDPTs do not contain constants. The reason is that the notion of approximations
with constants is problematic and not even well understood for CQs [6].

We now define approximations for pWDPTs. Recall that we write p � p ′ to denote that p � p ′

but p �s p
′:

Definition 6.7 (C-approximations). Let C be a class of pWDPTs and k ≥ 1. Assume p and p ′ are
pWDPTs such that p ′ ∈ C. Then p ′ is a C-approximation of p if p ′ � p and there is no p ′′ ∈ C such
that p ′ � p ′′ � p.

Existence of Approximations. An important question in this context is if approximations always
exist [6, 10]. The techniques developed in Lemma 6.3 allow us to prove that this is indeed the case
in the pWDPT scenario.

Theorem 6.8. Letk ≥ 1. For bothд-TW(k ) andд-HW′(k ), there is a double-exponential time algo-
rithm that, given a pWDPT p, constructs an exponential-size д-TW(k )-approximation (or д-HW′(k )-
approximation, respectively) p ′ of p.

Proof. By Lemma 6.3, if there is any approximation p1 of p, then, because of p1 � p, there also

exists an approximation of size at most 2pol ( |p |) for some polynomial pol . We thus only need to
check pWDPTs up to this size bound. Among those we identify all pWDPTs p̄ with p̄ � p and

choose one that is maximal with respect to �. Clearly, all pWDPTs p ′ of size at most 2pol ( |p |) can be
enumerated in double-exponential time. Thus, both correctness and the double-exponential time
bound follow immediately. �

Complexity. To better understand the complexity of computing approximations, we study the
following decision problem:
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C-Approximation
Input: Two pWDPTs p,p ′ such that p ′ ∈ C.
Question: Is p ′ a C-approximation of p?

The next proposition establishes some upper and lower bounds for the problem.

Proposition 6.9.

(1) For each k ≥ 1, д-TW(k )-Approximation is in coNExpTime and
д-HW′(k )-Approximation is in coNExpTimeNP.

(2) For each k > 1, д-TW(k )-Approximation and д-HW′(k )-Approximation are ΠP
2 -hard.

(3) For each k > 1, if the input of the problem includes the promise that p ′ � p, then д-TW(k )-
Approximation and д-HW′(k )-Approximation are ΣP

2 -hard.

Proof. We only prove property (1). Full proofs of properties (2) and (3) are provided
in Section D.2 of the online appendix. We first show that д-HW′(k )-Approximation is in
coNExpTimeNP. Given pWDPTsp1 andp2 withp2 ∈ д-HW′(k ), to check whetherp2 is aд-HW′(k )-
approximation of p1, one has to ensure that p2 � p1 and there does not exist p3 ∈ д-HW′(k ) such
that p2 � p3 � p1.

The first property can be decided in ΠP
2 . Moreover, by Lemma 6.3, we conclude that if there

exists some pWDPT p3 satisfying the second property, then there also exists one of size at most
exponential in the size of p1. Thus, to look for a counterexample to p2 being an approximation,
it suffices to check pWDPTs of exponential size. In fact, by Lemma 6.3, there exists a pWDPT
p3 = (T3, λ3, �x3) such that the number of nodes in T3 is at most twice the number of free variables
in p1. Thus, the exponential blowup can only happen in the size of the labels λ3, but not in the
tree-size. More specifically, the number of subtrees ofT3 is bounded by 4 |p1 | . This property allows
us to check in NExpTimeNP whether there exists a witness forp2 not being an approximation—thus
providing a coNExpTimeNP algorithm for the problem of deciding whetherp2 is an approximation.

The crucial part in the algorithm to decide if p2 is not an approximation of p1 is the guess of an
exponential-size witness, which consists of the following parts (assume that r2 is the root of p2):

(1) the pWDPT p3 (let r3 denote its root),
(2) for every subtree p ′3 of p3 rooted in r3 a homomorphism minSubtree(p1, fvar(p ′3)) → p ′3,
(3) for every subtree p ′2 of p2 rooted in r2 a homomorphism minSubtree(p3, fvar(p ′2)) → p ′2,
(4) one subtree p ′′3 of p3 together with the setH2 of all mappings var(p ′′2 ) → dom(p ′′3 ) where

p ′′2 = minSubtree(p2, fvar(p ′′3 )).

After guessing a witness, the algorithm performs the following checks:

—check that p3 ∈ д-HW′(k ),
—check that the mappings guessed in steps (2) and (3) are indeed the required homomor-

phisms (this shows that p3 � p1 and p2 � p3, respectively),
—check that no mapping inH2 is a homomorphism p ′′2 → p ′′3 (this shows that p3 � p2).

All steps can be done in exponential time with an NP-oracle for deciding whether p3 ∈ д-HW′(k ).
It thus remains to discuss the size of the witness. We get the following size bounds for each

of the four parts of the witness. The size of p3 is bounded by O (4 |p1 | · |p1 |). The number of sub-
trees of p3 is in O (4 |p1 | ), and the size of a homomorphism in (2) is in O ( |p1 |), giving for (2) the
bound of O (4 |p1 | ). The number of subtrees of p2 is in O (2 |p2 | ), and the size of a homomorphism
in (3) is in O (2 |p1 | ), resulting for (3) in the bound of O (2 |p2 | · 2 |p1 | ). For (4), we get a bound of
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Fig. 3. Exponential blow-up from p1 (top) to p2 (bottom) (Theorem 6.10).

O (4 |p1 | · |p1 | · 22· |p1 | · |p2 | · |p2 |), which is the size of a subtree of p3 times the number of mappings
times the size of such a mapping.

Thus, the overall size of the witness is clearly exponential in the input size. This concludes the
proof for д-HW′(k ). The case for д-TW(k ) is almost identical. The only difference is that deciding
p3 ∈ д-TW(k ) does not need an NP-oracle. �

Again, this shows that our problem is harder than the analogous problem for CQs. For each
k ≥ 1, the problem of checking if a CQ q1 is a TW(k )-approximation of a CQ q2 is DP-complete.
If, in addition, the input includes the promise that q1 ⊆ q2, then it becomes coNP-complete [6].

Size of Approximations. We have seen above that approximations always exist even though
Lemma 6.3 only allowed us to give an exponential upper bound on their size. The proof of that
lemma centered around the properties of subsumption—without making use of the specific proper-
ties of approximations. One may thus ask if exponential size is indeed attainable by approximations
in a non-trivial way. By non-trivial, we mean that an approximation p2 of a pWDPT p1 is exponen-
tially bigger than p1 and every pWDPT p3 with p3 ≡s p2 is at least as big as p2. In other words, p2 is
necessarily that big and has not just been artificially blown up by adding redundant atoms. Below,
we give an affirmative answer to this question. This establishes another sharp contrast with CQs,
where every TW(k )-approximation is equivalent to one of polynomial size [6].

Theorem 6.10. For every k ≥ 2, there exists a sequence of pairs of pWDPTs (p (n)
1 ,p

(n)
2 )n∈N,

such that p (n)
2 is a д-TW(k )/д-HW′(k )-approximation of p (n)

1 , and p (n)
2 is exponentially bigger

than p (n)
1 . More precisely, we have |p (n)

1 | = O (n2) and |p (n)
2 | = Ω(2n ) and, for every pWDPT p (n)

3 ∈
д-TW(k )/д-HW′(k ) with p (n)

2 � p (n)
3 � p (n)

1 , we have |p (n)
3 | ≥ |p

(n)
2 |.

Proof. Let k ≥ 1 and n ≥ 1. Consider the pWDPTs p (n)
1 and p (n)

2 as defined in Figure 3 with
free variables �x = {x ,x0, . . . ,xn }. For the sake of readability, we omit superscript (n) from now
on. It is easy to verify that p2 is exponentially bigger than p1 and that p2 � p1 holds. Also, clearly
p1 � д-TW(k ) andp1 � д-HW′(k ) due to the clique of size k + 1 + n (formed by the clique-atoms) in
the root node r ofp1 whilep2 ∈ д-TW(k ) andp1 ∈ д-HW′(k ) holds. Note that, to prove the theorem,
it is not necessary that p2 is indeed a д-TW(k )/д-HW′(k )-approximation of p1. But of course, if it
is not, then there exists a д-TW(k )/д-HW′(k )-approximation p3 of p1 with p2 � p3 � p1. Hence,
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to prove the theorem, it suffices to show that for every pWDPT p3 ∈ д-TW(k ) ∪ д-HW′(k ) with
p2 � p3 � p1, we have |p3 | ≥ |p2 |. We do so by a number of claims showing that p3 has at least as
many nodes as p2, and that it contains at least all atoms from p2.

Thus, consider an arbitrary pWDPT p3 ∈ д-TW(k ) ∪ д-HW′(k ) with p2 � p3 � p1. First of all,
we clearly have fvar(p1) = fvar(p2) = fvar(p3).

Claim 1. p3 contains (at least) the following subtrees:

—a subtree (call it S) whose only free variable is x , and
—for every 0 ≤ i ≤ n, a subtree (call it Si ) extending S , whose only additional free variable is xi .

Proof of Claim 1. Consider the root r ′ of p2 with fvar(r ′) = {x }. By Proposition 5.2 and
p2 � p3, there exists a subtree p ′3 of p3 with fvar(r ′) ⊆ fvar(p ′3) and a homomorphism p ′3 → r ′.
We claim that p ′3 is the desired subtree S , i.e., {x } = fvar(r ′) = fvar(p ′3). Suppose to the contrary
that fvar(r ′) ⊂ fvar(p ′3). Then, by p3 � p1, there exists a subtree p ′1 of p1 with fvar(p ′3) ⊆ fvar(p ′1)
and homomorphism p ′1 → p ′3. In total, we thus have fvar(r ′) ⊂ fvar(p ′1) and p ′1 → r ′. But this is a
contradiction since the only subtree of p1 with a homomorphism into r ′ is the root r of p1 with
fvar(r ′) = fvar(r ). The existence of the subtrees S0, . . . , Sn is shown analogously. �

For the rest of the proof of Theorem 6.10, we assume without loss of generality that p3 consists
of a root node, n + 1 leaf nodes t ′′i , and an unspecified number of intermediate nodes. As shown
above, S has exactly one free variable x , introduced in some node, say r ′′. We may thus “contract”
subtree S to the single node r ′′ by dropping all nodes that are not ancestors of r ′′ and adding all
atoms from the ancestors of r ′′ to r ′′.

Likewise, every subtree Si with 0 ≤ i ≤ n has precisely one additional free variable compared to
r ′′. This additional free variable is introduced in some node, say t ′′i . Hence, each subtree Si is a path
from r ′′ to t ′′i , since all nodes in Si not on this path can again be dropped. Observe that we do not
assume the paths to be disjoint even when omitting the root node (i.e., for i � j, it might happen
that (Si ∩ S j ) \ {r ′′} � ∅). However, we have t ′′i � S j for all i � j, and we assume that the parent
of each leaf has as least two descendants t ′′i � t ′′j (this can be easily achieved by “contracting” all

nodes between the last node in Si with this property and t ′′i into t ′′i ). Observe that dropping such
nodes violates neither p3 ∈ д-TW(k ) ∪ д-HW′(k ) nor p2 � p3 � p1.

Claim 2. Up to renaming of the existential variables, the node r ′′ of p3 contains (at least) the
atoms fix0 (α0), . . . ,fixk (αk ) with pairwise distinct variables α0, . . . ,αk . Moreover, all atoms in p1

with variables exclusively in {α0, . . . ,αk } are also present in the corresponding nodes of p3.

Proof of Claim 2. By p3 � p1, there exists a homomorphism μ : p1 → p3. Let μ (α0) =
β0, . . . , μ (αk ) = βk denote the function values of the variables αi under μ. We claim that the vari-
ables βi are pairwise distinct. Suppose to the contrary that βi = βj holds for some pair i � j. Then
p3 contains atoms fixi (βi ) and fix j (βi ). However, we also assume p2 � p3. Hence, there also exists

a homomorphism μ ′ : p3 → p2. But the only atoms with relation symbols fixi and fix j in p2 are

fixi (αi ) and fix j (α j ) with αi � α j . Hence, we have μ ′(βi ) = αi � α j = μ ′(βi ), which is a contradic-
tion. Therefore, without loss of generality, we may identify β0, . . . , βk with α0, . . . ,αk .

Consequently, all atoms in p1 with variables exclusively in {α0, . . . ,αk } are also present in p3. It
remains to show that these atoms occur indeed in the corresponding nodes, i.e., in r ′′ or t ′′i , respec-
tively. To this end, we inspect the subtree of p3 consisting of the root r ′′ only and then the subtrees
Si . Root r ′′ must contain all of these atoms in the root r of p1 since otherwise the subsumption test
for p3 � p1 would fail for the subtree of p3 containing the root only. Next, assume that any of the
atoms forcei (α1) is contained in any node except t ′′i . This contradicts the assumption p2 � p3: just
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consider the subtree p ′2 of p2 consisting of all nodes except t ′i (the node in p2 corresponding to t ′′i ).
Then the corresponding subtree of p3 contains forcei (α1). However, the only forcei (·) atom con-
tained in p ′2 is forcei (α0), but we have just shown that μ (α1) � μ (α0). Hence, each of these atoms
forcei (α1) is contained in the corresponding leaf node t ′′i of p3. �

Claim 3. Up to renaming of the existential variables, for every subtree p ′2 of p2 and subtree p ′3 of
p3 with fvar(p ′2) ⊆ fvar(p ′3) and homomorphism μ : p ′3 → p ′2 that is the identity on fvar(p ′2), we have
that μ (αi ) = αi for 0 ≤ i ≤ k .

Proof of Claim 3. Follows immediately from Claim 2 and the fact that the only atoms with
relation symbols fixi in p2 are of the form fixi (αi ) for 0 ≤ i ≤ k . �

Claim 4. For every 1 ≤ i ≤ n, we have λ2 (t ′i ) ⊆ λ3 (t ′′i ), i.e., the atoms labeling a leaf node t ′i of p2

are also present in the corresponding leaf node t ′′i of p3.

Proof of Claim 4. For the atoms forcei (α1), this follows immediately from Claim 2, since they
also occur in p1 and of course α1 ∈ {α0, . . . ,αk }. By p3 � p1, λ3 (Si ) =

⋃
t ∈Si

λ(t ) must also contain
the atom mapi (xi ). Finally, by the assumption on the tree structure of p3, the atom mapi (xi ) is
actually contained in t ′′i within Si . �

Claim 5. Let p ′3 be an arbitrary subtree of p3, and μ : p ′1 → p ′3 the homomorphism from the corre-
sponding subtree p ′1 of p1. Then, up to renaming of variables, μ (zi ) = α0 if t ′′i is not contained in p ′3,
and μ (zi ) = α1 otherwise.

Proof of Claim 5. Consider an arbitrary i ∈ {1, . . . ,n}. First note that zi is part of a big clique
of clique-atoms in p1. By Claim 2, λ3 (r ′′) contains the clique of size k + 1 of clique-atoms with the
variables {α0, . . . ,αk } (up to renaming). Hence, since p3 ∈ д-TW(k ) ∪ д-HW′(k ), μ (zi ) = α j holds
for some j ∈ {0, . . . ,k } (otherwise,p3 would contain a clique of size bigger thank + 1, contradicting
p3 ∈ д-TW(k ) ∪ д-HW′(k )). Next, suppose j ≥ 2. This contradicts the condition p2 � p3 since, by
Claim 3, every homomorphism μ ′ : (λ3 (Si )) → (λ2 (r ′) ∪ λ2 (t ′i )) restricted to {α0, . . . ,αk } is the
identity; but p2 does not contain an atom clique(μ ′(zi ), μ (α j )) = clique(α j ,α j ) with j ≥ 2.

Now assume that t ′′i is not inp ′3, and toward a contradiction assume μ (zi ) = α1. Again byp3 � p1,
this requires forcei (α1) to be contained in p ′3, which again contradicts p2 � p3. Just consider the
subtree p ′2 of p2 that contains r ′ and exactly those children t ′j such that t ′′j is contained in p ′3.

Since p2 � p3 there must be some homomorphism μ ′ : p ′3 → p ′2. By Claim 3, we know that μ ′ is the
identity on α1, thus there must be forcei (α1) in p ′2, which is not the case. This gives the desired
contradiction. Hence μ (zi ) = α0 must hold for all zi such that t ′′i is not contained in p ′3.

Next, assume that t ′′i is in p ′3, and toward a contradiction that μ (zi ) = α0. Then, analogously to
the previous case, fix1 (α0) must belong to p ′3, which contradicts p2 � p3 since fix1 (α0) does not
occur in p2 (observe that forcei (α1) is no problem in this case since it is contained in λ2 (t ′i )). �

Claim 6. λ2 (t ′0) ⊆ λ3 (t ′′0 ).

Proof of Claim 6. By p3 � p1, the set λ3 (t ′′0 ) must contain an atom of the form map0 (x0). It
remains to show that also every atom of the form e (αi1 , . . . ,αin

) is contained in λ3 (t ′′0 ), where
i j ∈ {0, 1} for every j. Thus let e (αi1 , . . . ,αin

) be an arbitrary atom with i j ∈ {0, 1} for every j. Con-
sider the subtree p ′3 of p3 that contains r ′′, and exactly those leaf nodes t ′′j such that i j = 1 together

with the path from r ′′ to t ′′j . Let p ′1 and μ : p ′1 → p ′3 be the corresponding subtree and homomor-

phism according to p3 � p1. Then, by Claim 5, e (μ (z1), . . . , μ (zn )) = e (αi1 , . . . ,αin
), which is thus

contained in p ′3. Finally, by the same arguments as in the proof of Claim 4, it must actually be
contained in λ3 (t ′′0 ), since otherwise we get a contradiction to p2 � p3. �

ACM Transactions on Database Systems, Vol. 43, No. 2, Article 8. Publication date: August 2018.



Efficient Evaluation and Static Analysis for Pattern Trees with Projection 8:37

We now conclude the proof of Theorem 6.10. By the assumption on the tree structure of p3, it
consists of at least as many nodes as p2. By Claim 2, λ2 (r ′) ⊆ λ3 (r ′′). By Claims 4 and 6, λ2 (t ′i ) ⊆
λ3 (t ′′i ). Thus, p3 is at least as big as p2.

7 UNIONS OF PWDPTS

Closing pWDPTs under union constitutes one of the basic extensions of the language [36, 38].
Formally, a union of pWDPTs (UpWDPT) is an expression ρ of the form

⋃
1≤i≤n pi , where each pi is

a pWDPT overσ . (Notice that we do not require differentpi ’s to have the same set of free variables.)
The evaluation of ρ over database D, denoted ρ (D), is the set

⋃
1≤i≤n pi (D). Motivated by the

language features of SPARQL 1.0, in our setting it might seem more natural to define projection
on top of the union, instead of unions of pWDPTs. Observe however, that every query in one of
these two formalisms can be easily transformed into an equivalent query in the other formalism
by renaming conflicting variables apart. We thus opt for UpWDPT since they are also syntactically
extensions of the pWDPTs considered so far.

As before, we write ρ � ρ ′, for UpWDPTs ρ and ρ ′, if for every databaseD and partial mapping
h ∈ ρ (D) there is an h′ ∈ ρ ′(D) such that h � h′. Similarly, we write ρ ≡s ρ ′ whenever ρ � ρ ′ and
ρ ′ � ρ, and we write ρ � ρ ′ if ρ � ρ ′ but ρ �s ρ ′.

To keep the notation simple, we overload the problem definitions of Eval(C), Partial-Eval(C),
and Max-Eval(C) for classes C of UpWDPTs, instead of introducing new problem names. That
is, these problems are defined as before, but instead of pWDPTs they take UpWDPTs as input. It
is immediate that unions of pWDPTs from a tractable class C in terms of (variants of) evaluation
preserve the good properties of C. Formally, let

⋃
-C be the class of UpWDPTs that consist of

unions of pWDPTs in C. Then:

Theorem 7.1. The following holds for each k ≥ 1 assuming Q = TW(k ) or HW(k ):

(1) the problem Eval(
⋃

-(�-Q ∩ BI(c ))) is in LogCFL for each c ≥ 1;
(2) Partial-Eval(

⋃
-(д-Q)) and Max-Eval(

⋃
-(д-Q)) are in LogCFL.

In other words, the additional expressive power of UpWDPTs compared to pWDPTs has no effect
on our variants of the evaluation problem. We look next again at the semantic space defined by
these syntactic classes of UpWDPTs. It will turn out that the extension from pWDPTs to UpWDPTs
makes a difference.

Reformulations in Tractable Classes. Analogously to Section 6, for a class C of UpWDPTs, the
classM (C) contains all UpWDPTs ≡s -equivalent to queries in C:

M (C) = {ρ | ρ ≡s ρ ′, for some ρ ′ in C}.

Following Section 6, we concentrate on UpWDPTs from
⋃

-C, where C is either д-TW(k ) or
д-HW′(k ). We prove below that for these two choices of C, the classM (

⋃
-C) is not only decidable

but allows for a nice characterization. To present this characterization, it is convenient to introduce
some notation first.

Given a pWDPT p = (T , λ, �x ) and a subtree T ′ of T containing the root of T , we need a
slight variation of the CQqT ′ . Denote by qpT ′ the CQ Ans(�x ′) ← R1 (�v1), . . . ,Rm (�vm ), where
{R1 (�v1), . . . ,Rm (�vm )} = atoms(T ′) is the set of atoms in T ′ and �x ′ is the set of variables that ap-
pear in �x and in some �vi , for 1 ≤ i ≤ m. In other words, qpT ′ is exactly as qT ′ , but the projection
now is only over variables from the Ri (�vi )’s that are free in p (or, by slight abuse of notation,
qpT ′ = qT ′ (�x

′)). For a UpWDPT ρ, we then define

ρCQ =
⋃

(T ,λ,�x )∈ρ

⋃

T ′ a subtree of T rooted in r

qpT ′ .
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Example 7.2. Consider the RDF pWDPT p introduced in Example 1.1, and the projection onto
the variables {y, z, z ′} introduced in Example 1.3. When replacing the triple patterns by binary
atoms, we get ρCQ as the union of the following CQs:

—Ans(y) ← recorded_by(x ,y), published(x , “after_2010”);
—Ans(y, z) ← recorded_by(x ,y), published(x , “after_2010”), NME_rating(x , z);
—Ans(y, z ′) ← recorded_by(x ,y), published(x , “after_2010”), formed_in(y, z ′);
—Ans(y, z, z ′) ← recorded_by(x ,y), published(x , “after_2010”), NME_rating(x , z),
formed_in(y, z ′).

Thus, ρCQ can be seen as a union of CQs (UCQ), but under a slightly more relaxed notion than
the one often used in the literature: the CQs in ρCQ may contain different tuples of free variables,
while UCQs are usually defined as unions of CQs all of which have the same tuple of free variables.

Proposition 7.3. Let ρ be a UpWDPT. Then ρ ≡s ρCQ.

Proof. For some databaseD, considerh ∈ ρ (D). By definitionh ∈ pi (D) for somepi = (T , λ, �x )
in ρ. And so, h = h′

�x
for some maximal homomorphism h′ from pi toD. LetT ′ be the subtree ofT

with h′ ∈ qT ′ (D). Then clearly h ∈ qpT ′ (D), which shows ρ � ρCQ.
For the converse direction, consider an arbitrary h ∈ ρCQ (D). Then there exists some pi =

(T , λ, �x ) in ρ such thath ∈ qpT ′ (D) for some subtreeT ′ ofT . Consider the corresponding queryqT ′ :
there clearly exists some extension h′ of h such that h′ ∈ qT ′ (D). Now if h′ is actually a maximal
homomorphism, we have h′

�x
= h ∈ ρ (D), and we are done. Otherwise, if h′ is not maximal, then

there exists some h′′ ∈ qT ′′ (D) (where T ′′ is also a subtree of T ) with h′ � h′′. Hence h′′
�x
∈ ρ (D),

and thus ρCQ � ρ. �

With ρCQ we have a useful tool for our further analysis of the classesM (
⋃

-C) for C = д-TW(k )
and C = д-HW′(k ). In particular, this allows us to give the following characterization ofM (

⋃
-C).

Proposition 7.4. Let k ≥ 1 and Q = TW(k ) or HW′(k ). A UpWDPT ρ is inM (
⋃

-(д-Q)) if and
only if ρCQ is ≡s -equivalent to a union of CQsin

⋃
-Q.

Proof. For the right-to-left direction, a union of CQsin
⋃

-Q is of course a UpWDPT in
⋃

-(д-
Q), since each CQis a single-node pWDPT in д-Q. Thus ρCQ ∈ M (

⋃
-(д-Q)) by definition. Finally,

because of ρ ≡s ρCQ also ρ ∈ M (
⋃

-(д-Q)) holds by definition. For the other direction, assume
that ρ ≡s ρ∗ for some UpWDPT ρ∗ ∈ ⋃-(д-Q). Then ρ∗CQ ≡s ρ∗ ≡s ρ ≡s ρCQ, and thus ρ∗CQ ≡s ρCQ.

Since each pWDPT in ρ∗ is inд-Q, it follows that ρ∗CQ is indeed a union of CQsin
⋃

-Q, which proves

the case. �

By applying Proposition 7.4, we obtain the following:

Theorem 7.5. The following properties hold for each k ≥ 1:

(1) Given a UpWDPT ρ, checking whether ρ is inM (
⋃

-(д-TW(k ))) is ΠP
2 -complete, and whether

it is inM (
⋃

-(д-HW′(k ))) is ΠP
2 -hard and in ΠP

3 .
(2) For C = д-TW(k ) or C = д-HW′(k ), there is an ExpTime algorithm that, given ρ inM (

⋃
-

C), constructs a union ρ ′ of (possibly exponentially many) pWDPTs in C such that the size
of each pWDPT in ρ ′ is polynomial in the size of ρ, and ρ ≡s ρ ′.

Proof. We start by showing the following claim: for any CQq and integer k ≥ 1, deciding
whether there exists a CQq′ ∈ TW(k ) such that q ≡ q′ is in NP, and in ΣP

2 for q′ ∈ HW′(k ). To
see that this is the case, consider the following algorithm:
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(i) guess a subquery q′ of q and a mapping μ : var(q) → var(q′), and
(ii) return yes if μ : q → q′ is a homomorphism and q′ ∈ TW(k ) or HW′(k ), respectively; oth-

erwise, return no.

That is, the algorithm looks for a subquery of q that is in TW(k ) or HW′(k ), respectively, and is
a homomorphic image of q. For TW(k ), the check is feasible in polynomial time, thus the overall
algorithm is in NP. For HW′(k ), the best known upper bound for checking whether q′ ∈ HW′(k )
is coNP, resulting in the higher complexity.

To see that the algorithm is also correct, we show that there exists some subquery of q in TW(k )
equivalent to q if and only if q is equivalent to some CQq′′ ∈ TW(k ) (for the sake of readability,
we restrict ourselves to TW(k ), the proof for HW′(k ) is identical). Of course, the left-to-right di-
rection is trivial. Thus assume that q is equivalent to some CQq′′ ∈ TW(k ). If q′′ is some subquery
of q, then the case is again obvious. Thus assume that this is not the case. We show that then there
exists a subquery q′ of q that is equivalent to q and q′′, and—since TW(k ) is closed under taking
images under arbitrary mappings—is also in TW(k ). To see that this is indeed true, consider the ho-
momorphisms μ ′ : q′′ → q and μ : q → q′′ (which exist because q ≡ q′′) and define q′ = μ ′(μ (q)).
Then q′ is by definition a subquery of q. Moreover, q′ is equivalent to q.

Having settled this claim, we now show property (1). Let ρ−CQ be the union of CQsthat is obtained

by removing from ρCQ every CQq that is subsumed by another CQq′ in ρCQ. Since it can be easily
shown that q � ρCQ \ {q} if and only if q � q′ for some q′ ∈ ρCQ (with q � q′), there is no q ∈ ρ−CQ

such that q � ρ−CQ \ {q}. By Proposition 7.4, for a class Q of CQs, we have that ρ ∈ M (
⋃

-(д-Q)) if

and only if ρCQ is ≡s -equivalent to a union of CQsin
⋃

-Q. We show in Section E.1 of the online
appendix that this is the case if and only if each CQin ρ−CQ is equivalent to a CQin Q. This gives

us the following nondeterministic algorithm to check whether ρ �M (
⋃

-(д-TW(k ))):

—guess a CQq ∈ ρCQ (all of them are of polynomial size);
—check that (i) q � q′ for every CQ q � q′ ∈ ρCQ, and (ii) q � q′ for every CQq′ ∈ TW(k ).

As mentioned above, q ≡ q′ if and only if q ≡s q
′. Clearly, checking (i) is in coNP. For (ii),

recall the initial claim that the complement of the problem, i.e., deciding the existence of some
CQq′ ∈ TW(k ) satisfying q ≡ q′, is in NP. Thus, (ii) can be decided in coNP, giving the desired
upper-bound. Deciding ρ �M (

⋃
-(д-HW′(k ))) works analogously, the only difference is that the

aforementioned claim provides ΣP
2 -membership, thus (ii) can be decided in ΠP

2 , again giving the
desired upper bound.

The hardness follows from exactly the same reduction and arguments as used in the proof of
Lemma 6.5. In fact, by applying exactly the arguments that were used to show that p2 ≡s p1 when-
ever there exists some pWDPT p ∈ C (for both C = д-TW(k ) and C = д-HW′(k )) with p ≡s p1,
one can also show that p2 ≡s p1 whenever there exists some UpWDPT p ′ ∈ ⋃-C with p ′ ≡s p1 (the
subtrees of p are now simply the CQsin p ′).

Property (2) is shown similarly. In fact, the algorithm exploits the same ideas as the algorithm
used to prove property (1). It is sketched in Algorithm 3.

Correctness and runtime follow immediately from the proof of property (1). �

Notice the stark contrast with the problem of checking whether a pWDPT p is in M (C) for
C = д-TW(k ) or C = д-HW′(k ), for which we only obtained a NExpTime and NExpTimeNP upper
bound, respectively, in Theorem 6.2.

Evaluation for UpWDPTs in M (
⋃

-(д-TW(k )))/M (
⋃

-(д-HW′(k ))). Analogously to the partial
and maximal evaluation problems, for a class C of UpWDPTs, we overload p-Partial-Eval(C)
and p-Max-Eval(C) to be the parameterized variants of Partial-Eval(C) and Max-Eval(C),
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ALGORITHM 3: For ρ ∈ M (
⋃

-C), return a UpWDPT ρ ′ ∈ ⋃-C(for C = д-TW(k ) or д-HW′(k ))

1: ρ ′ := ∅
2: for all q ∈ ρCQ do

3: Initialize q̄ with null
4: if there is no q′ ∈ ρCQ with q′ � q and q � q′ then

5: for all mappings μ : var(q) → var(q) do

6: if μ (q) ≡ q and μ (q) ∈ TW(k ) then � respectively μ (q) ∈ HW′(k )
7: if q̄ is null or q̄ � μ (q) then

8: q̄ := μ (q)

9: if q̄ is null then return NO
10: else ρ ′ := ρ ′ ∪ {q̄}
11: return ρ ′

respectively, where we choose the size of the UpWDPT as the parameter. Then, analogously to
the case of Corollary 6.6, it follows from Theorem 7.5 that the maximal and partial evaluation
problems for queries inM (

⋃
-(д-TW(k ))) andM (

⋃
-(д-HW′(k ))) are fixed-parameter tractable.

Corollary 7.6. Let k ≥ 1. The problems p-Partial-Eval(M (
⋃

-(д-TW(k )))) and p-Max-
Eval(M (

⋃
-(д-TW(k )))) are fixed-parameter tractable. The result also holds for д-HW′(k ) instead

of д-TW(k ).
⋃

-д-TW(k )/
⋃

-д-HW′(k )-approximations. As in Section 6.2, we study approximations for Up-
WDPTs without constants. Fix k ≥ 1. Let ρ, ρ ′ be UpWDPTs such that ρ ′ ∈ ⋃-C for C = д-TW(k )
or C = д-HW′(k ). Analogously to Definition 6.7, we say that ρ ′ is a

⋃
-C-approximation of ρ if (1)

ρ ′ � ρ, and (2) there is no UpWDPT ρ ′′ ∈ ⋃-C such that ρ ′ � ρ ′′ � ρ.
For a UpWDPT ρ, let ρCQ−app denote the union of all TW(k )-approximations (or HW′(k )-

approximations, respectively) of the CQs in ρCQ. We present below two results regarding ρCQ−app

that allow us to develop a theory of approximations for UpWDPTs.

Proposition 7.7. The set ρCQ−app always exists, can be computed in single-exponential time from
ρCQ, and each CQ in ρCQ−app is of polynomial size.

Proof. Each CQ has at least one, and at most exponentially many TW(k ) or HW′(k )-
approximations, each one of which it is of polynomial size. Moreover, the set of all such approxima-
tions can be computed in exponential time. For a proof of these statements, see, e.g., Theorem 17 in
Barceló et al. [8] for the case of HW(k ); analogous proofs can be given for TW(k ) and HW′(k ). �

For sets S, S ′ of CQs we write S ⊆ S ′ if for each CQ q ∈ S there exists a CQ q′ ∈ S ′ such that
q ⊆ q′.

Proposition 7.8. The following statements hold:

(1) ρCQ−app ⊆ ρCQ.
(2) There is no set S of CQs in TW(k ) (respectively, HW′(k )) such that ρCQ−app � S ⊆ ρCQ.
(3) For every set S of CQs in TW(k ) (respectively, HW′(k )) such that S ⊆ ρCQ, it is also the case

that S ⊆ ρCQ−app. This means that, up to equivalence, ρCQ−app is the only set of CQs in TW(k )
(respectively, HW′(k )) that satisfies (1) and (2).

Proof. For (1), each CQ in ρCQ−app is an approximation and thus contained in some CQ in ρCQ.
For (2), assume for the sake of contradiction that such an S exists. Since ρCQ−app � S , there exists

a CQ q ∈ S such that there is no q′ ∈ ρCQ−app for which q ⊆ q′. Also, since S ⊆ ρCQ, there exists
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a CQ q∗ ∈ ρCQ such that q ⊆ q∗. But q ∈ TW(k ) (respectively, HW′(k )), and, therefore, there is a
TW(k )-approximation (respectively, HW′(k )-approximation) q1 of q∗ such that q ⊆ q1 ⊆ q∗ (see,
e.g., the proof Theorem 17 in Barceló et al. [8] for the case of HW(k ); analogous proofs can be
given for TW(k ) and HW′(k )). It follows that there is no q′ ∈ ρCQ−app for which q1 ⊆ q′ holds.
This contradicts the fact that ρCQ−app contains all TW(k )-approximations (respectively, HW′(k )-
approximations) of q∗.

For (3), since S ⊆ ρCQ, for each CQ q ∈ S there exists a CQ q′ ∈ ρCQ such that q ⊆ q′. But
q ∈ TW(k ) (respectively, HW′(k )), and, therefore, there is a TW(k )-approximation (respectively,
HW′(k )-approximation) q1 of q′ such that q ⊆ q1 ⊆ q′. The CQ q1 is in ρCQ−app by definition. It
follows that S ⊆ ρCQ−app. �

With these results, we can prove that
⋃

-C-approximations always exist and can be computed in
exponential time, and that approximations are unique up to≡s -equivalence and consist of (possibly
exponentially many) pWDPTs of polynomial size (actually, these pWDPTs are even CQs):

Theorem 7.9. Let ρ be a UpWDPT, and let C = д-TW(k ) or C = д-HW′(k ). Then ρCQ−app is the
unique

⋃
-C-approximation of ρ (up to ≡s -equivalence).

Proof. We show that ρCQ−app is a
⋃

-C-approximation of ρ. Assume to the contrary that this
is not the case. Then there exists some union of pWDPTs ρ ′ such that ρCQ−app � ρ ′ � ρ. Thus,
consider ρ ′CQ. We have ρ ′CQ ≡s ρ ′. Thus also ρCQ−app � ρ ′CQ � ρ ≡s ρCQ. However, this contra-

dicts item (2) from Proposition 7.8. Therefore, such a ρ ′ cannot exist, which proves the claim.
The uniqueness is shown similarly using item (3) from Proposition 7.8. �

Since the UpWDPT ρCQ−app can be computed in ExpTime, we obtain:

Corollary 7.10. Let C = д-TW(k ) or C = д-HW′(k ). There is an ExpTime algorithm that, given
a UpWDPT ρ, constructs a union ρ ′ of (possibly exponentially many) pWDPTs in C such that (1)
each pWDPT in ρ ′ is of polynomial size and consists of a single node, and (2) ρ ′ is the unique

⋃
-C-

approximation of ρ.

For C = д-TW(k ) or C = д-HW′(k ), these techniques also allow us to find reasonable bounds for
checking if ρ ′ is a

⋃
-C-approximation of ρ. This problem is called

⋃
-C-Approximation. Different

from the question whether a pWDPT is inM (
⋃

-C), for this problem we have a tight complexity
bound.

Proposition 7.11. Both
⋃

-(д-TW(k ))-Approximation and
⋃

-(д-HW′(k ))-Approximation are
ΠP

2 -complete for each k ≥ 1.

This is again in stark contrast to the problem of checking whether a pWDPT p ′ is a TW(k )-
approximation ofp, for which we could only obtain a coNExpTime upper bound in Proposition 6.9.

8 CONCLUSION AND FUTURE WORK

We have extended the search for efficient query evaluation and query analysis from CQs to
pWDPTs. It has turned out that additional restrictions are required to ensure tractability of query
evaluation of pWDPTs. In Table 1, we give an overview of our results in terms of classical com-
plexity. The five rows refer to the five problems Eval(C), Partial-Eval(C), Max-Eval(C), Subs
(C1,C2), and Subs-Eqiv (C1,C2), while the four columns refer to different choices of the classes
C or C1 and C2. The results marked with references follow from previous works. Results marked
with (�-Q) in the general case refer to intractability results that already hold for the restricted
case �-Q. Results marked with (д-Q) in the case of �-Q ∩ BI(c ) refer to tractability results that
already hold for the more general case д-Q and, thus, need no separate proof. For the intractable
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Table 1. Complexity of pWDPT Evaluation and Query Analysis (All
Entries Denote Completeness) for Q = TW(k ) and Q = HW(k )

general l-Q g-Q l-Q ∩ BI(c )
Eval ΣP

2 [31] NP [31] NP LogCFL
P-Eval NP(l-Q) NP [31] LogCFL LogCFL(g-Q)
M-Eval DP(l-Q) DP LogCFL LogCFL(g-Q)

Subs ΠP
2 (l-Q) ΠP

2 coNP coNP
Subs-Eqiv ΠP

2 (l-Q) ΠP
2 coNP coNP

Table 2. Reformulations in Tractable Classes of pWDPTs: Lower
and Upper Bounds of the Complexity

Lower Bound Upper Bound
(д-HW′(k ))-Membership ΠP

2 NExpTimeNP

(д-HW′(k ))-Approximation ΠP
2 coNExpTimeNP

⋃
-(д-HW′(k ))-Membership ΠP

2 ΠP
3⋃

-(д-HW′(k ))-Approximation ΠP
2 ΠP

2

The membership problem asks, given a (U)pWDPT, whether there exists an ≡s -

equivalent one in д-HW′(k ); approximation asks, given two (U)pWDPTs, Whether one

is an д-HW′(k )-approximation of the other.

cases of the Eval(C) problem, we have also carried out a parameterized complexity analysis.
In particular, p-Eval(C) is in FPT for C = д-TW(k ) ∩ SBI(c ) or C = д-HW(k ) ∩ SBI(c ), W[1]-
complete for C = �-TW(k ) ∩ SBI(c ) or C = �-HW(k ) ∩ SBI(c ), and W[2]-hard for C = д-TW(k )
or C = д-HW(k ).

We have then applied our tractable classes of query evaluation to study static query analysis
and to initiate a theory of approximation of pWDPTs. To this end, we have studied the classes C =
д-TW(k ) and C = д-HW′(k ) and

⋃
-C of (unions) of “well-behaved” queries. Above all, we have

managed to prove fixed-parameter tractability of query evaluation for (unions of) pWDPTs that are
≡s -equivalent to a query in C or

⋃
-C, respectively. Further problems studied in this context are,

given a (U)pWDPT, the existence of an≡s -equivalent, “well-behaved” (U)pWDPT, and the question
whether a given (U)pWDPT is an approximation of some other given (U)pWDPT. Preliminary
complexity results for these tasks are displayed in Table 2. For the upper bounds, in the case of
д-TW(k ) instead of д-HW′(k ), one NP-oracle is not needed and ΠP

3 drops to ΠP
2 .

Several lines of future work should be pursued. As far as query evaluation and query analysis
are concerned, we have yet to identify a natural fragment of pWDPTs that guarantees tractable
subsumption and subsumption-equivalence. Toward a theory of reformulations and approxima-
tions of pWDPTs, we have only made the first steps here. A better understanding of the nature
of C- and

⋃
-C-approximations is needed to close the gaps in Table 2. For instance, we conjec-

ture that there always exists some approximation of polynomial size and that the complexity of
C-Approximation drops to the polynomial hierarchy. The situation of pWDPTs is much more
involved than for CQs, where the analogous problems come down to simple containment tests.

It would be very interesting as well to extend this analysis to the class of weakly pWDPTs intro-
duced by Kaminski and Kostylev [29]. This is relevant since such a class of queries covers almost
all the {AND,OPTIONAL}-SPARQL queries encountered in practice. We would also like to study
efficient evaluation for more expressive fragments of the SPARQL language, such as the ones that
include filters or path operators.
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