
Ein System für graphische
Argumentationsformalismen

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Georg Heißenberger, BSc
Matrikelnummer 1026479

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Mitwirkung: Martin Diller, MSc

Wien, 16. Februar 2016
Georg Heißenberger Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

A System For Advanced
Graphical Argumentation

Formalisms

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Intelligence

by

Georg Heißenberger, BSc
Registration Number 1026479

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Stefan Woltran
Assistance: Martin Diller, MSc

Vienna, 16th February, 2016
Georg Heißenberger Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Georg Heißenberger, BSc
Ostmarkgasse 33/2/10
1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. Februar 2016
Georg Heißenberger

V

Acknowledgements

First I want to thank my advisor Stefan Woltran for his great support during the project
and for his efforts to introduce me to the exciting world of GRAPPA. His tireless, patient
and uncomplicated guidance through this work has been a great help to me. I also want
to thank my co-advisor Martin Diller for his hands-on assistance which was an invaluable
help for me.

I am also very grateful to Mario Alviano. With his deep insights into ASP and his efforts
to open my eyes for the “mysteries” of saturation it became possible to formulate the
static encoding. I want also to express my gratitude to Michal Morak and Manuel Bichler
for their support on their Decomposition-Tool to optimize the dynamic encodings.

Finally, I want to thank Dino Rosseger. Without him I would not have attended the
course which laid the foundation for this work. Moreover, he built the base for “parsing”
the input of the static encoding together with his advisor Johannes Wallner.

VII

Kurzfassung

“Argumentationstheorie” hat in den letzten Dekaden in den Computerwissenschaften
immer mehr an Bedeutung gewonnen. Speziell im Bereich der “Künstlichen Intelligenz”
ist es ein Gebiet, an dem rege geforscht wird. In diesem Zusammenhang hat P. M.
Dung mit seiner wegweisenden Arbeit, und den darin vorgestellten “Argumentation
Frameworks”, den Grundstein für “Abstrakte Argumentation” gelegt. Dieses Konzept
wurde vielfach aufgegriffen und für die unterschiedlichsten Anforderungen weiterentwickelt.
Unter anderem ist auch GRAPPA aus dieser Entwicklung hervorgegangen und ist dabei
eines der neuesten und mächtigsten Werkzeuge in diesem Bereich. GRAPPA selbst basiert
auf einem Graphen dessen Kanten beschriftet sind und einer sehr ausdrucksstarken
Syntax um Bedingungen für einzelne Argumente zu definieren. Diese Syntax enthält
Aggregatfunktionen um die Beschriftung der eingehenden Kanten auszuwerten.

Bisher gab es für GRAPPA-Instanzen keine Werkzeuge um diese auszuwerten zu können.
Darum ist es die Hauptaufgabe dieser Arbeit ein System zu entwickeln mit dem es
selbst Laien leicht fällt GRAPPA-Instanzen zu erzeugen und diese auch auszuwerten.
Zu diesem Zweck werden in dieser Arbeit Answer Set Programming (ASP)-Encodings
zur Auswertung von GRAPPA-Instanzen vorgestellt. Außerdem wird ein Tool namens
GrappaVis präsentiert. GrappaVis ist ein Programm mit dem es möglich ist intuitiv
GRAPPA-Instanzen zu erstellen, diese – mit Hilfe der ASP-Programme – auszuwerten
und die Ergebnisse direkt in der GRAPPA-Instanz darzustellen.

Zur Auswertung der GRAPPA-Instanzen werden zwei unterschiedliche ASP-Programme
vorgestellt die auf unterschiedlichen Herangehensweisen basieren. Einerseits dem stati-
schen Ansatz: Dieser basiert auf Überlegungen die auch für “Datenkomplexität” gelten,
d. h. das ASP-Programm ist für alle GRAPPA-Instanzen gleich. Andererseits dem dy-
namischen Ansatz: Dieser basiert auf Überlegungen, die auf “kombinierte Komplexität”
zurückgehen, d. h. das ASP-Programm zur Auswertung ist nicht mehr fix, sondern kann
ebenfalls variieren. Wie sich in der Arbeit herausstellen wird, hat dieser Ansatz den
Vorteil, dass man damit auch Auswertungsmethoden für GRAPPA implementieren kann,
welche mit dem statischen Ansatz nicht realisierbar sind.

Letztendlich werden einige Resultate der ASP-Encodings bezüglich ihrer Performance
präsentiert.

IX

Abstract

Argumentation became an important research topic for computer science and in particular
in Artificial Intelligence. In this field Dung introduced the landmark work of “abstract
argumentation frameworks” which inspired many generalisations of this concept. Among
them, GRAPPA is a very recent development and is one of the most general frameworks.
The key-features of GRAPPA are, that the argumentation is based on a labeled graph
and a very powerful pattern language, which includes aggregate-functions, to specify
acceptance conditions for statements based on the labels of the incoming edges.

So far, there are no tools to evaluate GRAPPA-instances available. Therefore, the main
goal of this work is to provide an evaluation system for GRAPPA. This system consists
of two parts, namely Answer Set Programming (ASP)-encodings to evaluate GRAPPA-
instances and GrappaVis. GrappaVis is a graphical tool to specify GRAPPA-instances,
to evaluate them (making use of the ASP-encodings) and visualize the results of the
evaluation.

Regarding the ASP-encodings, two different approaches are presented, namely the static
and dynamic encoding to evaluate GRAPPA-instances. The static approach is the
“classical” one, which corresponds to considerations based on data complexity, where
one (static) program handles all GRAPPA-instances. On the other hand, the dynamic
approach, which corresponds to considerations based on combined complexity, i. e. the
encoding is not fixed, but dynamically generated for each GRAPPA-instance. As shown
in this work this approach allows to express evaluation methods which are not expressible
in the static approach.

Finally, performance results for the different ASP-encodings are presented.

XI

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Logic . 5
2.2 Argumentation frameworks . 8
2.3 Abstract dialectical frameworks . 9
2.4 GRAPPA . 11
2.5 Answer Set Programming . 14
2.6 Complexity . 29

3 Static encodings 33
3.1 Description of the input . 34
3.2 States of nodes . 40
3.3 Basic definitions . 41
3.4 Model semantics . 51
3.5 Admissible semantics . 51
3.6 Complete semantics . 54

4 Dynamic encodings 55
4.1 Admissible semantics . 55
4.2 Complete semantics . 60
4.3 Preferred semantics . 62

5 Graphical user interface 65
5.1 Parts of the user interface . 66
5.2 Drawing a graph . 68
5.3 Handling acceptance patterns . 70
5.4 Evaluation of GRAPPA-instances . 71
5.5 Syntax of the GRAPPA pattern language for GrappaVis 75
5.6 Using GrappaVis for ADFs . 79
5.7 Configuration of evaluation methods . 80
5.8 Design decisions . 82

6 Experimental evaluation 83

XIII

6.1 Conversion from GRAPPA to ADF . 83
6.2 Conversion from ADF to GRAPPA . 86
6.3 GRAPPA-instance generation . 86
6.4 Performance . 87

7 Conclusion and future work 91

Index 93

Bibliography 101

CHAPTER 1
Introduction

Argumentation is a natural way for humans to reach a reasonable degree of agreement
on matters which are contested or not self-evident. Nevertheless, it is often quite hard to
work through complex “common knowledge”. Therefore, from early times on, there has
been an interest in attempting to develop more structured or even formal accounts of
argumentation. In fact, it can be argued that, starting with the work of the ancient Greek
philosophers, this has also been one of the central concerns behind the developments of
the discipline of logic.

Given the central role of argumentation in human reasoning as well as the close connection
that exists between logic and computer science, it is only natural that argumentation also
becomes an important research topic for computer scientists and in particular in Artificial
Intelligence (AI). Today argumentation is an important sub-field of AI [BD07] not only
because of the connections of argumentation with non-monotonic reasoning [SA15] but,
according to [BLS14], also because of its various applications in legal reasoning [AP09],
intelligent web search [CMS04, CMS07], recommender systems [CMS04, BBD+12],
autonomous agents and multi-agent systems [PHR+11, vdWDM+11] and many oth-
ers [BH08, RS09, Sim11].

A significant landmark in the consolidation of the field of argumentation in AI is the
work by Dung on abstract argumentation [Dun95]. Here Dung introduced what can
be considered to be the first abstract argumentation formalism, now often referred as
Dung’s “(abstract) argumentation frameworks (AFs)”. AFs provide formalisms to model
concrete arguments in an abstract manner, i. e. argumentation scenarios are modeled as
directed graphs where nodes represent arguments and links stand for attacks between the
arguments. Dung also introduced several methods, so called “semantics”, to determine
the “acceptance status” of arguments based solely on the relations between arguments
captured via the AFs.

1

1. Introduction

To date several generalizations of Dung’s AFs have been proposed to deal with more
complex relations between arguments than those envisioned originally by Dung.1. One of
the most general ones is GRAPPA, as proposed in [BW14], a formalism which is in turn
based on abstract dialectical frameworks (ADFs) presented first in [BW10]. GRAPPA
frameworks are labeled graphs where nodes represent statements used in arguments and
“acceptance conditions”, based on the labels of the incoming edges, are used to spell
out the relations between the acceptance status of the statements in the framework.
The outstanding feature of GRAPPA is the very powerful pattern language to define
the acceptance conditions which also provides aggregates for e. g. counting labels or
calculating the sum of edgelabels.

Of course there have been efforts made to develop reasoning methods to draw practical
use from these frameworks but reasoning in very general frameworks suffers from high
complexity. In case of ADFs it was shown in [SW14, SW15] that the reasoning tasks,
depending on the semantics, are complete up to the third level of the polynomial hierarchy
(ΣP

3) and these results carry over to GRAPPA as shown in [BW14].

Considering these facts, it comes with no surprise that the implementation of reasoning
systems for ADFs are trying to exploit powerful general purpose solver. For example
DIAMOND, a reasoning tool for ADFs, is based on Answer Set Programming (ASP)-
encodings [ES13]. Another approach for ADFs was proposed in [DWW14] where encodings
in terms of quantified boolean formulas (QBFs) were developed. In both cases there are
powerful solvers available.

Approaches like DIAMOND are using static encodings, i. e. the encoding does not
change for different framework instances. Therefore, the data complexity of ASP has
to be considered and – as shown in [EG95, EGM97] – ASP is complete in ΣP

2 resp. ΠP
2 .

But some evaluation methods for GRAPPA, like the preferred semantics, are complete
in ΣP

3 and therefore it is unlikely that a static encoding for these evaluation methods
can be found. However, there are ways to calculate these complex semantics, but they
have limitations. For example DIAMOND evaluates an ADF-instance over the preferred
semantics by splitting the problem into two consecutive sub-problems which are solved by
two ASP-encodings. But the first ASP-encoding yields – in the worst case – exponential
many results w. r. t. the instance size. These results are then the input for the second
encoding, which thus can lead to a rather bad runtime.

GRAPPA is a very recent development, hence, no reasoning methods have been imple-
mented yet. In this work ASP-encodings are presented to handle GRAPPA-instances. A
big challenge to develop the encoding was to handle the pattern language of GRAPPA.
To evaluate an instance a methodology called saturation is necessary for most of the
semantics. But saturation often causes unwanted side effects which are difficult to track,
especially when aggregates are used. But an essential part of the pattern language of
GRAPPA are aggregates which are evaluated by ASP-aggregates in the corresponding
ASP-encoding. Especially in the static encoding the application of saturation together

1See [BPW14] for a survey.

2

with aggregates caused much investigational efforts to circumvent the side effects and to
establish a valid encoding.

But as already mentioned this approach has limitations regarding more complex semantics.
Therefore, a new approach is presented in this work, namely a clever preprocessing of
an instance to evaluate, which allows to write an ASP-encoding for the given instance,
which combined complexity is one step higher in the polynomial hierarchy than in the
static case. This provides more possibilities for the ASP-encoding. For example in case
of the preferred semantics, encodings can be generated which combined complexity is
ΣP

3 [EFFW07]. This allows the evaluation of the instance in a single solver call. This
approach is called dynamic, because the encodings are generated for every instance
individually.

Besides the encodings – static and dynamic – GrappaVis is presented as well, which is a
tool to improve the handling of GRAPPA and ADF-instances and make the evaluation of
such instances also available for ASP-laymen. GrappaVis is a graphical system to specify
GRAPPA-instances and includes a toolbox to evaluate and compare different semantics
on a generated GRAPPA-instance. With this toolbox the results of an evaluation can be
easily shown directly in the graphical representation of the instance.

Summarized the main contributions of this work are:

• static ASP-encodings for GRAPPA for model, admissible and complete semantics

• dynamic ASP-encodings for GRAPPA for admissible, complete and preferred
semantics

• GrappaVis, a graphical tool to specify and evaluate GRAPPA-instances

GrappaVis and the static encodings are available on
http://dbai.tuwien.ac.at/proj/adf/grappavis/

for download.

Regarding the structure of the work, in Chapter 2 the most important topics are described
which are necessary to understand the main contributions of this work. This includes
a formal introduction of the already mentioned frameworks, as well as the basics of
ASP and the used methods – as e. g. saturation – to develop the encodings. The static
encodings of GRAPPA-instances are discussed in Chapter 3, followed by the dynamic
encodings in Chapter 4. In Chapter 5 the graphical user interface GrappaVis is presented.
It also includes a tutorial on how to specify a GRAPPA-instance and how to evaluate
it. A preliminary experimental evaluation and comparison of the different developed
encodings can be found in Chapter 6. Finally, in Chapter 7 related and future work is
discussed.

3

http://dbai.tuwien.ac.at/proj/adf/grappavis/

CHAPTER 2
Preliminaries

In this chapter the basic notions, systems and techniques are introduced which are
necessary to understand the development of the encodings. Namely the argumentation
frameworks and semantics on them are defined. To be able to compute semantics, a
short introduction into classical logic and Kleene’s strong three-valued logic is given first.
Moreover, Answer Set Programming (ASP) is presented together with techniques how to
use it.

To avoid confusion here is a short list of words which are used within this document
denoting the same things:

• edge, link; in context of an argumentation framework also: dependency

• vertex, node; in context of an argumentation framework also: statement, argument

2.1 Logic

2.1.1 Two-valued logic

Two-valued logic is the classical logic.

Definition 2.1. The syntax is built over the alphabet given by the following items:

Constants:>, ⊥

Connectives:∨,∧,→,⊗,¬

Variables: e. g.: p, q, r, . . . (V denotes the set off all variables)

Parenthesis: (,)

5

2. Preliminaries

Definition 2.2. A (boolean) formula is built inductively by the following rules:

• any constant is a formula

• any variable v ∈ V is a formula

• if A is a formula then (¬A) is a formula

• if A,B are formulas then (A ◦B), ◦ ∈ {∨,∧,→,⊗} is a formula

L denotes the set of all possible formulas.

Definition 2.3. An (two-valued) interpretation v2 (v if clear from the context) is a
function v2 : V → {t, f}, i. e. v2 maps to each variable p ∈ V a truth value true (t) resp.
false (f).

A two-valued interpretation can conveniently be represented as a set of variables, i. e.
v ⊆ V . For example let V = {p, q, r, s} and v = {q, r}. This denotes the fact that v(p) = f,
v(q) = t, v(r) = t and v(s) = f.

To evaluate formulas over an interpretation, v2 is extended to formulas:

Definition 2.4. Extension of v2 to formulas: Let a, b ∈ L:

v2(>) = t v2(⊥) = f

v2(¬a) =
{
t iff v2(a) = f
f iff v2(a) = t

v2(a ∧ b) =
{
t iff v2(a) = t and v2(b) = t
f iff v2(a) = f or v2(b) = f

v2(a ∨ b) =
{
t iff v2(a) = t or v2(b) = t
f iff v2(a) = f and v2(b) = f

v2(a→ b) =
{
t iff v2(a) = f or v2(b) = t
f otherwise

v2(a⊗ b) =

t iff v2(a) = t and v2(b) = f
t iff v2(a) = f and v2(b) = t
f otherwise

For convenience the parenthesis are omitted if the order of the operations is clear. Of
course there are more operators which could be defined for this logic, but in this work
it suffices to work with the negation (¬), and (∧), or (∨), implication (→) and xor (⊗).
For more information about two-valued logic [KL94] can be consulted.

2.1.2 Three-valued logic

Three-valued logic is a generalization of the two-valued logic, see e. g. [Kle09].

The syntax is exactly the same as in the two-valued case given in Definition 2.1, but the
semantic differs, because the interpretation is a mapping not only to true (t) and false
(f), but also to a third value “undefined” (u).

6

2.1. Logic

Definition 2.5. An (three-valued) interpretation v3 (v if clear from the context) is a
function v3 : V → {t, f,u}.

Three-valued interpretations can conveniently be represented as set of literals. A literal is a
variable with or without negation. For example, consider the set of propositional variables
{a, b, c, d, e} and the three-valued interpretation v = {a,¬b, d}. Then v represents the
fact that v(a) = t, v(b) = f, v(c) = u, v(d) = t and v(e) = u.

Note that every two-valued interpretation is also a valid three-valued interpretation (but
not vice-versa).

To evaluate formulas over an interpretation, v3 is extended to formulas:

Definition 2.6. Extension of v3 to formulas:

v3(>) = t v3(⊥) = f

v3(¬a) =

t iff v3(a) = f
f iff v3(a) = t
u otherwise

v3(a ∧ b) =

t iff v3(a) = t and v3(b) = t
f iff v3(a) = f or v3(b) = f
u otherwise

v3(a ∨ b) =

t iff v3(a) = t or v3(b) = t
f iff v3(a) = f and v3(b) = f
u otherwise

v3(a→ b) =

t iff v3(a) = f or v3(b) = t
f iff v3(a) = t and v3(b) = f
u otherwise

v3(a⊗ b) =

t iff v3(a) = t or v3(b) = f
t iff v3(a) = f or v3(b) = t
f iff v3(a) = f and v3(b) = f
f iff v3(a) = t and v3(b) = t
u otherwise

The truth values t, f,u are ordered according to their information content by “<i”.

Definition 2.7. The information ordering ≤i over the set {t, f,u} is defined as:

u ≤i u
u ≤i t u ≤i f
t ≤i t f ≤i f

It is easy to verify that ≤i induces a partial order on {t, f,u}. Moreover the pair
({t, f,u} ,≤i) forms a complete meet-semilattice1 with the meet operation u. This meet
can be read as consensus and assigns t u t = t, f u f = f , and returns u otherwise.

The information ordering can be easily extended for interpretations.
1A complete meet-semilattice is such that every non-empty finite subset has a greatest lower bound,

the meet; and every nonempty directed subset has a least upper bound. A subset is directed if any two
of its elements have an upper bound in the set.

7

2. Preliminaries

Definition 2.8. Let V be a set of variables and v3
1, v

3
2 ⊆ V two interpretations.

v3
1 ≤i v3

2 ⇐⇒ a ≤i b ∀a ∈ v3
1, b ∈ v3

2

Definition 2.9. A two-valued interpretation v2 is a completion of a three-valued inter-
pretation v3 iff v3 ≤i v2 holds.

Informally Definition 2.9 states that v2 is basically v3 but every u in v3 is replaced by
either t or f.

The set of all possible completions of a three-valued interpretation v is denoted as [v]c.

2.2 Argumentation frameworks

Dung’s argumentation framework (AF) is not used in this work directly, but nonetheless
many other frameworks are based on AFs as GRAPPA and ADFs, which are discussed in
the next sections. Many notions introduced in these sections are based on definitions for
AFs.

Definition 2.10. An AF is a pair F = (AR,R) where A is a set of arguments, and
R ⊆ AR×AR is a relation representing the conflicts (“attacks”).

Definition 2.11. Let F = (AR,R) be an AF, A,B ∈ AR. We say that

• A attacks B iff (A,B) ∈ R.

• A set S attacks B iff there exists an argument C ∈ AR s. t. (C,B) ∈ R.

Definition 2.12. Given an AF F = (AR,R).

1. A set S ⊆ AR is conflict-free in F , if, for each a, b ∈ S, (a, b) 6∈ R.

2. An argument A ∈ AR is acceptable with respect to a set S of arguments iff for each
argument B ∈ AR: if B attacks A then B is attacked by S.

3. A conflict-free set of arguments S is admissible iff each argument in S is acceptable
with respect to S.

4. A preferred extension of an AF G is a maximal (w. r. t. set inclusion) admissible
set of G.

5. An admissible set S of arguments is called a complete extension iff each argument,
which is acceptable with respect to S, belongs to S.

8

2.3. Abstract dialectical frameworks

Example 2.1. (Adapted from [Ell12]) Consider the AF F = (AR,R) with

AR = {A,B,C,D,E}

R = {(A,B), (C,B), (C,D), (D,C), (D,E), (E,E)}

The following figure depicts the graphical representation of F .

A B C D E

For this example the following extensions exist:

• conflict free sets: ∅, {A}, {B}, {C}, {D}, {A,C}, {A,D}, {B,D}

• admissible sets: ∅, {A}, {C}, {D}, {A,C}, {A,D}

• preferred sets: {A,C}, {A,D}

• complete sets: {A}, {A,C}, {A,D}

4

2.3 Abstract dialectical frameworks
Abstract dialectical frameworks (ADFs) are a generalization of Dung-style AFs which
have been first proposed in [BW10] and revisited in [BSE+13].

Definition 2.13. An abstract dialectical framework is a tuple D = (S,L,C) where

• S is a set of statements,

• L ⊆ S × S is a set of edges,

• C = {φs}s∈S is a set of propositional functions over par(s), one for each statement s.
par(s) denotes the set of parents of s, i. e. par(s) = {r | (r, s) ∈ L}.
φs is called acceptance condition of s.

Example 2.2. This example is taken from [BW10] and is a variant of an example
in [GPW07].
A person is innocent, unless she is a murderer.
A killer is a murderer, unless she acted in self-
defence. There must be evidence for self-defence,
for instance a witness who is not known to be a
liar. The dependency structure of the example
can be represented as shown in the figure on the
right side.

m i

ks

wl

9

2. Preliminaries

Assume w and k are known and l is not known, that is φw = φk = >, φl = ⊥. The
acceptance conditions for the remaining nodes are: φs = w ∧ ¬l, φm = k ∧ ¬s, φi = ¬m.
The shaded nodes represent the nodes which evaluate to t when values are propagated
according to the chosen acceptance conditions. 4

Definition 2.14. Let
(
S,L, {φs}s∈S

)
be an ADF.

A (three-valued) interpretation v is a (three-valued) model if for each defined2 statement
s in S holds that

v(s) = v(φs)

Definition 2.15. Let D be an ADF and v a three-valued interpretation. The character-
istic operator ΓD is defined as

ΓD(v)(s) = ⊔{w(φs) | w ∈ [v]c} .

(for the definition of ⊔see Section 2.1.2)

Definition 2.16. A three-valued interpretation v for an ADF D is

1. admissible iff v ≤i ΓD(v).

2. complete iff v = ΓD(v).

3. preferred iff it is ≤i-maximal admissible.

Example 2.3. Consider the ADF D = (S,L,C) with

S = {A,B} , C = {φA, φB}

L = {(A,A), (B,B), (A,B), (B,A)}
φA = a ∨ ¬b, φB = a ∨ b

The following figure depicts the graphical representation of D.

A B

a ∨ ¬b a ∨ b

For this example the following extensions exist:

• admissible interpretations: ∅, {A}, {B}, {A,B}, {¬A,B}

• preferred interpretations: {A,B}, {¬A,B}

• complete interpretations: ∅, {B}, {A,B}, {¬A,B}

4
2A defined statement s is a statement where v(s) 6= u

10

2.4. GRAPPA

2.4 GRAPPA

2.4.1 Basics

GRAPPA was proposed in [BW14] as a generalization of ADF, especially by allowing
more general acceptance conditions. Those acceptance conditions, informally, are defined
in terms of labels which can be associated to links in GRAPPA.

Acceptance conditions of GRAPPA are defined on multisets of labels. Observe that a
multiset M can be represented as a function fM : L → N where L represents the set
where the elements for the multiset are taken from. For example let L = {+,−, ∗} and
M = {+,+,+,−,−}. The corresponding function for M is fM which yields fM (+) = 3,
fM (−) = 2 and fM (∗) = 0.

Definition 2.17. Let L be a set of labels. An acceptance function over L (L-acceptance
function for short) is a function c : (L → N) → {t, f}, that is, a function assigning a
truth value to a multi-set of labels. The set of all L-acceptance functions is denoted FL.

Definition 2.18. A labeled argument graph (LAG) is a tuple G = (S,E,L, λ, α) where

• S is a set of nodes (statements),

• E is a set of edges (dependencies),

• L is a set of labels,

• λ : E → L assigns labels to edges,

• α : S → FL assigns L-acceptance-functions to nodes.

2.4.2 Semantics of LAGs

Definition 2.19. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation of S.
mv
s , the multiset of active labels of s ∈ S in G under v, is defined as

mv
s(l) = |{(e, s) ∈ E | e ∈ v, λ((e, s)) = l}|

for each l ∈ L.

The characteristic operator ΓG of G takes a three-valued interpretation v of S and
produces a revised three-valued interpretation ΓG(v) of S.

Definition 2.20. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation of S.
ΓG(v) = PG(v) ∪NG(v) with

PG(v) = {s | α(s)(m) = t for each m ∈ {mv′
s | v′ ∈ [v]c}}

NG(v) = {¬s | α(s)(m) = f for each m ∈ {mv′
s | v′ ∈ [v]c}}

11

2. Preliminaries

Definition 2.21. Let G = (S,E,L, λ, α) be a LAG, v a three-valued interpretation of S.
Then,

• v is a model of G iff v is total and v = ΓG(v),

• v is grounded in G iff v is the least fixed point of ΓG,

• v is admissible in G iff v ⊆ ΓG(v),

• v is preferred in G iff v is subset-maximal admissible in G,

• v is complete in G iff v = ΓG(v).

Example 2.4. This example is taken from [BW14]. Consider a LAG with S = {a, b, c, d}
and L = {+, -}. The graph in Fig. 2.1 shows the labels of each link.

a b

c d

+ +

+

-

Figure 2.1: Example 2.4 ∅

{a}{b} {¬b}

{a, ¬b}{a, b}{b, ¬d} {¬b, d} {¬b, ¬c}

{a, ¬b, d}{a, b, ¬d}{a, b, c} {a, ¬b, ¬c} {¬b, ¬c, d}

{a, b, c, ¬d} {a, ¬b, ¬c, d}

Figure 2.2: admissible interpretations of Example 2.4

For simplicity, assume all nodes have the same acceptance condition requiring that all
positive links must be active (that is the respective parents must be t) and no negative
link is active.3 We obtain two models, namely v1 = {a, b, c,¬d} and v2 = {a,¬b,¬c, d}.
The grounded interpretation is v3 = {a}. 16 admissible interpretations can be obtained,
shown in Fig. 2.2.

Among these admissible interpretations {a, b, c,¬d} and {a,¬b,¬c, d} are preferred. Com-
plete interpretations are these two and in addition {a}. 4

2.4.3 GRAPPA-instances

Definition 2.22. A GRAPPA-instance is a tuple G = (S,E,L, λ, π) where S, E, L and
λ are as in Def. 2.19 (definition of LAGs) and

• π : S → PL assigns acceptance patterns over L to nodes.

3In the pattern language described in Section 2.4.3 this can be expressed as
#t(+)−#(+) = 0 ∧#(-) = 0

.

12

2.4. GRAPPA

PL here denotes the set of acceptance patterns over L defined next.

Definition 2.23. Let L be a set of labels.

• A term over L is of the form

– #(l), #t(l) for arbitrary l ∈ L,

– min(), mint(), max(), maxt(), sum(), sumt(), count(), countt().

• A basic acceptance pattern (over L) is of the form

a1t1 + · · ·+ antnRa

where the ti are terms over L, the ai’s and a are integers and R ∈ {<,≤,=, 6=,≥, >}.

• An acceptance pattern (over L) is a basic acceptance pattern or a boolean combina-
tion of acceptance patterns.

2.4.4 Semantics of GRAPPA-instances

Definition 2.24. Let G = (S,E,L, λ, π) be a GRAPPA-instance. For a multiset of
labels m : L→ N and s ∈ S the value function valms is defined as:

valms (#l) = m(l)
valms (#tl) = |{(e, s) ∈ E | λ((e, s)) = l}|
valms (min) = min m
valms (mint) = min{λ((e, s)) | (e, s) ∈ E}
valms (max) = max m
valms (maxt) = max{λ((e, s)) | (e, s) ∈ E}
valms (sum) =

∑
l∈Lm(l)

valms (sumt) =
∑

(e,s)∈E λ((e, s))
valms (count) = |{l | m(l) > 0}|
valms (countt) = |{λ((e, s)) | (e, s) ∈ E}|

min(t), max(t), sum(t) are undefined in case of non-numerical labels. In case of an
emptyset they yield the neutral element of the corresponding operation, i. e.4

valms (sum) = valms (sumt) = 0
valms (min) = valms (mint) = ∞
valms (max) = valms (maxt) = −∞

4In this point the definition differs to the original paper [BW14], where these cases are left undefined.

13

2. Preliminaries

Definition 2.25. Let m be a multiset of labels and s a statement. The satisfaction
relation |= is defined

• for basic acceptance patterns :

(m, s) |= a1t1 + · · ·+ antnRa iff
n∑
i=1

(
ai val

m
s (ti)

)
R a.

R ∈ {<,≤,=, 6=,≥, >}

• for boolean operators as usual. For example consider the following rules: Let p1, p2
acceptance conditions.

(m, s) |= ¬p1 iff (m, s) 6|= p1

(m, s) |= p1 ∧ p2 iff (m, s) |= p1 and (m, s) |= p2

(m, s) |= p1 ∨ p2 iff (m, s) |= p1 or (m, s) |= p2

(m, s) |= p1 ⊗ p2 iff (m, s) |= p1 and (m, s) 6|= p2 or
(m, s) 6|= p1 and (m, s) |= p2

With these definitions the connection with LAGs can be established: For each node s
the function α(s) is linked to the corresponding pattern π(s) as follows:

α(s)(m) = t iff (m, s) |= π(s).

Now the characteristic operator for a GRAPPA-instance can be defined equivalently to
LAGs.

Definition 2.26. Let G = (S,E,L, λ, π) be a GRAPPA-instance. The characteristic
operator ΓG(v) = PG(v) ∪NG(v) with

PG(v) =
{
s | (m, s) |= π(s) for each m ∈

{
mv′
s | v′ ∈ [v]c

}}
,

NG(v) =
{
¬s | (m, s) 6|= π(s) for each m ∈

{
mv′
s | v′ ∈ [v]c

}}
.

With the operator ΓG from Definition 2.26 the semantics of LAGs from Definition 2.21
can be carried over to GRAPPA-instances.

2.5 Answer Set Programming
Answer Set Programming (ASP) [PS01, GL02, Lif02, MT99, Nie99] is a declarative
problem solving paradigm which has its roots in logic programming and non-monotonic
reasoning. In contrast to the procedural approach no algorithms are defined to solve a
certain problem, but a set of rules is specified and a solver calculates the solutions for
the given problem. In this section a brief introduction to ASP is given and covers only
topics which are necessary to understand the encodings which are presented later in this

14

2.5. Answer Set Programming

work. The introduction is based on the features of Potassco – described in [GKK+11]
– and therefore may not correspond exactly to the ASP-standard. A more profound
introduction can be found in [EIK09] and a comprehensive treatise about ASP is given
in [GKKS12].

2.5.1 Basics

In this section the syntax for ASP is introduced and analogies between ASP and classical
logic are pointed out.

An ASP-program is a finite set of rules where a rule in general consists of two parts, the
head and the body of the rule.

rule:
-- 〈head〉 ‘:-’ 〈body〉 ‘.’ -�

A rule is basically an implication and “:-” is a ASCII-abstraction of the – mirrored –
implication arrow ←.

The head and the body of the rule are syntactically the same and are just a list of
different kinds of atoms.

head:
-- �

� � ‘|’ �� ��� ‘not’ �� 〈atom〉� 〈binary atom〉 �� 〈aggregate atom〉 �
� � �

� -�

body:
-- �

� � ‘,’ �� ��� ‘not’ �� 〈atom〉� 〈binary atom〉 �� 〈aggregate atom〉 �
� � �

� -�

The major difference is the semantics of atoms occurring in the head and the body of the
rule. The atoms of the body are implicitly within a conjunction and the atoms of the
head are within a disjunction, i. e.

a1| ... |an :- b1, ... ,bk.

corresponds to the boolean formula

a1 ∨ · · · ∨ an ← b1 ∧ · · · ∧ bk.

It is said that a rule fires if the body of the rule is true. If a rule fires, it derives its head.

Depending on the structure of the rule different types of rules are classified. A rule

a1| ... |an :- b1, ... ,bk, not bk+1, ... ,not bm.

is called

• a disjunctive rule,

15

2. Preliminaries

• a normal rule if n ≤ 1, i. e. there is at most one atom in the head of the rule,

• a positive rule if k = m, i. e. the keyword “not” does not appear in the rule,

• a fact if m = 0, i. e. the rule has an empty body. The empty conjunction is always
true and therefore the head must be true to satisfy the rule. “:-” is usually omitted.

a1| ... |an.

• a constraint if n = 0, i. e. the rule has an empty head. Because an empty disjunction
is always false the body of the rule must also be false in order to satisfy the rule.

:- b1, ... ,bm.

What exactly true and false means in this context is described in Section 2.5.5.

This classification carries over to ASP-programs: An ASP-program is called disjunctive
if disjunctive rules are included. The program is called normal if only normal rules are
included.

An atom is basically representing an n-ary
predicate. A predicate with no arguments is
a propositional variable.
atom:
-- 〈Constant〉 �

�‘(’ � ‘,’ ��〈term〉 �‘)’ �
� -�

A binary atom is just the infix nota-
tion for some “built-in” binary predicate
(predicates the solver provides).
binary atom:
-- 〈term〉 〈comparators〉 〈term〉 -�

An aggregate atom is providing functionality to evaluate a set of tuples, i. e. to get the
number of tuples in the set, to calculate the sum of all tuples or to retrieve the minimum/
maximum of the set. For calculating the sum, minimum and maximum only the first
element of the tuples is considered by the solver.

aggregate atom:
-- �� 〈term〉 〈comparator〉 �� 〈aggregate〉 ‘{’ -

- �
� � ‘;’ �� �〈tuple〉� ���

�‘:’ � ‘,’ �� � 〈atom〉� 〈binary atom〉 �� � �
� � �

�‘}’ �� 〈comparator〉 〈term〉 �� -�

tuple:

-- � � ‘,’ �� 〈term〉 �
� ‘(’

� ‘,’ �� 〈term〉 � ‘)’ �
� -�

aggregate:
-- � ‘#sum’� ‘#count’ �� ‘#min’ �� ‘#max’ �

� -�

16

2.5. Answer Set Programming

It is very important to be aware that these functions work over sets. For example consider
the rules in Listing 2.1.

1 a :- 1 = #sum{1;1}.
2 b :- 2 = #sum{1,a;1,b}.

Listing 2.1: example for aggregates

The program derives a and b. The aggregate of the first line yields 1 because in a set
1 only appears once. For the aggregate in the second line the elements of the set can
be distinguished by the second element of the tuple. Therefore, the result of the second
aggregate is 2.

Another point to take care of is the case when the set to evaluate is empty. In this case
the aggregate yields the neutral element of the corresponding operation. For #sum and
#count-aggregates this is just zero. But #min returns #sup, i. e. ∞, and #max returns
#inf, i. e. −∞, for an empty set.

term:
-- � 〈atom〉� 〈constant〉 �� 〈variable〉 �� ‘[0-9]’ �� ‘_’ �� ‘#sup’ �� ‘#inf’ �

� -�
comparator:
-- � ‘<’� ‘<=’ �� ‘=’ �� ‘!=’ �� ‘>=’ �� ‘>’ �

�-�

The keywords #sup represents ∞ and #inf stands for −∞.

Noteworthy for term is that the underscore “_” is used for arguments within predicates
which do not matter in a specific rule, e. g. consider Listing 2.2

1 child(george, 8).
2 child(john, 11).
3
4 age(X) :- child(_, X).

Listing 2.2: example for the use of an underscore

The difference between a constant and a variable is only the first letter. A constant must
start with a lower-case letter whereas the first letter of a variable is upper-case.

constant:
-- �

� � �� ‘_’ � �
� ‘[a-z]’ �

� � �� ‘[a-zA-Z0-9_’]’ � �
� -�

variable:
-- �

� � �� ‘_’ � �
� ‘[A-Z]’ �

� � �� ‘[a-zA-Z0-9_’]’ � �
� -�

17

2. Preliminaries

2.5.2 Grounding

The process of replacing all variables from an ASP-program by adequate constants is
called grounding. Grounding is usually done by a separate program, the grounder.

For example consider Listing 2.3. In the last line X is a variable which is replaced by every
possible value for X, in this case {0, 1, 2}, and results in the program given in Listing 2.4.

a(0).
a(1).
a(2).

b(X) :- a(X).

Listing 2.3: example for grounding

a(0).
a(1).
a(2).

b(0) :- a(0).
b(1) :- a(1).
b(2) :- a(2).

Listing 2.4: example after grounding

Depending if an atom, a rule or a program includes variables they are called ground, or if
not, non-ground atom, rule or program.

Definition 2.27.
A ground atom is an atom with no variable.
A ground rule is a rule with no variable.
A ground program is a program with no variable.

One important aspect of grounding is that the variables need to be safe. Safe variables
are variables where the grounder can infer the values the variable can take. Variable X
in the last line of Listing 2.3 is a safe variable. In contrary the variable X in the rule in
Listing 2.5 is unsafe. The grounder can not infer which values the variable X can take. In
the default settings the grounder stops in case of an unsafe variable and returns an error.

a(X) :- b.

Listing 2.5: example of an unsafe variable

In general, grounding is much more complex than it looks in these easy examples, but
for the purpose of this work the given information suffices. For further reference please
consult [GKKS12].

2.5.3 Intervals

Intervals are syntactic-sugar to abbreviate the notation of – for example – many facts.

Consider the case that atoms intv(X) need to be defined for 21 ≤ X ≤ 53. One
possibility would be to define every single atom, what is very tedious for obvious reasons.
The much more convenient way is to use the interval notation where the start and the

18

2.5. Answer Set Programming

end of the interval are separated by two points “..”. This way – for the definition of the
atoms intv – it suffices to state:

intv(21..53).

As already mentioned this notation is only an abbreviation. There is no semantic
difference between the interval notation and stating every single atom. In fact, the
grounder instantiates the atom for every single element anyway, so it is just less to write
for the author of the encoding.

2.5.4 Default negation

The keyword “not” denotes the so called default negation5 and can be placed in front of
an atom. The default negation is also referred to as “negation as failure” because not a
becomes true if a is not derived by any other rule of the program.

d :- not e.

Listing 2.6: example for default negation

For example consider Listing 2.6. d is derived, because no other rule derives e.

Observe that the default negation does behave differently to the classical negation.6 If
the rule from Listing 2.6 would be translated to

¬e→ d

there would be three classical (two-valued) models of the rule, namely {d}, {e} and {e, d}.
But especially the model {e, d} does not satisfy the intention of the default negation,
because if e is derived the rule from Listing 2.6 may not derive d.

Among other things this gives rise to the stable model semantics.

2.5.5 Stable model semantics

The constructs of ASP are closely related to classical logic and therefore it seems obvious
to define a semantics of ASP based on classical logic. But the default negation obstructs
a direct approach because it behaves differently to the classical negation. In Listing 2.6
already a small example was given.

To overcome the troubles induced by the default negation the stable model semantics
is used which makes use of the Gelfond-Lifschitz reduct [GL88]. To obtain this reduct,
basically all default negations are removed from the program, which makes it possible to
evaluate the rules of the program as boolean formulas.

5In ASP there is also a strong negation but it is not used in the encodings presented in this work.
6Refer to the surveys [Bid91, AB94] and to [EIP+06, EIKP08] for more discussion.

19

2. Preliminaries

Definition 2.28. Let P be a ground ASP-program and AP the set of all ground atoms
of P . An interpretation I is a subset of AP .

Informally I includes all those ground atoms which are assumed to be true.

Definition 2.29. The Gelfond-Lifschitz reduct (or simply reduct) of a program P w. r. t.
an interpretation M , denoted PM , is a program obtained by

1. removing rules with “not a” in the body for each a ∈M and

2. removing default negated atoms “not a” from all other rules.

Definition 2.30. Let P be a program and M an interpretation. An interpretation N is
a model of the reduct PM if N is a classical (two-valued) model of all rules in PM .

Definition 2.31. Let P be a program and M an interpretation. A model N of a reduct
PM is minimal, if there exists no model J of PM s. t. J ⊂ N .

LM(PM) denotes the set of all minimal models of PM .

Definition 2.32. An interpretation M of P is a stable model of P , if

M ∈ LM(PM).

In this context often the term candidate model is used. A candidate model of a program
P is just an interpretation M which is then used to calculate the reduct PM .

a :- not b.
b :- not a.

Listing 2.7: example stable model

For example consider Listing 2.7: There are the four candidate models {},{a},{b},{a,b}.
The corresponding reducts are given in Listings 2.8 to 2.11

a.
b.

Listing 2.8:
reduct P {}

a.

Listing 2.9:
reduct P {a}

b.

Listing 2.10:
reduct P {b}

Listing 2.11:
reduct P {a,b}

So according to Definition 2.32:

{} 6= {a, b} ∈ LM
(
P {}

)
{a} ∈ LM

(
P {a}

) {b} ∈ LM
(
P {b}

)
{a, b} 6= {} ∈ LM

(
P {a,b}

)
Therefore, the example in Listing 2.7 has only two stable models, namely {a} and {b}.

In this context stable models of a given ASP-program are also called answer-sets.

20

2.5. Answer Set Programming

2.5.6 Guess and check

Guess and check is an important methodology used in ASP. As the name suggests it is
based on a guessing part, where candidate solutions are generated. Then these guesses are
checked against constraints which filter out the candidate solutions which are incorrect.7

How this paradigm could be used to determine whether a graph can be colored using
three colors is shown in Example 2.5.

Example 2.5. LetG = (V,E) be an undirected graph. Check whether a color c ∈ {r, g, b}
can be assigned to each vertex v ∈ V s. t. there are no two adjacent vertices with the
same color, i. e. for every undirected edge {s, t} ∈ E : c(s) 6= c(t).

An instance of a graph is encoded with the predicate s(v) for each v ∈ V and e(x,y) for
each {x, y} ∈ E as shown in Listing 2.12.

1 s(a). s(b).
2 s(c). s(d).
3
4 e(a,b).
5 e(b,d).
6 e(a,c).

Listing 2.12: an example instance for
three-colorability

1 r(X)|g(X)|b(X) :- s(X).
2
3 :- e(X,Y), r(X), r(Y).
4 :- e(X,Y), g(X), g(Y).
5 :- e(X,Y), b(X), b(Y).

Listing 2.13: a program using the
guess and check methodology for three-
colorability

The guess and check is performed in Listing 2.13. Line 1 expresses the guess: Every
vertex can potentially be colored using any of the three colors. The check is done by the
constraints in Lines 3 to 5. The rules remove every color assignment where the vertices
with the same color are adjacent in the graph. The results of the program are all valid
color assignments of the graph. 4

2.5.7 Subprograms

Subprograms are a well-known methodology in procedural programming languages which
helps to reuse existing parts of code. Although for ASP, subprograms are not available,
there is a possibility to reuse existing code. For example consider the program from
Listing 2.13. Assume that it is necessary to do one (or even more) new guess(es) of the
three colors, and the constraints in Lines 3 to 5 are also required for the new guess(es).

The naive approach would be to just copy paste the rules and rename the predicates to
meet the new requirement, but this not very convenient.

To encapsulate the existing rules into some kind of subprogram is a more elegant solution.
This can be achieved by adding a new argument to all predicates which are involved

7A more elaborate description of this technique can be found in [EFLP00].

21

2. Preliminaries

in the subprogram. This new argument is then used to address the “instance” of the
subprogram.

The adapted program of Listing 2.13 is shown in Listing 2.14 and can be considered as
a subprogram. The new atom guess(I) in the guessing-rule, in Line 3, is necessary to
“trigger” the different “calls”. Every fact guess(X) corresponds to a new “call” of the
subprogram, i. e. a new guess with “instance-id” X is done and the invalid interpretations
of the guess are removed by the constraints in Lines 5 to 7. In case of the atoms given in
Line 1 the subprogram is “executed” three times with the “instance-ids” {a, 1, 0}.

1 guess(a). guess(1). guess(0).
2
3 r(I,X)|g(I,X)|b(I,X) :- s(I,X), guess(I).
4
5 :- e(X,Y), r(I,X), r(I,Y).
6 :- e(X,Y), g(I,X), g(I,Y).
7 :- e(X,Y), b(I,X), b(I,Y).

Listing 2.14: guess and check of three-colorability as subprogram

2.5.8 Encode NP-complete problems into one rule-body

An idea which is used for the dynamic encodings – which are presented in Chapter 4 – is
to encode an NP-complete problem into a single rule.

For example consider the three-colorability of a graph which is a well-known NP-complete
problem. The “classical” encoding was already shown in Listing 2.13. To encode the
three-colorability of a graph G = (V,E) into one rule, six facts are necessary, because
the program must know all valid color-variations of a single edge. This information is
defined with the predicate validColoring in the Eqs. (2.1) to (2.3).

With these facts a single rule can be defined to check whether a valid coloring of the
graph is possible. W. l. o. g. assume that the nodes in V are represented as integer
values. Let

ψ :=
∧

(i,j)∈E
validColoring(Xi, Xj)

The complete program is given in Eqs. (2.1) to (2.4)

validColoring(red, blue). validColoring(red, green). (2.1)
validColoring(green, red). validColoring(green, blue). (2.2)
validColoring(blue, red). validColoring(blue, green). (2.3)
valid← ψ. (2.4)

So the ASP-solver is testing all possibilities to assign a color to the Xi variables for all
i ∈ V . But the rule in Eq. (2.4) fires only if at least one valid assignment has been found.
The program yields an answer-set anyway, but the answer-set includes the atom valid
only if the given graph is three-colorable.

22

2.5. Answer Set Programming

2.5.9 Saturation

Sometimes there are problems associated to the question if all answer-sets exhibit a
certain property. At a first glance it is impossible to define an ASP-program which can
give an answer to such a question, because the rules only work “within” one interpretation
and can not “access” any other interpretation. But there is a trick – called saturation –
to achieve such a behavior.

Example 2.6. As in Example 2.5, let G = (V,E) be an undirected graph. Consider the
problem to determine whether the graph is not three-colorable.

Of course the program from Example 2.5 can be used: If there is no answer-set the graph
is not three-colorable. But what if the program should yield an answer-set in this case?
A first approach could look like the program in Listing 2.15. But this program yields an
answer-set for every invalid coloring.

But only one answer-set which states that the graph is not three-colorable is wanted.
Consider Listing 2.16, where the saturation technique is applied. This technique is called
“saturation” because if the property – in this case no valid three-coloring – holds, all
color-defining atoms – r(X), g(X), b(X) – are saturated into the answer-set, which is
done in the Lines 7 to 9.

1 r(X)|g(X)|b(X) :- s(X).
2
3 invalid :- e(X,Y), r(X), r(Y).
4 invalid :- e(X,Y), g(X), g(Y).
5 invalid :- e(X,Y), b(X), b(Y).
6
7 :- not invalid.

Listing 2.15: non three-colorability without
saturation

1 r(X)|g(X)|b(X) :- s(X).
2
3 invalid :- e(X,Y), r(X), r(Y).
4 invalid :- e(X,Y), g(X), g(Y).
5 invalid :- e(X,Y), b(X), b(Y).
6
7 r(X) :- invalid, s(X).
8 g(X) :- invalid, s(X).
9 b(X) :- invalid, s(X).

Listing 2.16: non three-colorability with
saturation

4

The saturation allows all interpretations – which exhibit the property of interest – to
share the same answer-set, namely the set of all atoms affected by the saturation. So if
all interpretations have the property, the program yields only this “saturated” answer-set.
If there is any interpretation which does not exhibit the property of interest, the program
yields only the answer-set which does not exhibit the property of interest. This answer-set
is a subset of the saturated answer-set and because answer-sets are subset-minimal the
saturated answer-set is no longer a valid stable model.8 Finally, to remove all invalid
answer-sets the rule

:- not invalid

can be added to the program of Listing 2.16.
8For a more elaborate explanation please consult [EIK09].

23

2. Preliminaries

Dealing with aggregates

Using aggregates together with saturation is anything but easy, because the saturation
can affect the set the aggregate is evaluating. Therefore, the result of the aggregate can
be different before and after saturation. Moreover, the reduct of the program removes
rules that do not fire.9 This leads to unexpected results.

Example 2.7. Let S be a subset of the natural numbers, i. e. each element n ∈ S : n ≥ 0.
Verify that for every non-empty subset ∅ 6= R ⊆ S holds that

min
r∈R

r ≤
∑
r∈R

r.

Observe that the condition is trivially true for every subset of the natural numbers.
Anyway, an ASP-program should be written to confirm the statement for a given set of
natural numbers.

In Listing 2.17 an ASP-encoding is given to solve the task without saturation. The
program expects an input of the set of natural numbers S encoded as s(n) for every
n ∈ S. The input in Line 1 of Listing 2.17 corresponds to a set S = {23, 30, 123}.

1 s(23).s(30).s(123).
2
3 in(X) | out(X) :- s(X).
4 cnt(X) :- X = #count{Y:in(Y)}.
5
6 min(Min) :- Min = #min{X:in(X)}.
7 sum(Sum) :- Sum = #sum{X:in(X)}.
8
9 ok :- cnt(0).

10 ok :- min(Min), sum(Sum), Min <= Sum.

Listing 2.17: approach for Example 2.7 without saturation

The program guesses all possible subsets of S in Line 3 and the atom in(X) identifies
all numbers of the subset. In Lines 6 and 7 the minimum and the sum of the subset is
calculated and in Line 10 the values are compared. Line 9 is necessary because in case of
the empty subset the atom ok is simply added to the answer-set. 4

The approach in Listing 2.17 has a big disadvantage, namely that it yields an answer-set
for every subset. This is means that 2|S| answer-sets have to be checked whether the
atom ok is part of the answer-set. It would be much more convenient if there would be
only one answer-set which includes ok only if the condition is true.

With saturation all answer-sets of the program in Listing 2.17 can be merged into one, but
to apply saturation special measures have to be taken. The atom ok is used to “trigger”

9If aggregates are used in ASP-programs the stable model semantics does not suffice. Therefore, other
semantics are used which remove rules with unsatisfied body. More information can be found in [FPL11].

24

2.5. Answer Set Programming

saturation and to derive all atoms depending on the guess in Line 3, namely in, out,
cnt, min and sum. For in, out it is easy, just add the rules as shown in Listing 2.18

1 in(X) :- ok, s(X).
2 out(X) :- ok, s(X).

Listing 2.18: saturation rules for in and
out

1 dom(0..200).
2 cnt(X) :- dom(X), ok.
3 min(X) :- dom(X), ok.
4 sum(X) :- dom(X), ok.

Listing 2.19: naive saturation rules for cnt,
min, sum

For cnt, min and sum also all possible atoms need to be saturated. To facilitate the
task it is convenient to introduce a domain-predicate which defines the values which may
occur. Of course the domain must be chosen according to the current instance, but as
small as possible to keep the set of atoms small. So a first approach for the saturation
rules could look like the rules in Listing 2.19 where dom is the domain-predicate. But
the program – all rules from Listings 2.17 to 2.19 together – is not working. The solver
claims that the program is unsatisfiable.

The reason for that behavior is, that in the reduct of the program some important rules
are removed. Let the candidate model M the set of all atoms – correctly saturated – and
P the program given by the Listings 2.17 to 2.19. Consider the reduct PM shown in
Listing 2.20 and especially the Lines 4, 6 and 7. It is easy to verify that the interpretation
I = {s(23),s(30),s(123),out(23),out(30),out(123), dom(0..200)} is a
model of PM and therefore is M no stable model of P .

1 s(23).s(30).s(123).
2
3 in(X) | out(X) :- s(X).
4 cnt(3) :- 3 = #count{Y:in(Y)}.
5
6 min(23) :- 23 = #min{X:in(X)}.
7 sum(176) :- 176 = #sum{X:in(X)}.
8
9 ok :- cnt(0).

10 ok :- min(Min), sum(Sum), Min <= Sum.
11
12 in(X) :- ok, s(X).
13 out(X) :- ok, s(X).
14
15 dom(0..200).
16 cnt(X) :- dom(X), ok.
17 min(X) :- dom(X), ok.
18 sum(X) :- dom(X), ok.

Listing 2.20: reduct PM

To avoid the removal of rules in the reduct, the rules with aggregates have to be
reformulated in a way that the rule itself performs the saturation as well. Consider a rule

25

2. Preliminaries

with a #sum-aggregate as shown in Line 1 in Listing 2.21. Such a rule can be rewritten
as shown in Line 3. The atom ok again is the trigger for saturation and dom is the
domain-predicate defining all possible values for X. If no saturation is performed the new
rule just sums up all elements of p. If saturation should be done, the trick is to eliminate
each element a ∈ p by adding the inverse element −a which causes the sum to be zero.
Finally, X is added to the set such that the #sum-aggregate yields X as result.

For rules with a #count-aggregate the conversion is similar, because a #count-aggregate
can easily be rewritten as a #sum-aggregate. The rules in Lines 1 and 2 in Listing 2.22
are equivalent, therefore the reformulation of sum can be applied on the rule in Line 2
and yields the rule in Line 4.

1 sum(X) :- X = #sum{A:p(A)}.
2
3 sum(X) :- dom(X),
4 X = #sum{ A: p(A);
5 -A: p(A), ok;
6 X,ok: ok}.

Listing 2.21: reformulation of #sum

1 count(X) :- X = #count{A:p(A)}.
2 count(X) :- X = #sum{1,A:p(A)}.
3
4 count(X) :- dom(X),
5 X = #sum{ 1, A: p(A);
6 -1, A: p(A), ok;
7 X,ok: ok}.

Listing 2.22: reformulation of #count

To find a reformulation for #min/#max-aggregates they need to be rewritten as a #sum-
aggregate. This can be achieved by the Eqs. (2.5) and (2.6) as shown in [AFG15].

min[w1 : l1, . . . , wn : ln] = b ≡ sum[1− n·(b− wi) : li | i ∈ [1 . . . n], wi ≤ b] > 0 (2.5)
max[w1 : l1, . . . , wn : ln] = b ≡ sum[1 + n·(b− wi) : li | i ∈ [1 . . . n],−wi ≤ −b] > 0 (2.6)

Therefore, a rule with a #min-aggregate – as shown in Line 1 of Listing 2.23 – can be
reformulated to an equivalent rule using Eq. (2.5). But this reformulation requires the
number of elements – n – of the set under evaluation. This number is retrieved by the
rule in Line 3. Hence, the rule in Line 4 is equivalent to the rule in Line 1. In order to
ensure that the rule also fires in case of saturation, a big value is added – in Line 14 – to
achieve that the result of #sum is larger than zero in case of saturation.

Finally, the rule in Line 3 has to be considered, because the rule is not yet safe for
saturation. To this end the already established reformulation of #count-aggregates has
to be applied to the rule. So the reformulation of a #min-aggregate yields two rules
shown in the Lines 7 and 11 of Listing 2.23.

The reformulation of a rule with a #max-aggregate – as in Line 1 of Listing 2.24 – is the
same as for a #min-aggregate, just Eq. (2.6) has to be used. The reformulation again
yields the two rules given in Lines 3 and 7.

26

2.5. Answer Set Programming

1 min(X) :- X = #min{A:p(A)}.
2
3 cnt(X) :- #count{A:p(A)}.
4 min(X) :- dom(X), cnt(N),
5 0 < #sum{1-N*(X-A):p(A),A<=X}.
6
7 cnt(X) :- dom(X),
8 X = #sum{ 1, A: p(A);
9 -1, A: p(A), ok;

10 X,ok: ok}.
11 min(X) :- dom(X),cnt(N),
12 0 < #sum{
13 1-N*(X-A):p(A),A<=X;
14 100000: ok}.

Listing 2.23: reformulation of #min

1 max(X) :- X = #max{A:p(A)}.
2
3 cnt(X) :- dom(X),
4 X = #sum{ 1, A: p(A);
5 -1, A: p(A), ok;
6 X,ok: ok}.
7 max(X) :- dom(X),cnt(N),
8 0 < #sum{
9 1+N*(X-A):p(A),-A<=-X;

10 100000: ok}.

Listing 2.24: reformulation of #max

Example 2.8. (continued from Example 2.7)

With the reformulations of the aggregates an ASP-program can be defined which yields
indeed only one answer-set.

1 s(23).s(30).s(123).
2 dom(0..200).
3
4 in(X) | out(X) :- s(X).
5
6 cnt(X) :- dom(X), X = #sum{1,Y:in(Y);
7 -1,Y:in(Y),ok;
8 X: ok}.
9 min(Min) :- dom(Min), cnt(N), 0 < #sum{ 1-N*(Min-X):in(X), X<=Min;

10 10000: ok}.
11
12 sum(Sum) :- dom(Sum), Sum = #sum{X:in(X);
13 -X:in(X),ok;
14 Sum,ok:ok}.
15 ok :- cnt(0).
16 ok :- min(Min), sum(Sum), Min <= Sum.
17
18 in(X) :- s(X), ok.
19 out(X) :- s(X), ok.

Listing 2.25: approach for Example 2.7 with saturation
4

Missing answer-sets

In Listing 2.26 a small program is presented, where the rule in Line 7 fires if there
are strictly more in than out atoms. By setting one of the two possible statements
to in this is trivially true. Therefore, we get two answer-sets, namely {s(a), s(b),

in(a), in(b) ok} and {s(a), s(b), in(a), out(b), ok} as expected. Just for

27

2. Preliminaries

demonstration saturation should be done if ok is derived to get just one answer-set
instead of two. To achieve that behavior the rules – given in the Lines 11 and 12 of
Listing 2.27– have to be added. These rules derive all in/ out atoms for each s in case
of saturation.

1 s(a).
2 s(b).
3
4 in(a).
5 in(X) | out(X) :- s(X).
6
7 ok :- 0 < #sum{1;
8 1,X:in(X);
9 -1,X:out(X);

10 10:ok}.

Listing 2.26: example without saturation

1 s(a).
2 s(b).
3
4 in(a).
5 in(X) | out(X) :- s(X).
6
7 ok :- 0 < #sum{1;
8 1,X:in(X);
9 -1,X:out(X);

10 10:ok}.
11 in(X) :- s(X), ok.
12 out(X) :- s(X), ok.

Listing 2.27: example with saturation

But the solver now does not yield the expected single answer-set but claims that this
program is unsatisfiable. To understand this behavior the program and its candidate
models have to be analyzed. The obvious candidate model is {s(a), s(b), in(a),

in(b), out(a), out(b), ok} but there is also a second one {s(a), s(b), in(a),

out(a), out(b)}. The reducts for those candidates are shown in the Listings 2.28
and 2.29.

s(a).
s(b).

in(a).
in(X) | out(X) :- s(X).

ok :- 0 < #sum{1,X:in(X);
↪→ -1,X:out(X); 10:ok}.

in(X) :- s(X), ok.
out(X) :- s(X), ok.

Listing 2.28: reduct for candidate 1

s(a).
s(b).

in(a).
in(X) | out(X) :- s(X).

Listing 2.29: reduct for candidate 2

In the first case there is {s(a), s(b), in(a), out(a), out(b)} and for the second
case is {s(a), s(b), in(a), out(b)} a smaller model than the corresponding can-
didate. So neither one of the candidates is a stable set and therefore the program is
unsatisfiable.

Informally speaking the problem is that the new rules for saturation in Listing 2.27
introduce new “possibilities” to find models of the program without the saturation
predicate ok. To avoid this behavior, a rule like the one shown in Listing 2.30 is

28

2.6. Complexity

introduced. The rule ensures that a model, which can only be induced by the additional
rules in Listing 2.27, derives the saturation predicate ok and therefore again lead to
saturation.

ok :- in(X),out(X).

Listing 2.30: rule to fix saturation

With this rule the solver at last yields the expected result-set {s(a), s(b), in(a),

in(b), out(a), out(b), ok}.

2.6 Complexity
For this section we assume that the basic notions of complexity theory are familiar such
as hardness, completeness and the classes P, NP, co-NP. Further background can be
found in [Joh90, Pap94].

2.6.1 Decision problems

To be able to talk about complexity, the specific problem to analyze has to be defined.
To this end usually decision problems are specified. In general, decision problems are a
set of problem instances which should be answered with yes resp. no. For our purpose
we define two problems, namely brave and cautious reasoning:

Definition 2.33. Brave reasoning (GRAPPA): Let G = (S,E,L, λ, π) be a GRAPPA-
instance, σ a semantics and s ∈ S a statement. Decide whether there exists a σ-
interpretation v of S s. t. v(s) = t?

Definition 2.34. Cautious reasoning (GRAPPA): Let G = (S,E,L, λ, π) be a GRAPPA-
instance, σ a semantics and s ∈ S a statement. Decide whether v(s) = t holds for every
σ-interpretation v of S.

Definition 2.35. Brave reasoning (ASP): Let P be an ASP-program and a be a ground
atom. Decide if there exists an answer-set of P in which a is included.

Definition 2.36. Cautious reasoning (ASP): Let P be an ASP-program and a be a
ground atom. Decide whether a is element of every answer-set of P .

2.6.2 The polynomial hierarchy

The polynomial hierarchy was first introduced in [SM73, Sto76]

Definition 2.37. The polynomial hierarchy is inductively defined as follows:

∆P
0 := ΣP

0 := ΠP
0 := P

∆P
k+1 := PΣP

k

29

2. Preliminaries

ΣP
k+1 := NPΣP

k

ΠP
k+1 := co-ΣP

k+1

For the cases k = 1 and k = 2 this yields:

k = 1 :

∆P
1 = PΣP

0 = PP = P

ΣP
1 = NPΣP

0 = NPP = NP
ΠP

1 = co-ΣP
1 = co-NP

k = 2 :

∆P
2 = PΣP

1 = PNP

ΣP
2 = NPΣP

1 = NPNP

ΠP
2 = co-ΣP

2 = co-NPNP

The motivation for this hierarchy is based on the question: Suppose there is a problem A
with a sub-problem B. Assume problem B can be solved with constant costs by a
so-called oracle. What is the remaining complexity of problem A if the oracle is used to
compute sub-problem B?

For example, assume a problem A is ΠP
2 = co-NPNP complete. That means that A

would be co-NP complete if there would be an oracle which is able to solve an NP hard
sub-problem of A in constant time and space.

2.6.3 Complexity of GRAPPA

The results for GRAPPA presented in this section are actually results shown for ADFs
but as argued in [BW14] these results can be carried over to GRAPPA.

model admissible complete preferred
brave NP ΣP

2 ΣP
2 ΣP

2
cautious co-NP trivial co-NP ΠP

3

Table 2.1: complexity results for GRAPPA

In Table 2.1 complexity results for different semantics are given, which are all completeness
results, and are proven for ADFs in [SW14].

2.6.4 Complexity of ASP-programs

The usual case for analyzing the complexity of an ASP-program is to consider the data
complexity of the problem, i. e. the ASP-program is assumed to be static and only the
input of the program is changing. The data complexity of a normal ASP-program for
brave and cautious reasoning is NP resp. co-NP complete. However, for disjunctive
ASP-programs the data complexity for brave and cautious reasoning increases, i. e. the
problems are ΣP

2 resp. ΠP
2 complete, which is a result of [EG95, EGM97].10

10An overview of the complexities for different ASP-fragments can be found in [LPF+06].

30

2.6. Complexity

This is different for the combined complexity of ASP. In contrast to data complexity,
combined complexity considers the case that the program is not longer static, i. e. not
only the data can vary, but also the program. In general, the combined complexity
of ASP is NEXP and NEXPNP for normal resp. disjunctive ASP-programs as shown
in [EGM97, ELS98]. But this changes significantly if the program is restricted to
predicates with bounded arity, i. e. there exists a constant n ∈ N such that the arity
of every predicate occurring in the program is smaller than n. In this case brave and
cautious reasoning for

• normal ASP-programs is ΣP
2 resp. ΠP

2 complete

• disjunctive ASP-programs is ΣP
3 resp. ΠP

3 complete

as shown in [EFFW07].

2.6.5 Consequences for ASP-encodings

The comparison of the complexity of GRAPPA and the data complexity of ASP indicates,
that the preferred semantics can not be encoded in a static approach, because for
cautious reasoning the complexity of the preferred semantics (ΠP

3) is higher than the
data complexity of ASP (ΠP

2). Nonetheless it is possible to encode semantics with lower
complexity this way, i. e. a fixed encoding can handle arbitrary GRAPPA-instances.
Later we refer to this type of encoding as static encoding.

In contrary for combined complexity, the result that a disjunctive ASP-program with
bounded arity is ΣP

2 resp. ΠP
3 complete shows that an ASP-encoding for brave (ΣP

2) resp.
cautious (ΠP

3) reasoning for the preferred semantics can be found. But by definition
of combined complexity, this encoding can not handle arbitrary GRAPPA-instances,
but depends on a given GRAPPA-instance. Hence, the encoding must be generated for
each GRAPPA-instance individually. Later we refer to this type of encoding as dynamic
encoding.

31

CHAPTER 3
Static encodings

In this section the static encoding is presented to evaluate GRAPPA-instances under
model, admissible or complete semantics. The name “static” was chosen because the
encoding stays the same for every input instance (except the input itself).

The encoding itself is split into several parts, which correspond to separate files1 , to
make the encoding flexible to some extent.

• Input: Of course this part is always part of the program. The name of this file is
arbitrary it only has to be added to the call of the ASP-solver. The input format is
described in Section 3.1.

• Basic definitions: This part can be found in the file basicdefs.lp and includes the
rules for basic evaluations of the input and is described in Section 3.3. This part is
always part of the program.

• Model semantics: This part can be found in the file model.lp and includes the
rules to calculate the model semantics on a given input. A detailed description
of this part is given in Section 3.4. The definitions in this part are depending on
basicdefs.lp.

• Admissible semantics: This part can be found in admissible.lp and includes the
rules to calculate the admissible semantics on a given input. A detailed description
of this part is given in Section 3.5. The definitions in this part are depending on
basicdefs.lp.

• Complete semantics: This part can be found in complete.lp and includes the
rules to calculate the admissible semantics on a given input. A detailed description
of this part is given in Section 3.6. The definitions in this part are depending on
basicdefs.lp and admissible.lp.

1The encoding can be found at http://dbai.tuwien.ac.at/proj/adf/grappavis/.

33

http://dbai.tuwien.ac.at/proj/adf/grappavis/

3. Static encodings

To evaluate a GRAPPA-instance under admissible or complete semantics, saturation
is necessary. As described in Section 2.5.9 rules with aggregates must be handled with
special care if saturation is used. Therefore, the rules in the basic definitions look quite
complex, even for simple tasks, because the reformulations from Section 2.5.9 have been
applied. Even though the model semantics does not need saturation, the same (saturation
save) basic definitions are used for model semantics to avoid a second (equivalent) set of
basic rules.

The listings which are presented in this chapter are directly imported from the original
encodings. Therefore, the line-numbers of these listings match the actual line-numbers of
the corresponding file.

3.1 Description of the input
In this section the system to encode a GRAPPA-instance for the static encoding is
described. First an example of a small instance is given to get an idea how the input
looks like. Then the different predicates, which are used to specify the instance, are
described in detail.

Example 3.1. (the same instance as in Example 2.4)
Let G = (S,E,L, λ, π) be a GRAPPA-instance with S =
{a, b, c, d} and L = {+, -}. The graph on the right side
shows the labels of each link. The acceptance condition
for all nodes is

#t(+)−#(+) = 0 ∧#(-) = 0.

a b

c d

+ +

+

-

G is represented by the encoding shown in Listing 3.1. For every edge in E an atom
e with three parameters is inserted. The first argument is the source of the edge, the
second parameter is the target of the edge. The third parameter states the label of the
edge. For every node in S an atom s with two parameters is inserted. The first parameter
is the label of the node and the second parameter specifies the acceptance condition.

The smallest entity of an acceptance-condition is a single comparison which is captured by
the atom basicpattern. If an acceptance-condition consists of several comparisons – i. e.
basicpattern – which are linked by boolean operators (and, or, xor) the basicpatterns
are arguments of corresponding predicates and, or, xor.

A basicpattern represents a comparison, therefore it takes three arguments, namely the
left-hand-side (LHS), the comparator and the right-hand-side (RHS). The comparator
is just an element of the set {"<","<=","!=","==","=>",">"}. The RHS is an
integer and the LHS is a unique id which references a sum of terms which is referred to
as functional combination.

That means that for every id within a LHS of a basicpattern one or more term atoms
are inserted. One term atom represents a single summand of a functional combination

34

3.1. Description of the input

and takes four arguments. The first argument is the id of the functional combination
the term belongs to, the second argument is a unique id of the single terms within one
functional combination. The third argument is the coefficient which is multiplied to the
result of the function given in the fourth argument.

1 minDom(-5).
2 maxDom(5).
3
4 s(a,and(basicpattern(a_0,"==",0),basicpattern(a_1,"==",0))).
5 s(c,and(basicpattern(a_2,"==",0),basicpattern(a_3,"==",0))).
6 s(b,and(basicpattern(a_4,"==",0),basicpattern(a_5,"==",0))).
7 s(d,and(basicpattern(a_6,"==",0),basicpattern(a_7,"==",0))).
8
9 e(a,c,"+").

10 e(b,c,"+").
11 e(b,d,"-").
12 e(b,b,"+").
13
14 term(a_0,0,1,activelabelcount(a,"+")).
15 term(a_0,1,-1,labelcount(a,"+")).
16
17 term(a_1,0,1,activelabelcount(a,"-")).
18
19 term(a_2,0,1,activelabelcount(c,"+")).
20 term(a_2,1,-1,labelcount(c,"+")).
21
22 term(a_3,0,1,activelabelcount(c,"-")).
23
24 term(a_4,0,1,activelabelcount(b,"+")).
25 term(a_4,1,-1,labelcount(b,"+")).
26
27 term(a_5,0,1,activelabelcount(b,"-")).
28
29 term(a_6,0,1,activelabelcount(d,"+")).
30 term(a_6,1,-1,labelcount(d,"+")).
31
32 term(a_7,0,1,activelabelcount(d,"-")).

Listing 3.1: input example 4

3.1.1 Syntax

Here the syntax diagrams of the more complicated constructs are given.

id:

-- ‘[a-z]’
� �� ‘[a-zA-Z0-9_]’ � -�

Integer:

-- �‘-’� ��
� �� ‘[0-9]’ � -�

s:
-- ‘s(’ 〈id〉 ‘,’ 〈accPattern〉 ‘)’ -�

35

3. Static encodings

accPattern:
-- �‘basicpattern(’ 〈id〉 ‘,’ � ‘"<"’� ‘"<="’ �� ‘"!="’ �� ‘"=="’ �� ‘">="’ �� ‘">"’ �

� ‘,’ 〈Integer〉 ‘)’

� � ‘and’� ‘or’ �� ‘xor’ �
� ‘(’ 〈accPattern〉 ‘,’ 〈accPattern〉 ‘)’ �

� ‘neg(’ 〈accPattern〉 ‘)’ �

� -�

term:
-- ‘term(’ 〈id〉 ‘,’ 〈id〉 ‘,’ 〈Integer〉 ‘,’ -
- �� ‘labelcount’� ‘activelabelcount’ ��’(’ 〈id〉 ‘,’ 〈id〉 ‘)’

� � ‘minlabel’� ‘minactivelabel’ �� ‘maxlabel’ �� ‘maxactivelabel’ �� ‘sumlabel’ �� ‘sumactivelabel’ �� ‘distinctlabel’ �� ‘distinctactivelabel’ �

� ‘(’ 〈id〉 ‘)’ �
� ‘)’ -�

3.1.2 List of all predicates

The predicates are listed in alphabetical order.

activelabelcount(node, edgelabel)
description: Corresponds to the function #(edgelabel) from the GRAPPA syntax.

Instructs the program to count all active edges with the label given
by edgelabel on the given node. The edgelabel is stated without
quotes if numeric, otherwise with quotes.
e. g. activelabelcount(node1, 124). activelabelcount(node2, "+").

{and | or | xor}(LHS, RHS)

LHS Left hand side of the operator.
RHS Right hand side of the operator.

description: Represents the correspondent boolean function. LHS resp. RHS must
be an atom built by one of the following predicates: basicpattern,
and, or, neg or xor.

36

3.1. Description of the input

basicpattern(sumId, comparator, RHS)

sumId The id of a functional combination on the left hand side of the
comparator.

comparator One of the following operators (inclusive the quotation marks):
"<=", "<", "==", "!=", ">", ">="

RHS The right hand side of the operator which must be an integer value.

description: This predicate defines a comparison of the functional combination –
on the LHS defined by sumId – and the integer given by RHS. The
functional combination is represented by a set of term predicates
which share the same id.
e. g. basicpattern(a1, "==", 13)

distinctactivelabel(node)

description: Corresponds to the function count() from the GRAPPA syntax.
Instructs the program to retrieve the number of active edges with
different labels on the given node.

distinctlabel(node)

description: Corresponds to the function countt() from the GRAPPA syntax.
Instructs the program to retrieve the number of edges – active or
not – with different labels on the given node.

e(source, target, label)

source The name of the source-node.
target The name of the target-node.
label The edgelabel. If numeric without, otherwise with quotes.

description: Defines a (directed) edge between source and target with a given
label.
e. g. e(n1, n2, 23). e(a, b, "+").

labelcount(node, edgelabel)
description: Corresponds to the function #t(edgelabel) from the GRAPPA syn-

tax. Instructs the program to count all edges – active or not – with
the label given by edgelabel on the given node.
e. g. labelcount(a, -12). labelcount(b, "attack").

37

3. Static encodings

maxactivelabel(node)
description: Corresponds to the function max() from the GRAPPA syntax.

Instructs the program to retrieve the maximum edgeweight of all
active edges on the given node. This is undefined if there are edges
with non numeric values.

maxDom(maxValue)
description: The min-aggregate yields ∞ in case of an empty set. To avoid this

case maxValue is added to the set under evaluation as fallback-
value. To improve the performance maxValue should be as low as
possible.

maxlabel(node)
description: Corresponds to the function maxt() from the GRAPPA syntax.

Instructs the program to retrieve the maximum edgeweight of all
edges – active or not – on the given node. This is undefined if there
are edges with non numeric values.

minactivelabel(node)
description: Corresponds to the function min() from the GRAPPA syntax. In-

structs the program to retrieve the minimum edgeweight of all active
edges on the given node. This is undefined if there are edges with
non numeric values.

minDom(minValue)
description: The max-aggregate yields −∞ in case of an empty set. To avoid

this case minValue is added to the set under evaluation as fallback-
value. To improve the performance minValue should be as high as
possible.

minlabel(node)
description: Corresponds to the function mint() from the GRAPPA syntax.

Instructs the program to retrieve the minimum edgeweight of all
edges – active or not – on the given node. This is undefined if there
are edges with non numeric values.

neg(arg)

arg The argument of the negation.

description: Represents the negation. arg must be an atom built by one of the
following predicates: basicpattern, and, or, neg or xor.

38

3.1. Description of the input

s(name, pattern)

name The name of the node.
pattern The acceptance condition of the node.

description: This predicate defines a node with its name and acceptance-condition.
The condition must be provided in pattern and must be con-
structed by of the following predicates: basicpattern, and, or,
neg or xor.

sumactivelabel(node)

description: Corresponds to the function sum() from the GRAPPA syntax.
Instructs the program to retrieve the sum of all edgeweights of all
active edges on the given node. This is undefined if there are edges
with non numeric values.

sumlabel(node)

description: Corresponds to sumt() from the GRAPPA syntax. Instructs the
program to retrieve the sum of all edgeweights of all edges – active
or not – on the given node. This is undefined if there are edges
with non numeric values.

term(sumId, id, factor, function)

sumId The id for the functional combination this term belongs to.
id A unique id of this term within all terms of the functional combi-

nation referenced by sumId.
factor The coefficient (integer) which is multiplied to the result of

function

function One of the following predicates: activelabelcount, labelcount,
minactivelabel, minlabel, maxactivelabel, maxlabel, sumac-
tivelabel, sumlabel, distinctactivelabel, distinctlabel

description: A single term predicate represents a term of the form a · f(·) where
a is an integer given by factor and f(·) is the function given by
function. One or more term predicates together are used to
represent functional combinations which are necessary for basic-
pattern-predicates. sumId defines the functional combination the
term belongs to. The additional id is necessary to distinguish
duplicate expressions within a functional combination.

39

3. Static encodings

3.1.3 References to the definitions

The rules for deriving the different predicates are defined in different listings. To provide
a fast way to look up the definitions, an index is given in Table 3.1, where for each
predicate the listings are given in which the predicate is derived.

predicate defined in
accept 3.8, 3.28
activeedge 3.14, 3.28
alcount 3.15, 3.28
alcount_dom 3.15
alcount_max 3.15
basicpattern 3.4
cntActLabel 3.17, 3.18
cntActLabel_dom 3.17, 3.18
distactivelabel 3.20, 3.28
distactivelabel_dom 3.20
distlabel 3.13
false 3.6, 3.28
guess 3.24, 3.26, 3.29
in 3.24, 3.25, 3.26
ismodel 3.7, 3.28
label_max 3.21
label_min 3.21
lcount 3.9
lhspat 3.23, 3.28
lhspat_dom 3.23

predicate defined in
maxalabel 3.18, 3.28
maxalabel_dom 3.18
maxtlabel 3.11
minalabel 3.17, 3.28
minalabel_dom 3.17
mterm 3.22, 3.28
mterm_max 3.22
nomodel 3.7, 3.28
notaccept 3.8, 3.28
mintlabel 3.10
ok 3.27, 3.28
out 3.24, 3.25, 3.26
pattern 3.3
sumalabel 3.19, 3.28
sumalabel_dom 3.19
sumalabel_max 3.19
sumalabel_min 3.19
sumtlabel 3.12
true 3.5, 3.28
undec 3.25

Table 3.1: index for the definition of the predicates

3.2 States of nodes

When a GRAPPA-instance is evaluated under some semantics, a state is assigned to
every node. These states are represented by the following predicates in the encoding. The
argument INST introduced in order to use “subprograms” as explained in Section 2.5.7.

in(INST, NODE)
description: This state corresponds to the fact that NODE is accepted.

out(INST, NODE)
description: This state corresponds to the fact that NODE is not accepted.

40

3.3. Basic definitions

undec(INST, NODE)
description: Marks NODE as undecided.

3.3 Basic definitions
This part contains basic rules which are used by the encodings of all semantics.

3.3.1 Basic facts

First there are some facts in Listing 3.2 which define the syntax of the relational operators.
Moreover, a large number is required later which is defined in Line 243.

237 eq("==").
238 neq("!=").
239 leq("<=").
240 geq(">=").
241 gt(">").
242 lt("<").
243 maxVal(1661992959).

Listing 3.2: definition of relational operators

3.3.2 Parsing the input

The acceptance condition – as it is represented via the predicate s – is broken down to
its single components which are the nested and, or, xor, neg predicates and finally the
basicpattern. This is done in a recursive fashion as shown in Listing 3.3. The rules
traverse the syntax-tree of the acceptance-condition given in s and “wraps” every boolean
operation, as well as its arguments, in a new pattern predicate.

228 pattern(P) :- s(X,P).
229 pattern(P) :- pattern(and(P,_)).
230 pattern(P) :- pattern(and(_,P)).
231 pattern(P) :- pattern(or(P,_)).
232 pattern(P) :- pattern(or(_,P)).
233 pattern(P) :- pattern(neg(P)).
234 pattern(P) :- pattern(xor(P,_)).
235 pattern(P) :- pattern(xor(_,P)).

Listing 3.3: parsing patterns

The predicate basicpattern is required in some of the rules defined later. To provide
“direct access” the rule shown in Listing 3.4 is added.

226 basicpattern(L,R,A) :- pattern(basicpattern(L,R,A)).

Listing 3.4: retrieve basicpattern

41

3. Static encodings

3.3.3 Retrieving the truth values

Now the truth values of all pattern atoms must be computed. The start is done with the
basicpattern atoms, then the result is propagated through possible boolean functions.
In a first step true resp. false basicpattern predicates are identified. Recall that a
basicpattern represents a functional combination whose result is compared to an integer
value. So the value of the functional combination has to be calculated before this result
can be compared to the integer value. Assume at this point that this is already done and
the result is stored in the predicate lhspat.

lhspat(INST, L, I)

INST Argument used as described in Section 2.5.7
L The id of the functional combination.
I The result of the functional combination.

The rules for true resp. false are given in the Listing 3.5 resp. 3.6. The rules mainly
check what kind of comparison is in use. They extract the operator – encoded as string –
from the basicpattern and store it in the variable R. In each rule the content of R is
matched to one of the geq, leq, eq, neq, gt, lt atoms and the corresponding comparison
is done.

The argument INST which appears in almost every rule is introduced as a consequence
of the methodology described in Section 2.5.7.

189 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), geq(R), I>=A,
↪→ basicpattern(L,R,A).

190 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), leq(R), I<=A,
↪→ basicpattern(L,R,A).

191 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), eq(R), I=A,
↪→ basicpattern(L,R,A).

192 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), neq(R), I!=A,
↪→ basicpattern(L,R,A).

193 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), gt(R), I>A,
↪→ basicpattern(L,R,A).

194 true(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), lt(R), I<A,
↪→ basicpattern(L,R,A).

Listing 3.5: identify true basicpattern

The rules for the false predicate in Listing 3.6 are similar to the rules of the true
predicate. The only difference is that the inverse operation – to the operation stored in
variable R – is carried out to retrieve the result.

196 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), geq(R), I<A,
↪→ basicpattern(L,R,A).

197 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), leq(R), I>A,
↪→ basicpattern(L,R,A).

42

3.3. Basic definitions

198 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), eq(R), I!=A,
↪→ basicpattern(L,R,A).

199 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), neq(R), I=A,
↪→ basicpattern(L,R,A).

200 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), gt(R), I<=A,
↪→ basicpattern(L,R,A).

201 false(INST,X) :- X=basicpattern(L,R,A), lhspat(INST,L,I), lt(R), I>=A,
↪→ basicpattern(L,R,A).

Listing 3.6: identify false basicpattern

The truth values of the basicpattern atoms are used to compute the truth values of the
pattern atoms. An atom ismodel or nomodel is derived for a specific pattern atom
if the pattern is true resp. false.

The base case is pattern(X) where X is a basicpattern which is represented by the
rules in Line 207 resp. 215 in Listing 3.7. The other rules cover the cases where
pattern is a boolean combination of basicpattern atoms. The rules corresponding to
a boolean operation fire when the atoms nomodel, ismodel – corresponding to the
boolean operation to be evaluated – have been derived.

207 ismodel(INST,X) :- pattern(X), true(INST,X).
208 ismodel(INST,X) :- pattern(X), pattern(X1), X=neg(X1), nomodel(INST,X1).
209 ismodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=and(X1,X2),

↪→ ismodel(INST,X1), ismodel(INST,X2).
210 ismodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=or(X1,X2),

↪→ ismodel(INST,X1).
211 ismodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=or(X1,X2),

↪→ ismodel(INST,X2).
212 ismodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=xor(X1,X2),

↪→ ismodel(INST,X1), nomodel(INST,X2).
213 ismodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=xor(X1,X2),

↪→ ismodel(INST,X2), nomodel(INST,X1).
214
215 nomodel(INST,X) :- pattern(X), false(INST,X).
216 nomodel(INST,X) :- pattern(X), pattern(X1), X=neg(X1), ismodel(INST,X1).
217 nomodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=and(X1,X2),

↪→ nomodel(INST,X1).
218 nomodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=and(X1,X2),

↪→ nomodel(INST,X2).
219 nomodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=or(X1,X2),

↪→ nomodel(INST,X1), nomodel(INST,X2).
220 nomodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=xor(X1,X2),

↪→ nomodel(INST,X1), nomodel(INST,X2).
221 nomodel(INST,X) :- pattern(X), pattern(X1), pattern(X2), X=xor(X1,X2),

↪→ ismodel(INST,X1), ismodel(INST,X2).

Listing 3.7: calculate the truth value of acceptance patterns

Finally with the information held by nomodel, ismodel the program can decide whether
a node is accepted or not. This is achieved by the rules in Listing 3.8 and the information
is stored in the atoms accept resp. notaccept.

43

3. Static encodings

203 accept(INST,X) :- s(X,I), ismodel(INST,I).
204 notaccept(INST,X) :- s(X,I), nomodel(INST,I).

Listing 3.8: acceptance of a node basicpattern

3.3.4 Calculate functions unaffected by active edges

Still the functional combinations have to be evaluated and, hence, the result of the
functions appearing in the functional combinations need to be calculated. In this
subsection the rules of the functions, which do not depend on active edges – therefore
not affected by saturation – are presented in the Listings 3.9 to 3.13. The definitions
are straight forward implemented by making use of the corresponding ASP-aggregate
functions.

Regarding lcount – presented in Listing 3.9 – a potential pitfall would have been to
count the edgelabels itself, because two edges could have the same label and then they
would be counted as one. Hence, the source nodes are counted, because they must be
unique and multiedges are not allowed by definition.

27 lcount(NODE,L,NUMBER) :- s(NODE,_), term(_,_,_,labelcount(NODE,L)),
↪→ NUMBER = #count{I:e(I,NODE,L)}.

Listing 3.9: rule definition for lcount

52 mintlabel(NODE,NUMBER) :- s(NODE,_), term(_,_,_,minlabel(NODE)),
↪→ NUMBER= #min{I:e(_,NODE,I);Max:maxDom(Max)}.

Listing 3.10: rule definition for mintlabel

77 maxtlabel(NODE,NUMBER) :- s(NODE,_), term(_,_,_,maxlabel(NODE)),
↪→ NUMBER= #max{I:e(_,NODE,I);Min:minDom(Min)}.

Listing 3.11: rule definition for maxtlabel

Regarding sumtlabel presented in Listing 3.12: the elements of the set, which the
ASP-aggregate is evaluating, are tuples and not single elements. Otherwise different
edges with the same weight would contribute only once to the sum. To distinguish such
values, the elements are tuples consisting of the edgeweight and the source node.

97 sumtlabel(NODE,NUMBER) :- s(NODE,_), term(_,_,_,sumlabel(NODE)),
↪→ NUMBER= #sum{I,S:e(S,NODE,I)}.

Listing 3.12: rule definition for sumtlabel

Finally, the reason why distlabel in Listing 3.13 is also calculated for distintactivelabel
is that this value is required by the definition of distactivelabel which is presented
later.

44

3.3. Basic definitions

116 distlabel(NODE,NUMBER) :- s(NODE,_), term(_,_,_,distinctactivelabel(NODE)),
↪→ NUMBER=#count{I:e(_,NODE,I)}. % do that also for the active labels (for the maximum)

117 distlabel(NODE,NUMBER) :- s(NODE,_), term(_,_,_,distinctlabel(NODE)),
↪→ NUMBER=#count{I:e(_,NODE,I)}.

Listing 3.13: rule definition for distlabel

3.3.5 Calculate functions affected by active edges

In this subsection the rules for the functions are presented which have to deal with active
edges. To retrieve the information if an edge is active the predicate activeedge is used.
An active edge is an edge where its source node is accepted and this definition is covered
by the rule in Listing 3.14.

8 activeedge(INST,Source,Target,Label) :- e(Source,Target,Label),
↪→ in(INST,Source).

Listing 3.14: rule definition for activeedge

As described in Section 2.5.9 aggregates computed over sets of atoms affected by saturation
are requiring special care. These considerations are applied and yield the rules given in
Listing 3.15 which define the predicate alcount. In Line 14 the maximum number of
active edges – for a given label – is calculated for each node where activelabelcount
is applied to. This way the domain for this predicate can be defined – in Line 15 – as
it simply ranges from zero to the maximum. The rule itself is just a reformulation of a
#count aggregate as shown in Listing 2.22. Only the predicate guess is added which is
explained in Section 2.5.7. When and how the predicate ok is derived to “trigger” the
saturation process is shown in the Sections 3.5 and 3.6.

14 alcount_max(NODE, L, MAX) :- s(NODE,_),term(_,_,_,activelabelcount(NODE,L)),
↪→ MAX = #count{I:e(I, NODE, L)}.

15 alcount_dom(NODE,L,0..MAX) :- alcount_max(NODE, L, MAX).
16
17 alcount(INST,NODE,L,NUMBER) :- alcount_dom(NODE,L,NUMBER), guess(INST),
18 NUMBER = #sum{
19 1, I:activeedge(INST,I,NODE,L);
20 -1, I:activeedge(INST,I,NODE,L), ok(INST);
21 NUMBER: ok(INST)
22 }.

Listing 3.15: rule definitions for activelabelcount

For the rules defining minactivelabel the predicate minalabel is used to store the
minimum of all active edges. A simple approach is presented in Listing 3.16.

minalabel(NODE,L,NUMBER) :-
NUMBER = #min{L:activeedge(INST,I,NODE,L); Max: maxDom(Max)}.

Listing 3.16: a straight forward rule for minalabel

45

3. Static encodings

Within the aggregate the entry “Max: maxDom(Max)” maybe surprising but the
addition is necessary to cover the case when there are no active edges at all. Without
this element the set would be empty and the aggregate would return ∞ – the neutral
element of the min function. For obvious practical reasons this case is avoided by adding
the upper bound of the domain.

Again the reformulation from Section 2.5.9 regarding saturation have to be applied. With
the considerations from Listing 2.23 the quite simple rule from Listing 3.16 becomes the
program in Listing 3.17.

32 minalabel_dom(NODE, Max) :- s(NODE,_), term(_,_,_,minactivelabel(NODE)),
↪→ maxDom(Max). % if there is no edge

33 minalabel_dom(NODE, NUMBER) :- s(NODE,_), term(_,_,_,minactivelabel(NODE)),
↪→ e(_,NODE,NUMBER).

34
35 cntActLabel_dom(NODE,0..NUMBER) :- minalabel_dom(NODE,_), NUMBER =

↪→ #count{S: e(S,NODE,I)}.
36 cntActLabel(INST,NODE,NUMBER+1) :- cntActLabel_dom(NODE,NUMBER),

↪→ guess(INST), % "+1" because the maximum of the domain belongs also to the set

37 NUMBER = #sum{ 1,S: activeedge(INST,S,NODE,I);
38 -1,S: activeedge(INST,S,NODE,I),ok(INST);
39 NUMBER:ok(INST)
40 }.
41
42 minalabel(INST,NODE,NUMBER) :- minalabel_dom(NODE,NUMBER), guess(INST),

↪→ cntActLabel(INST,NODE,N),
43 0 < #sum{
44 1-N*(NUMBER-I):activeedge(INST,_,NODE,I),I<=NUMBER;
45 1-N*(NUMBER-Max): maxDom(Max), Max<=NUMBER; % the maximum of the domain is also in the set to check

46 Z:maxVal(Z),ok(INST)
47 }.

Listing 3.17: rule definition for minalabel

The argument “NUMBER+1” of cntActLabel – in Line 36 of Listing 3.17 – includes “+1”
because the upper bound of the domain is also part of the set as argued before. To ensure
that the sum becomes greater than zero – in case of saturation – the atom maxVal is
used in Line 46.

The domain of minalabel – represented by minalablel_dom – includes all labels of
the incoming edges of the node – collected in Line 33 – and additionally the upper
bound of the domain – added in Line 32. The domain of cntActLabel is represented
by dom_cntActLabel and ranges from zero to the number of incoming edges for the
current node – defined in Line 35.

For maxactivelabel the predicate maxalabel is used to store the maximum of all
active edges. The rules – given in Listing 3.18 – are retrieved in the same manner as for
minactivelabel with the reformulation of #max instead of #min. To exclude −∞ as
result of the #max-aggregate – in case of an empty set – the lower bound of the domain
is added to the set under evaluation.

46

3.3. Basic definitions

57 maxalabel_dom(NODE, Min) :- s(NODE,_), term(_,_,_,maxactivelabel(NODE)),
↪→ minDom(Min). % if there is no edge

58 maxalabel_dom(NODE, NUMBER) :- s(NODE,_), term(_,_,_,maxactivelabel(NODE)),
↪→ e(_,NODE,NUMBER).

59
60 cntActLabel_dom(NODE,0..NUMBER) :- maxalabel_dom(NODE,_), NUMBER =

↪→ #count{S: e(S,NODE,I)}.
61 cntActLabel(INST,NODE,NUMBER+1) :- cntActLabel_dom(NODE,NUMBER),

↪→ guess(INST), % "+1" because the minimum of the domain belongs also to the set

62 NUMBER = #sum{ 1,S: activeedge(INST,S,NODE,I);
63 -1,S: activeedge(INST,S,NODE,I),ok(INST);
64 NUMBER:ok(INST)
65 }.
66
67 maxalabel(INST,NODE,NUMBER) :- maxalabel_dom(NODE,NUMBER), guess(INST),

↪→ cntActLabel(INST,NODE,N),
68 0 < #sum{
69 1+N*(NUMBER-I):activeedge(INST,_,NODE,I),-I<=-NUMBER;
70 1+N*(NUMBER-Min): minDom(Min), -Min <=-NUMBER; % the minimum of the domain is also in the set to check

71 Z:maxVal(Z),ok(INST)
72 }.

Listing 3.18: rule definition for maxalabel

For sumactivelabel – defined in Listing 3.19 – the predicate sumalabel is used to store
the sum of all active edges. Here the reformulation of Listing 2.21 is applied. To retrieve
the upper bound of the domain all positive values are summed up, because there is no
possibility to get a bigger result. In analogous fashion, for the lower bound all negative
values are summed up.

82 sumalabel_max(NODE,Max) :- s(NODE,_), term(_,_,_,sumactivelabel(NODE)), Max=
↪→ #sum{I,S:e(S,NODE,I), I>0}.

83 sumalabel_min(NODE,Min) :- s(NODE,_), term(_,_,_,sumactivelabel(NODE)), Min=
↪→ #sum{I,S:e(S,NODE,I), I<0}.

84
85 sumalabel_dom(NODE,Min..Max) :- sumalabel_max(NODE,Max), sumalabel_min(NODE,

↪→ Min).
86
87 sumalabel(INST,NODE,NUMBER) :- sumalabel_dom(NODE, NUMBER), guess(INST),
88 NUMBER= #sum{
89 I,S:activeedge(INST,S,NODE,I);
90 -I,S:activeedge(INST,S,NODE,I), ok(INST);
91 NUMBER: ok(INST)
92 }.

Listing 3.19: rule definitions for sumalabel

For distactivelabel the predicate distinctactivelabel – presented in Listing 3.20 –
is used to store the number of active edges having different labels. Here the use of a
#count-aggregate would be the natural choice, same as for alcount. Therefore, the
reformulation of Listing 2.22 is required again. It is easy to see that the domain ranges

47

3. Static encodings

from zero to the number of edges with different labels which corresponds precisely to the
definition of the predicate distlabel.

102 distactivelabel_dom(NODE, 0..NUMBER) :- distlabel(NODE,NUMBER).
103
104 distactivelabel(INST,NODE,NUMBER):- s(NODE,_),

↪→ term(_,_,_,distinctactivelabel(NODE)),
105 distactivelabel_dom(NODE, NUMBER), guess(INST),
106 NUMBER=#sum{
107 1,I:activeedge(INST,_,NODE,I);
108 -1,I:activeedge(INST,_,NODE,I), ok(INST);
109 NUMBER,ok: ok(INST)
110 }.

Listing 3.20: rule definition for distactivelabel

3.3.6 Calculate functional combinations

With the function values now being available the coefficients have to be incorporated
to finally calculate the result of every single term. To this end the predicate mterm
– defined in Listing 3.22 – is used. The predicate mterm_max – also defined in this
listing – stores the minimum and maximum of possible values for a single term. This is
necessary because rules – defined later – require the domain for each term.

For the domain of minalabel and maxalabel the minimum and maximum weight of
incoming edges is required. This information is retrieved by the rules given in Listing 3.21
and stored by the predicates label_max resp. label_min.

128 label_max(NODE, MAX) :- s(NODE,_), term(_,_,_,minactivelabel(NODE)), MAX=
↪→ #max{I:e(_,NODE,I)}.

129 label_max(NODE, MAX) :- s(NODE,_), term(_,_,_,maxactivelabel(NODE)), MAX=
↪→ #max{I:e(_,NODE,I)}.

130 label_min(NODE, MIN) :- s(NODE,_), term(_,_,_,minactivelabel(NODE)), MIN=
↪→ #min{I:e(_,NODE,I)}.

131 label_min(NODE, MIN) :- s(NODE,_), term(_,_,_,maxactivelabel(NODE)), MIN=
↪→ #min{I:e(_,NODE,I)}.

Listing 3.21: retrieve min/ max edgelabels

The definitions for mterm – in Listing 3.22 – for the different aggregate functions of
GRAPPA– e. g. activelabelcount in Line 137 – are straight forward. The result is
calculated by fetching the result of the involved function from the corresponding predicate
– for activelabelcount the predicate alcount – and multiplying it with the coefficient
of the term.

Also the definitions of label_max, for functions not depending on active edges, are
simple, because the domain of these functions consists only of one value, namely the same
value which is calculated in the corresponding mterm. However, the other definitions of
label_max – depending on active edges – require further consideration.

48

3.3. Basic definitions

The first approach to define mterm_max would be to set the minimum to zero and the
maximum to the result of alcount_max. But the coefficient could also be negative which
would cause the limits to switch, i. e. the minimum would be the result of alcount_max
multiplied by the coefficient and the maximum zero. To handle both cases – positive
and negative coefficient – the bounds are determined by min/ max aggregates on the
set {M * NUMBER;0} which yield the correct bounds in either case. This consideration
leads to the definition of mterm_max for the predicate activelabelcount in Line 136
of Listing 3.22.

The situation is similar for the definition of mterm_max – in Line 142 – for the
predicate minactivelabel. The first idea would be to set the lower bound to the lowest
edgeweight of the incoming edges multiplied with the coefficient and the maximum to the
highest weight multiplied with the coefficient. The first problem of this approach arises
if there are no incoming edges which would cause the result of minalabel to be the
value given by maxDom. Therefore, the upper bound of mterm is set to maxDom
multiplied with the coefficient. To handle negative coefficients, the bounds are selected
again by min/ max aggregates. The definition of mterm_max for maxactivelabel in
Line 148 follows the same approach.

The definition of mterm_max for the predicate sumactivelabel – as shown in Line 154
– is straight forward. Zero is always the lower/ upper bound – in case there are no incoming
edges. The handling of negative coefficients is the same as before for alcount_max.

Finally, the definition of mterm_max for the predicate distinctactivelabel in Line 160
is the same as for the predicate activelabelcount.

136 mterm_max(X, ID, Y, Z) :- term(X,ID,M,I), I=activelabelcount(J,K),
↪→ alcount_max(J,K,NUMBER), Y=#min{M*NUMBER;0}, Z=#max{M*NUMBER;0}.

137 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=activelabelcount(J,K),
↪→ alcount(INST,J,K,NUMBER), Y=M*NUMBER.

138
139 mterm_max(X, ID, Y, Y) :- term(X,ID,M,I), I=labelcount(J,K),

↪→ lcount(J,K,NUMBER), Y=M*NUMBER.
140 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=labelcount(J,K),

↪→ lcount(J,K,NUMBER), Y=M*NUMBER, guess(INST).
141
142 mterm_max(X, ID, Y, Z) :- term(X,ID,M,I), I=minactivelabel(J), maxDom(Max),

↪→ label_min(J,Min), Y=#min{M*Min; M*Max}, Z=#max{M*Min; M*Max}. %# min /# max again because a neg coefficent could swap min / max

143 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=minactivelabel(J),
↪→ minalabel(INST,J,NUMBER), Y=M*NUMBER.% , NUMBER < ># sup .

144
145 mterm_max(X, ID, Y, Y) :- term(X,ID,M,I), I=minlabel(J),

↪→ mintlabel(J,NUMBER), Y=M*NUMBER.
146 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=minlabel(J),

↪→ mintlabel(J,NUMBER), Y=M*NUMBER, guess(INST).
147
148 mterm_max(X, ID, Y, Z) :- term(X,ID,M,I), I=maxactivelabel(J),

↪→ label_max(J,Max), minDom(Min), Y=#min{M*Min;M*Max},
↪→ Z=#max{M*Min;M*Max}.

149 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=maxactivelabel(J),

49

3. Static encodings

↪→ maxalabel(INST,J,NUMBER), Y=M*NUMBER, NUMBER<>#inf.
150
151 mterm_max(X, ID, Y, Y) :- term(X,ID,M,I), I=maxlabel(J),

↪→ maxtlabel(J,NUMBER), Y=M*NUMBER.
152 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=maxlabel(J),

↪→ maxtlabel(J,NUMBER), Y=M*NUMBER, guess(INST).
153
154 mterm_max(X, ID, Y, Z) :- term(X,ID,M,I), I=sumactivelabel(J),

↪→ sumalabel_min(J,Min), sumalabel_max(J,Max), Y=#min{M*Min;M*Max;0},
↪→ Z=#max{M*Min;M*Max;0}.

155 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=sumactivelabel(J),
↪→ sumalabel(INST,J,NUMBER), Y=M*NUMBER.

156
157 mterm_max(X, ID, Y, Y) :- term(X,ID,M,I), I=sumlabel(J),

↪→ sumtlabel(J,NUMBER), Y=M*NUMBER.
158 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=sumlabel(J),

↪→ sumtlabel(J,NUMBER), Y=M*NUMBER, guess(INST).
159
160 mterm_max(X, ID, Y, Z) :- term(X,ID,M,I), I=distinctactivelabel(J),

↪→ distlabel(J,NUMBER), Y=#min{M*NUMBER;0}, Z=#max{M*NUMBER;0}.
161 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=distinctactivelabel(J),

↪→ distactivelabel(INST,J,NUMBER), Y=M*NUMBER.
162
163 mterm_max(X, ID, Y, Y) :- term(X,ID,M,I), I=distinctlabel(J),

↪→ distlabel(J,NUMBER), Y=M*NUMBER.
164 mterm(INST,X, ID, Y) :- term(X,ID,M,I), I=distinctlabel(J),

↪→ distlabel(J,NUMBER), Y=M*NUMBER, guess(INST).

Listing 3.22: rule definition for mterm and mterm_max

In order to compute the truth values of the acceptance conditions of GRAPPA-instance,
the predicate lhspat is defined in Listing 3.23 to sum up all terms of a functional combi-
nation. Without saturation it would be a “normal” sum aggregate, but due to saturation
the aggregate is again reformulated as shown in Listing 2.21. For this reformulation a
domain predicate lhspat_dom is necessary, which can easily be computed by summing
up the lower resp. upper bound of every term involved. The lower and upper bound is
already computed for every term and stored within mterm_max atoms.

172 lhspat_dom(X, MIN .. MAX) :- basicpattern(X,_,_),
173 MIN = #sum{I, ID: mterm_max(X,ID,I,_)},
174 MAX = #sum{I, ID: mterm_max(X,ID,_,I)}.
175
176 lhspat(INST,X,Y) :- Y = #sum {
177 I, ID: mterm(INST,X,ID,I);
178 -I, ID: mterm(INST,X,ID,I), ok(INST);
179 Y : ok(INST)
180 },
181 lhspat_dom(X,Y), guess(INST).

Listing 3.23: rule definition for lhspat

50

3.4. Model semantics

3.4 Model semantics
Recall Definition 2.21. Let G be a GRAPPA-instance.

A three-valued interpretation v is a model of G iff v is total and v = ΓG(v).

With the rules from Section 3.3 an encoding to retrieve all models of a GRAPPA-instance
can easily be defined – as shown in Listing 3.24. First all possible model-candidates are
guessed – done in Line 3. Each node is either accepted or not accepted and therefore
assigned to the correspondent state in resp. out.
An interpretation is not a valid model if for a state, which is not accepted, the accept
predicate can be derived or dually if for an accepted state the accept predicate is not
derived. This condition is expressed in the constraints in the Lines 5 and 6. So all
invalid interpretations are filtered out and every found answer-set is a model of the
GRAPPA-instance.

The rule in Line 8 only avoids some warnings of the ASP-solver.

As already mentioned the basic rules in Section 3.3 are designed such that they can be
applied on more than one specific guess – refer to Section 2.5.7. For the model semantics
the guess is executed with the id “0”. To “trigger the execution” of the rules this id must
be stated by the atom guess(0).

1 guess(0).
2
3 in(0,S) | out(0,S) :- s(S,_).
4
5 :- accept(0,X), out(0,X).
6 :- not accept(0,X),in(0,X).
7
8 ok(0) :- #false. % to avoid warnings of the solver

Listing 3.24: rules for the model semantics

3.5 Admissible semantics
Recall Definition 2.21. Let G be a GRAPPA-instance.

A three-valued interpretation v is admissible in G iff v ⊆ ΓG(v),

where ΓG(v) is the characteristic operator from Definition 2.26.

To compute the admissible interpretations, again all possible interpretations need to be
considered. But in this case a three-valued interpretation is necessary. This guess is
performed in Listing 3.25 and the three-valued interpretation is identified with index “0”,
i. e. the atoms corresponding to this guess are in(0,_), out(0,_), undec(0,_).

5 in(0,S) | out(0,S) | undec(0,S) :- s(S,_).

Listing 3.25: three-valued guess

51

3. Static encodings

To determine if a particular three-valued interpretation is indeed admissible its com-
pletions need to be considered. The completion is performed by guessing a two-valued
interpretation – Line 32 of Listing 3.26 – and then assuring that the nodes of the
GRAPPA-instance which are assigned to in, out by the three-valued interpretation are
also assigned to in, out by the two-valued interpretation. The atoms corresponding to
the two-valued guess are identified with the index “1” i. e. in(1,_), out(1,_).
The predicate guess(0) is missing because this guess should not be handled by the rules
of the basic definitions from Section 3.3. In contrary, the predicate guess(1) “triggers”
the execution of the rules from Section 3.3 for this guess.
The reason why in Listing 3.26 the rules use the parameter INST, instead of just writing
1 is, that later – for the complete semantics – these rules are also used for further guesses.

30 guess(1).
31
32 in(INST,S) | out(INST,S) :- s(S,_), guess(INST).
33 in(INST,S) :- in(0,S), guess(INST).
34 out(INST,S) :- out(0,S), guess(INST).

Listing 3.26: completion of the three-valued guess

A particular three-valued interpretation v is admissible if for every completion v′ ∈ [v]c
holds that for every node X ∈ v′ – i. e. in(1,X) – the atom accept(1,X) is derived
and for every node X 6∈ v′ – i. e. out(1,X) – the atom notaccept(1,X) is derived. At
this point saturation comes into play, because this condition must be verified for every
completion. This check is performed for each completion v′ on its own and all completions
which pass the check, i. e. the atom ok is derived, are merged into a single interpretation
by the saturation methodology.
This check is defined in the program – in Listing 3.27 – by counting all in(1,_) atoms
which are accepted – in Line 19 – together with all out(1,_) atoms, which are not
accepted – in Line 20. This sum must match the total number of defined nodes, i. e. all
in(0,_)/ out(0,_) – but not undec – nodes which is retrieved in Line 16.
If there is a completion which does not satisfy the condition, it causes all other valid
completions to “disappear” by the properties of the saturation technique (see Section 2.5.9).
Moreover, the invalid completion is removed from the answer-sets by the rule in Line 23.
The rule for ok(1) does not require a reformulation, because it fires also in case of
saturation.

16 cntSelected(M) :- M = #count{X: in(0,X);Y:out(0,Y)}.
17
18 ok(1) :- #sum{
19 1, in(X):in(0,X), accept(1,X);
20 1, out(X):out(0,X), notaccept(1,X)
21 } = M, cntSelected(M).
22
23 :- not ok(1).

Listing 3.27: filter admissible interpretations

52

3.5. Admissible semantics

Finally, the saturation is performed by the rules in listing Listing 3.28. The rules ensure
that every atom – affected by the second (two-valued) guess – is derived. All the rules in
Listing 3.28 which derive ok look out of place but the necessity of them is explained in
Section 2.5.9. Without them some valid answer-sets would vanish from the result.

41 in(INST,X) :- s(X, _), ok(INST).
42 out(INST,X) :- s(X, _), ok(INST).
43 ok(INST) :- in(INST,X), out(INST,X).
44
45 activeedge(INST,Source,Target,Label) :- e(Source,Target,Label), ok(INST).
46 ok(INST) :- activeedge(INST,Source, Target, _), out(INST,Source).
47
48 alcount(INST,NODE,L,X):- alcount_dom(NODE,L,X), ok(INST).
49 ok(INST) :- alcount(INST,NODE,L,X), alcount(INST,NODE,L,Y), X!=Y.
50
51 maxalabel(INST,NODE,NUMBER) :- maxalabel_dom(NODE,NUMBER), ok(INST).
52 ok(INST) :- maxalabel(INST,NODE,X), maxalabel(INST,NODE,Y), X!=Y.
53
54 minalabel(INST,NODE,NUMBER) :- minalabel_dom(NODE,NUMBER), ok(INST).
55 ok(INST) :- minalabel(INST,NODE,X), minalabel(INST,NODE,Y), X!=Y.
56
57 sumalabel(INST,NODE,NUMBER) :- sumalabel_dom(NODE, NUMBER), ok(INST).
58 ok(INST) :- sumalabel(INST,NODE, X), sumalabel(INST,NODE, Y), X!=Y.
59
60 distactivelabel(INST,N,X):- distactivelabel_dom(N,X), ok(INST).
61 ok(INST) :- distactivelabel(INST,NODE,X), distactivelabel(INST,NODE,Y), X!=Y.
62
63 mterm(INST,X,ID,Y..Z):- mterm_max(X,ID,Y,Z), ok(INST).
64 ok(INST) :- mterm(INST,X,ID,Y), mterm(INST,X,ID,Z), Y!=Z.
65
66 lhspat(INST,X,Y):- lhspat_dom(X,Y), ok(INST).
67 ok(INST) :- lhspat(INST,X, Y), lhspat(INST,X,Z), Y != Z.
68
69 true(INST,X) :- pattern(X), ok(INST).
70 false(INST,X) :- pattern(X), ok(INST).
71 ok(INST) :- true(INST,X), false(INST,X).
72
73 ismodel(INST,X) :- pattern(X), ok(INST).
74 nomodel(INST,X) :- pattern(X), ok(INST).
75 ok(INST) :- ismodel(INST,X), nomodel(INST,X).
76
77 accept(INST,X) :- s(X, _), ok(INST).
78 notaccept(INST,X) :- s(X, _), ok(INST).
79 ok(INST) :- accept(INST,X), notaccept(INST,X).

Listing 3.28: saturation rules

53

3. Static encodings

3.6 Complete semantics
Recall Definition 2.21. Let G be a GRAPPA-instance.

A three-valued interpretation v is complete in G iff v = ΓG(v).

A direct conclusion from Definition 2.21 and the definition of operator ΓG – from
Definition 2.26 – is Proposition 3.1.

Proposition 3.1. An admissible interpretation v is complete, i. e. v = ΓG(v), if for
every undecided variable a in v there exist completions v′1, v′2 ∈ [v]c s. t.

• α(a)(v′1) = t and

• α(a)(v′2) = f .

The encoding presented in this section is working on top of the encoding of the admis-
sible semantics as described in Section 3.5, because only admissible interpretations are
candidates for a complete interpretation.

The characterization of complete interpretations in Proposition 3.1 is used to remove
interpretations, which are not complete, from the admissible interpretations. This
characterization implies that – in the worst case – two interpretations must be guessed
for every undecided node in a given GRAPPA-instance. The rule in Line 3 counts the
number of undecided nodes and the rule in Line 4 of Listing 3.29 ensures that enough
guesses are performed.

In Line 6 the check from Proposition 3.1 is executed for every undecided node, i. e. two
different guesses G1, G2: G1 != G2 are searched, which are part of the guesses done
in Line 4 – i. e. G1>=2, G2>=2 – and where the node is accepted in one guess and not
accepted in the other guess. Finally, the interpretation is complete – as stated in Line 8
– if the number of such nodes – marked with undef– equals the number of undecided
nodes.

The id of the guesses starts at 2, because guess(1) is reserved for the admissible encoding.

3 numUndec(M) :- M = #count{X:undec(0,X)}.
4 guess (2..X) :- X=2*M+1, numUndec(M).
5
6 undef(X) :- accept(G1,X), notaccept(G2,X), undec(0,X), G1 != G2, G1 >= 2,

↪→ G2>=2.
7
8 complete :- M = #sum{
9 1,X: undef(X)

10 }, numUndec(M).
11
12
13 :- not complete.

Listing 3.29: rules for complete sematics

54

CHAPTER 4
Dynamic encodings

In this section the dynamic encoding is described to evaluate GRAPPA-instances under
admissible, complete or preferred semantics. The name “dynamic” was chosen because
the encoding is generated for each GRAPPA-instance separately. This generation must
be executed by a separate tool which takes a GRAPPA-instance as input and produces
the ASP encoding. In this case this tool is implemented as part of GrappaVis which is
presented in Chapter 6.

The main advantage of this approach is, as discussed in Section 2.6.4, that ΠP
3 complete

problems can be encoded. Hence it is also possible to provide an efficient encoding for
the preferred semantics, which is not possible for the static encoding.

The big difference of this kind of encoding is that the GRAPPA-instance is not represented
as a set of facts – as it is in the case of the static encoding. This approach encodes the
instance directly into a set of rules.

In this chapter the encodings for the admissible, complete and preferred semantics are
presented. The basic idea of the encoding – which is similar for all semantics – is
discussed within the section of the admissible semantics, as well as the rules to handle
the acceptance patterns of the GRAPPA-instances. The encoding for the complete and
preferred semantics then extend the encoding for the admissible semantics to retrieve the
corresponding interpretations.

4.1 Admissible semantics

4.1.1 Overview

A direct conclusion from Definition 2.21 and the definition of operator ΓG – from
Definition 2.26 – is Proposition 4.1.

55

4. Dynamic encodings

Proposition 4.1. An interpretation v is admissible in G if for every s ∈ S it holds that

• if s ∈ v then there is no v′ ∈ [v]c s. t. α(s)(mv′
s) = f

• if ¬s ∈ v then there is no v′ ∈ [v]c s. t. α(s)(mv′
s) = t

The basic idea of this encoding is to define two rules for every node s ∈ S, which derive
for a given interpretation v

• an atom sat(s) if there is a completion v′ ∈ [v]c s. t. the acceptance condition does
hold.

• an atom unsat(s) if there is a completion v′ ∈ [v]c s. t. the acceptance condition
does not hold.

The trick is that rules for sat(s) resp. unsat(s) are designed to cover the idea from
Section 2.5.8, i. e. every rule builds all completions within its own rule body and checks
if any v′ ∈ [v]c satisfies resp. not satisfies the acceptance condition for the node s.

With the rules for sat resp. unsat the check of Proposition 4.1 can easily be done,
because it boils down to the addition of constraints to the program which prohibit for an
interpretation v the existence of

• an atom sat(s) if ¬s ∈ v.

• an atom unsat(s) if s ∈ v.

4.1.2 Encoding

For the encodings of the admissible semantics a set of facts – comprising arg and leq
predicates – is required.

arg(node)

node A node of the instance.

description: This predicate is used to specify the set of nodes of the GRAPPA-
instance under evaluation.

leq(l, h)
description: This predicate defines the information order of the truth values

{0, 1, u} as defined in Section 2.1.2, by adding the four facts leq(u,0),
leq(u,1), leq(0,0), leq(1,1). The predicate is used to compute
completions of a given interpretation.

To retrieve all admissible interpretations all possible three-valued interpretations have to
be guessed, which is done as shown in Listing 4.1. The rules ensure that every node is
assigned to one of the three values {u, 1, 0} – denoting “undecided”, “true” and “false”
– which is stored in the atom ass.

56

4.1. Admissible semantics

1 ass(X,0) :- not ass(X,1), not ass(X,u), arg(X).
2 ass(X,1) :- not ass(X,0), not ass(X,u), arg(X).
3 ass(X,u) :- not ass(X,0), not ass(X,1), arg(X).

Listing 4.1: guessing interpretations

Let G = (S,E,L, λ, π) be a GRAPPA-instance and S = {s1, . . . , sk} the set of all
arguments of G. As already mentioned in Section 4.1.1, rules are required to derive
sat(si) resp. unsat(si) for each node si of the GRAPPA-instance. These rules consist
of two parts. First there is the “guessing”-part presented in Eqs. (4.1) and (4.2).

ass(s1, X1), . . . , ass(sk, Xk), (4.1)
leq(X1, S1), . . . , leq(Xk, Sk) (4.2)

In the Eq. (4.1) the three-valued interpretation, computed in Listing 4.1, is stored into
the local variables Xi. In the Eq. (4.2) the leq predicates generate the completions. The
definition of the predicate leq ensures that

• if Xi = 1 or Xi = 0, then Si = Xi.

• if Xi = u then Si ∈ {0, 1}.

This coerces the rule to evaluate all possible completions of the three-valued interpretation
given by ass.

The second part of the rule evaluates the acceptance pattern of the node s for which the
rule is written. For this task the acceptance pattern is split into its basic components, i. e.
the functions of the GRAPPA pattern-language (#, min, max, ...), arithmetic functions
and boolean functions, which are building the syntax-tree of the pattern. Every basic
component is converted into an ASP atom which stores the result in a new local variable
to make the result available for the next computation step. This sounds more complicated
than it actually is as demonstrated in the small Example 4.1.

Example 4.1. Let φ := 3 ·min()−max() an acceptance pattern.

The syntax-tree is shown at the right side. The
atoms for the acceptance pattern φ are generated
bottom up.

The atoms generated for φ are:

V ar1 = #min {· · · } ,
V ar2 = 3 ∗ V ar1,
V ar3 = #max {· · · }
V ar4 = V ar2− V ar3

φ

−

·

3 min()

max()

57

4. Dynamic encodings

The atoms for the evaluation of min/ max are only snippets. The exact definition is
given later in this chapter. 4

Let (S,E,L, λ, π) be a GRAPPA-instance, n the index of the node sn ∈ S whose
acceptance condition should be evaluated and P (n) = {i | (si, sn) ∈ E} the set of all
indices of predecessors of sn, i. e. {si | i ∈ P (n)} is the set of nodes sn depends on.

The rules to convert the functions of the GRAPPA pattern-language are given in Eq. (4.3)
to Eq. (4.12). The variable V ark is instantiated for each application of a rule, i. e. the
index k is unique for each variable.

Some remarks on the notation for the conversion rules:

• The conversion is denoted as <fct> → <atom>, where <fct> represents the
function to convert and <atom> the atom which is generated for <fct>.

• The indices a and z, are representing the first and the last element of the set P (n).
An expression like Sa; ... ;Sz indicates that all elements of P (n) are iterated.
For example let P (n) = {3, 6, 9, 12}. The expression {Sa; ... ;Sz} is decoded
as {S3;S6;S9;S12}.

• la represents the label of the edge (sa, sn) ∈ E

• minDom, maxDom represents the minimum and maximum of the domain for
the given GRAPPA-instance. These values are added to the set which the ASP-
aggregates #min resp. #max evaluate, to avoid that the aggregates yields ∞ resp.
−∞ in case that P (n) is empty.

#(l) → V ark = #sum {Sa, sa; ... ;Sz, sz} (4.3)
#t(l) → V ark = #count {sa; ... ;sz} (4.4)
min() → V ark = #min {maxDom; la : Sa = 1; ... ;lz : Sz = 1} (4.5)

mint() → V ark = #min {maxDom; la; ... ;lz} (4.6)
max() → V ark = #max {minDom; la : Sa = 1; ... ;lz : Sz = 1} (4.7)

maxt() → V ark = #max {minDom; la; ... ;lz} (4.8)
sum() → V ark = #sum {la, sa : Sa = 1; ... ;lz, sz : Sz = 1} (4.9)

sumt() → V ark = #sum {la, sa; ... ;lz, sz} (4.10)
count() → V ark = #count {la : Sa = 1; ... ;lz : Sz = 1} (4.11)

countt() → V ark = #count {la; ... ;lz} (4.12)

The variables Si are either 0 or 1, and Si = 1 is indicating that the edge (si, sn) is an
active edge. Therefore, Si can be used to count the number of active edges in Eq. (4.3).
To make the set-entry unique for each node Si is coupled to the parent node as a tuple
(Si, si). For the other rules an explicit condition for an active edge is necessary. This is

58

4.1. Admissible semantics

achieved by adding the constraint Si = 1 to the corresponding set element in Eqs. (4.5),
(4.7), (4.9) and (4.11).

The functional combinations are evaluated by multiplying the coefficients of the terms to
the function results in Eq. (4.13) and then summing these results up – step by step – in
Eq. (4.14).

const ·V arj → V ark = const ∗V arj (4.13)
V ari + V arj → V ark = V ari + V arj (4.14)

The next step is to evaluate the comparison of the result of the functional combination to
the constant. Here a trick is applied, because an atom of the form V ark = (V ari < V arj)
is not allowed. So a sum-aggregate is used to calculate the truth value in Eq. (4.15).

V ari ◦ const → V ark = #sum{1 : V ari ◦ const} ◦ ∈ {<,<=,=, ! =, >=, >}
(4.15)

V ari and V arj → V ark = V ari &V arj (4.16)
V ari or V arj → V ark = V ari ?V arj (4.17)
V ari xor V arj → V ark = V ari ˆV arj (4.18)

sat → V ari = 1 (4.19)
unsat → V ari = 0 (4.20)

To propagate the truth-values through the arbitrary boolean functions it becomes handy
that at least some ASP-solvers have built-in bitwise boolean operations. Because only
0 and 1 are used as truth-values these build-in operations suffice to calculate the corre-
sponding boolean functions in Eqs. (4.16) to (4.18).

The last step depends on whether the sat or unsat predicate should be derived. In the
first case the rule Eq. (4.19) in the latter case the rule Eq. (4.20) is added. In this case
V ari is no new variable but the variable which holds the result of the acceptance pattern.

Example 4.2.
Let G = (S,E,L, λ, π) be a GRAPPA-instance,
with
S = {a, b, c}, E = {(a, c), (b, c)},
λ = {(a, c) 7→ 2, (b, c) 7→ 3} and
π = {s 7→ f | s ∈ S},

a b

c

32

where

f :=4 ∗#(2)− 2 ∗ sum() = 14 xor count() ≥ 0 or min() 6= 1 (4.21)
= (4 ∗#(2) + (−2) ∗ sum() = 14 xor (count() ≥ 0 or min() 6= 1)) (4.22)

Equation (4.22) illustrates the execution order of the operations.

59

4. Dynamic encodings

1 sat(c) :- ass(a,X1), ass(b,X2), ass(c,X3),
2 leq(X1,S1), leq(X2,S2), leq(X3,S3),
3 Var1 = #sum{S1,a}, % #(2)
4 Var2 = 4 * Var1, % 4*#(2)
5 Var3 = #sum{2,a; 3,b}, % sum()
6 Var4 = -2 * Var3, % -2 * sum()
7 Var5 = Var2 + Var4, % 4*#(2) - 2 * sum()
8 Var6 = #sum{1:Var5=14}, % 4*#(2) - 2 * sum() == 14
9 Var8 = #count{2:S1=1;3:S2=1}, % count()

10 Var9 = #sum{1:Var8>=0}, % count() >= 0
11 Var10 = #min{2:S1=1;3:S2=1\}, % min()
12 Var11 = #sum{1:Var8!=0}, % min() != 1
13 Var12 = Var9 ? Var11, % count() >= 0 or min() != 1
14 Var13 = Var6 ^ Var12, % 4*#(2) - 2 * sum() == 14 xor
15 % count() >= 0 or min() != 1
16 Var13 = 1.
17
18 unsat(c) :- ass(a,X1), ass(b,X2), ass(c,X3),
19 leq(X1,S1), leq(X2,S2), leq(X3,S3),
20 Var1 = #sum{S1,a}, % #(2)
21 Var2 = 4 * Var1, % 4*#(2)
22 Var3 = #sum{2,a; 3,b}, % sum()
23 Var4 = -2 * Var3, % -2 * sum()
24 Var5 = Var2 + Var4, % 4*#(2) - 2 * sum()
25 Var6 = #sum{1:Var5=14}, % 4*#(2) - 2 * sum() == 14
26 Var8 = #count{2:S1=1;3:S2=1}, % count()
27 Var9 = #sum{1:Var8>=0}, % count() >= 0
28 Var10 = #min{2:S1=1;3:S2=1\}, % min()
29 Var11 = #sum{1:Var8!=0}, % min() != 1
30 Var12 = Var9 ? Var11, % count() >= 0 or min() != 1
31 Var13 = Var6 ^ Var12, % 4*#(2) - 2 * sum() == 14 xor
32 % count() >= 0 or min() != 1
33 Var13 = 0.

Listing 4.2: rule for sat(c) and unsat(c)

The rules for sat(c) and unsat(c) are exactly the same, with only the last line – Line 16
resp. Line 33 – being different. 4

Finally, the rules in Listing 4.3 remove all interpretations which are not admissible.

1 :- arg(S), ass(S,1), unsat(S).
2 :- arg(S), ass(S,0), sat(S).

Listing 4.3: remove invalid interpretations

4.2 Complete semantics
The encoding is based on the same consideration as for the static counterpart in Section 3.6,
especially the Proposition 3.1.

60

4.2. Complete semantics

Because every complete semantics is admissible the following rules are used in addition to
the rules described in Section 4.1. The rules to check the existence of the two completions
v′1, v

′
2 are basically the same as the rules for sat/ unsat in Section 4.1, but in this case

these two rules are merged into one, i. e. two independent completions are generated
within one rule. So in the end there is an additional rule for each statement si which
derives an atom undec(si) if v1, v2 can be found. So the first part of the rule looks like
the Eqs. (4.23) to (4.26).

ass(si, u), (4.23)
ass(s1, X1), . . . , ass(sk, Xk), (4.24)
leq(X1, S1), . . . , leq(Xk, Sk) (4.25)
leq(X1, T1), . . . , leq(Xk, Tk) (4.26)

Noteworthy is that Eq. (4.24) is exactly the same as Eq. (4.1) as well as Eq. (4.25) and
Eq. (4.2) are equal. Equation (4.23) ensures the rule fires only if the statement s is
undecided.

In Eq. (4.25) all possible interpretations for the completion v′1 are generated. Equa-
tion (4.26) does the same but stores the result it into the variables Ti. The completions
have to be evaluated and this is done in exactly the same way as in Section 4.1 by
Eq. (4.3) to Eq. (4.18). The only extension is that the occurrences of Si must be replaced
by Ti when applying the rules for the second interpretation. The rules for the first
interpretation are closed by Eq. (4.19), i. e. the rules check whether v′1 satisfies the
acceptance pattern of the node, and the rules for the second interpretation v′2 are closed
by Eq. (4.20), i. e. the rule checks whether v′2 invalidates the acceptance pattern of the
node.

Example 4.3.
Let G = (S,E,L, λ, π) be a GRAPPA-instance,
with
S = {a, b, c}, E = {(a, c), (b, c)},
λ = {(a, c) 7→ 2, (b, c) 7→ 3} and
π = {s 7→ f | s ∈ S},

a b

c

32

where

f :=2 ∗ count() 6= 5 (4.27)

1 undec(c) :- ass(c,u),
2 ass(a,X1), ass(b,X2), ass(c,X3),
3 leq(X1,S1), leq(X2,S2), leq(X3,S3),
4 leq(X1,T1), leq(X2,T2), leq(X3,T3),
5 Var1 = #count{2:S1=1;3:S2=1}, % count()
6 Var2 = 2 * Var1, % 2 * count()
7 Var3 = #sum{1:Var2 != 5}, % 2 * count() != 5
8 Var3 = 1,

61

4. Dynamic encodings

9 Var11 = #count{2:T1=1;3:T2=1}, % count()
10 Var12 = 2 * Var11, % 2 * count()
11 Var13 = #sum{1:Var12 != 5}, % 2 * count() != 5
12 Var13 = 0.

Listing 4.4: rule for undec(c) 4

Finally, the rule in Listing 4.5 removes all interpretations which have an undecided
variable but undec was not derived. This yields all complete interpretations.

1 :- not undec(X), ass(X,u).

Listing 4.5: remove invalid interpretations

4.3 Preferred semantics
Recall Definition 2.21:
A three-valued interpretation v is preferred in G iff v is subset-maximal admissible in G.

To check the subset-maximality saturation is necessary again. But the application for
the dynamic encoding is not as difficult as in the static encoding. The problem of the
static encoding was that the aggregates of the rules where depending on an atom, namely
activeedge. As a result, the naive formulation of a rule fires if not saturated, but
does not fire if saturated, what causes problems as described in Section 2.5.9. In the
dynamic encoding the aggregates only depend on variables which are within the rule of
the aggregate itself, i. e. the aggregate is not affected by saturation in a way, that the
rule-body becomes invalid after saturation.

For that reason, the rules from the admissible encoding can stay unaltered. The admissible
encoding yields all admissible interpretations I. Now every interpretation v ∈ I has to
be checked if it is subset-maximal. This is done by guessing all completions [v]c of v and
checking whether there is any v′ ∈ [v]c which is admissible. If a particular v′ ∈ [v]c is
admissible, saturation is performed, otherwise not. Then only those v ∈ I have to be
removed which are not saturated, i. e. are not subset-maximal.

To this end all possible completions are generated by the rules in Listing 4.6. Every
atom, which is introduced for checking the completions, is labeled with a prefix “2” to
avoid clashes with the atoms used to compute the admissible interpretations. So the
predicate ass2 stores the completion. In Line 3 all possible interpretations are generated.
The rules in the Lines 1 and 2 assure that generated interpretations are indeed valid
completions.

1 ass2(S,0):-ass(S,0)
2 ass2(S,1):-ass(S,1)
3 ass2(S,1)|ass2(S,0)|ass2(S,u):-ass(S,u).

Listing 4.6: rules for completion

62

4.3. Preferred semantics

There is one flaw in generating the completions, namely that a completion is generated
which is exactly the same as the original interpretation. This interpretation would
be found to be admissible again and therefore no interpretation would be preferred.
Therefore, this special case is taken care of in the rule in Listing 4.7. It checks the
number of undecided nodes in the original and completed interpretation. If they match,
saturation is performed, so this case will not invalidate the result. Normally the result of
the aggregate is exactly zero in such a case. But in case of saturation there are much
more undecided nodes and therefore the result becomes negative. To keep the rule firing
in case of saturation the comparator is “≤”.

1 saturate:-0<=#sum{-1,S:ass(S,u);1,S:ass2(S,u)}.

Listing 4.7: taking care of case if the completion is the same as the original

Then the completions have to be checked if they are admissible. This is done by the
application of the same rules as described in Section 4.1. That means the rules for sat
and unsat are inserted once more, just with changed predicates to “access” the new
completion. So sat is replaced by sat2, unsat by unsat2 and ass by ass2.

The rules for enabling saturation are given in Listing 4.8. They derive saturate if the
completion is not admissible.

1 saturate :- arg(S), ass2(S,1), unsat2(S).
2 saturate :- arg(S), ass2(S,0), sat2(S).

Listing 4.8: rules for starting saturation

The rules for saturation the atoms into the answer-set are given in Listing 4.9. The
necessity of the rules in the Lines 6 and 7 is explained in Section 2.5.9.

1 ass2(S,0) :- arg(S),saturate.
2 ass2(S,1) :- arg(S),saturate.
3 ass2(S,u) :- arg(S),saturate.
4 sat2(S) :- arg(S),saturate.
5 unsat2(S) :- arg(S),saturate.
6 saturate :- ass(S,0),sat2(S),unsat2(S).
7 saturate :- ass(S,1),sat2(S),unsat2(S).

Listing 4.9: rules for saturation

Finally, it is necessary to remove all answer-sets which are not saturated and therefore
not preferred. This is done by the rule in Listing 4.10.

1 :- not saturate.

Listing 4.10: remove not saturated results

63

CHAPTER 5
Graphical user interface

In this chapter GrappaVis is introduced which is a graphical tool to specify and evaluate
GRAPPA-instances. Basically GrappaVis is a graph-editor based on the JGraphX
framework – available in [JGr16] – which is extended by a toolbox to evaluate GRAPPA-
instances.

For the different evaluation methods GrappaVis also incorporates the necessary tools to
(pre)process the instance, i. e. GrappaVis manages the export of the GRAPPA-instance
into the required format for the chosen evaluation method and is also capable of converting
GRAPPA to ADF-instances and the other way round.

This chapter starts with an overview of the different parts of the program and is followed
by a tutorial which shows how to specify and evaluate GRAPPA-instances with GrappaVis.
To define GRAPPA-instances, acceptance patterns for the nodes have to be defined.
To this end the syntax is presented which is used to specify acceptance patterns for
GrappaVis.

The methods for evaluating GRAPPA-instances can be configured to some extent. The
property file for this configuration is explained in Section 5.7.

Finally, there is a small section which discusses the design of the program.

Notation

Many tasks in GrappaVis are performed by drag and drop. The start of the drag is
referred to as drag-source and the end of the drag as drop-position or as drop-target.

65

5. Graphical user interface

5.1 Parts of the user interface

Figure 5.1: the editor

Figure 5.1 depicts a screenshot of GrappaVis with a highlighting of the different areas.

In the middle there is the drawing area, where the graph corresponding to the GRAPPA-
instance is drawn.

At the bottom there is the status bar and above there is the logging area. In the logging
area error-messages or other information are shown if problems occur during runtime.
The logging area can be cleared, i. e. all entries are removed, by double-clicking with the
right mouse-button on an entry of the list.

5.1.1 Editing toolbox

On the left side the toolbox for specifying and editing graphs is located. The different
elements of the toolbox are highlighted in Fig. 5.2.

In the upper half of the toolbox the template panel is located. This panel provides
different templates for nodes and edges which can be used to draw a graph.

In the lower half of the toolbox an overview panel of the drawing area is located. This
panel shows the content of the whole drawing area and becomes useful if the graph
becomes large. The blue rectangle in the overview panel depicts the current visible area
of the drawing area.

66

5.1. Parts of the user interface

In the middle, between the template and the overview panel, the default label for new
edges can be defined.

5.1.2 Evaluation toolbox

The evaluation toolbox is on the right side of the window. This toolbox comprises two
sections, namely the acceptance pattern section, – shown in Fig. 5.3 – and the comparison
section– shown in Fig. 5.4.

In the upper part of the acceptance pattern section the evaluation panel is located. This
panel is used to evaluate the GRAPPA-instance in the drawing area and is described in
Section 5.4 in detail.

In the lower part of the acceptance pattern section the acceptance pattern panel is located.
This panel is used to import acceptance patterns and to assign them to nodes in the
drawing area. This panel is described in detail in Section 5.3.

The comparison section is used to execute two different evaluation methods on the
GRAPPA-instance in the drawing area and to compare the results. A detailed description
is given in Section 5.4.

Figure 5.2: editing toolbox

Figure 5.3: acceptance pat-
tern section

Figure 5.4: comparison sec-
tion

67

5. Graphical user interface

5.2 Drawing a graph
Drawing a graph in GrappaVis is quite intuitive. To start, a node-template from the
template panel on the left is dragged into the drawing area – shown in Fig. 5.5.

Figure 5.5: dragging a node into the drawing area

Figure 5.6: adding
an edge with a new
node

Drag and drop of a node, which is already in the drawing area, results in two different
actions depending on the mouse cursor.

• If the cursor is approximately in the middle of the node, the cursor becomes a
pointing hand and the node is surrounded by a green rectangle as shown in Fig. 5.7a.
In this mode a new edge between the drag-source and the drop-target is inserted.

(a) pointing hand cursor (b) 4-way-cross

Figure 5.7: different types of cursors

If the drop-target is a node, only the edge is inserted. If drag-source and drop-
target are the same node a self loop is inserted – Fig. 5.8. If there is no node
at the drop-position a new node is inserted at the drop-position and the edge is
connecting the drag-source and the new node – shown in Fig. 5.6. This mode is
very comfortable to quickly draw a graph.

68

5.2. Drawing a graph

(a) start a drag (b) drag the edge out-
side the node

(c) drag edge back into
node

(d) completed self-loop

Figure 5.8: drawing a self-loop

• If the cursor is approximately over the edge of the node, the cursor becomes a
“4-way-cross” as shown in Fig. 5.7b. In this mode only the selected node is moved
by drag and drop. If there are edges connected to the node, the starting point
of these edges are moved together with the node, i. e. the edges will not become
disconnected if the node is relocated.

5.2.1 Labelling nodes and edges

The label of a node consists of two parts: The actual label and the id of the acceptance
pattern and are displayed under each other as shown in Fig. 5.9a. The id of the acceptance
pattern is enclosed by brackets to distinguish it from the label of the node. By double
clicking on the node the editing mode of the node is activated. If the editing mode is
activated the node label is selected automatically such that it is possible to start typing
and replacing only the label of the node but not the id of the acceptance pattern as
shown in Fig. 5.9b. The id of the acceptance pattern can also be changed in editing mode
as long as the id is still enclosed by brackets. But later a more convenient way to assign
acceptance patterns to a node is presented. To exit the editing-mode either press the
“Enter”-key or click with the mouse into an empty area of the drawing area.

(a) default label of a new node
(b) double-click enables the
editing mode

(c) changed node label

Figure 5.9: labelling of a node

Changing an edgelabel works similar to a node. To enter the editing mode execute
a double-click on the edge – Fig. 5.10a. To exit the editing mode either press the
“Enter”-key or click anywhere on the drawing area.

69

5. Graphical user interface

(a) double-click on edge to en-
able editing mode

(b) editing mode activated (c) changed edgelabel

Figure 5.10: changing an edgelabel

5.3 Handling acceptance patterns

To assign acceptance patterns to the nodes of the graph the patterns have to be imported.
This is easily accomplished by pressing the “Import...”-button in the acceptance pattern
panel –Fig. 5.11a. After selecting the file containing the patterns – Fig. 5.11b - the file
is parsed and checked for syntax-errors. If no errors occurred the patterns are shown
in the list below the buttons and a new button “Reload <filename>” becomes visible
– Fig. 5.11c. As the name suggests this button reloads the file, which was imported
previously.

(a) click on button “Im-
port...”

(b) select file to import (c) the patterns are im-
ported successfully

Figure 5.11: importing acceptance patterns

In the list only acceptance patterns are shown but no definitions of variables. Therefore,
if acceptance patterns use a variable, the definitions of the variables are shown in a small

70

5.4. Evaluation of GRAPPA-instances

window, which appears if the mouse-cursor is located over an acceptance pattern – as
shown in Fig. 5.12.

Figure 5.12: a tooltip shows the definition of the used variables

To assign a pattern to the node just drag the pattern from the list and drop it onto the
node as shown in Fig. 5.13.

(a) start drag (b) drag pattern to node (c) drop
pattern

(d) updated
node

Figure 5.13: assigning an acceptance pattern to a node

5.4 Evaluation of GRAPPA-instances
If a GRAPPA-instance is in the workspace it can be evaluated. First an evaluation
method has to be chosen from the drop-down list at the top of the evaluation panel as
shown in Fig. 5.14.

Additionally, the domain of the GRAPPA-instance under evaluation must be adapted.
This is done by the fields given in Fig. 5.15. The values are used in the static encoding
for the atoms minDom resp. maxDom. as described in Section 3.1, as well as in the
dynamic encoding as described in Section 4.1.2 for the values minDom, maxDom.

To start the evaluation the button “Run” has to be pressed as shown in Fig. 5.16a.

71

5. Graphical user interface

Figure 5.14: select an evaluation method

Figure 5.15: adjust the domain for the GRAPPA-instance

The button “Run” is replaced by a “Stop”-button during evaluation – shown in Fig. 5.16b.
When the evaluation is finished the button “Stop” is again replaced by the original
“Run”-button. For small GRAPPA-instances the change is hardly perceivable, because
the evaluation takes less than a second. But for large GRAPPA-instances evaluations
can take much longer. In case of time-consuming evaluations, the button “Stop” can be
used to interrupt the evaluation.

(a) click the button “Run” (b) during evaluation the button “Run”
changes to “Stop”

Figure 5.16: starting the evaluation

If the evaluation is successful, the results are displayed in the list in the evaluation panel
as shown in Fig. 5.17. To distinguish between accepted and not accepted nodes, not
accepted nodes are preceded by a “-”. Nodes which are undefined are not listed in the
result. If there is an empty result, i. e. all nodes are undefined, the entry “<empty>” is
added to the list of the results. The entry “<none>” is a default entry of the list. It is
used to deselect any other result and to repaint the graph in its default-colors.

By selecting a result in the list the graph in the drawing area is repainted according to

72

5.4. Evaluation of GRAPPA-instances

Figure 5.17: evaluation finished – button “Stop” changed back to “Run”

the selected result as shown in Fig. 5.18. Accepted nodes become green, not accepted
nodes become red and undefined nodes are shown in the default color – blue.

Figure 5.18: selection of a result to display

5.4.1 Comparison of evaluation methods

Sometimes it is convenient to compare two different evaluation methods resp. semantics.
For this purpose, the comparison section is provided. Similar as in the evaluation panel,
two evaluation methods can be chosen as shown in Fig. 5.19a.

By clicking the button “Compare” the selected evaluation methods are executed. During
execution the button changes from “Compare” to “Stop”. The button “Stop” can be
used to interrupt the execution.

If the comparison was successful, the results are displayed in three lists as shown in
Fig. 5.20: In the upper list – labeled “Results only in A” – interpretations are displayed

73

5. Graphical user interface

(a) choosing the evaluations for comparison

(b) starting comparison

(c) button changes from “Compare” to “Stop”
during execution

Figure 5.19: comparison

which are only a result of the first selected evaluation method. In the lower list – labeled
“Results only in B” – interpretations are shown which are only a result of the second
selected evaluation method. The list in the middle – labeled “Results in A and B” –
shows those results which are shared by both selected evaluation methods.

Figure 5.20: result of a comparison

Figure 5.21: runtime of an evaluation

74

5.5. Syntax of the GRAPPA pattern language for GrappaVis

After executing an evaluation method, the runtime of the evaluation is shown in the
lower right corner of the status bar. By moving the mouse cursor above this entry further
information is displayed in a little window as shown in Fig. 5.21.

• The entry “Preprocessing” shows the required time to generate the encoding for
the external solver. This can also comprise an external solver call, e. g. if the solver
is necessary to convert a GRAPPA-instance to ADF.

• The entry “Solving” shows the required time of the external solver to process the
encoding.

• The entry “Postprocessing” shows the required time of GrappaVis to process the
result from the external solver.

• Finally, the entry “Overall” shows the whole runtime of the evaluation.

5.5 Syntax of the GRAPPA pattern language for
GrappaVis

As described in the Section 5.3 the acceptance patterns for a GRAPPA-instance have to
be imported. This section describes how acceptance patterns have to be specified for
GrappaVis.

5.5.1 Overview

The basic part of the specification of an acceptance pattern are definitions. There are
two types of definitions which are distinguished by the assignment-operator, either “:=”
or “:”. The colon “:” indicates that the definition represents an acceptance pattern.
On the other hand, “:=” defines an “additive expression”. This is not an acceptance
pattern itself, but can be used within an acceptance pattern. An exact definition is given
in Section 5.5.3.

The conversion of the pattern language of GRAPPA to the syntax used by GrappaVis is
straight forward. Only the function-symbols of the pattern language are replaced by an
ASCII-abstraction as shown in Fig. 5.22.

A feature of the syntax of GrappaVis is the possibility to define variables which can be
used in acceptance patterns.

Example 5.1. Consider the acceptance pattern

#t(+)−#(+) = 0 ∧#(−) = 0

There is not just only one way to encode this pattern for GrappaVis. The straight forward
approach is shown in Listing 5.1.

75

5. Graphical user interface

function replaced by
#
#t #_t
min min
mint min_t
max max
maxt max_t
sum sum
sumt sum_t
count count
countt count_t

operator replaced by
¬ NOT
∧ AND
∨ OR
⊗ XOR
< <
≤ <=
= ==
6= !=
≥ >=
> >

Figure 5.22: translation of the pattern language

1 p1: #_t(+) - #(+) == 0 AND #(-) == 0;

Listing 5.1: encoding of the acceptance pattern of Example 5.1

But there is also the possibility to split the pattern into some useful parts by using
variables as shown in Listing 5.2. The acceptance pattern in Line 1 is equivalent to the
pattern in Listing 5.1. The advantage of this approach is, that the new variables a1, a2
can be used to define other patterns as demonstrated in Line 5.

1 p1: a1 == 0 AND a2 == 0;
2 a1:= #_t(+) - #(+);
3 a2:= #(-);
4
5 p2: a2 OR min() > 0;

Listing 5.2: alternative encoding of the acceptance pattern of Example 5.1

4

5.5.2 Comments

It is also possible to specify comments. Comments are started by “%”. Everything
afterwards, within the same line is ignored by GrappaVis. An example is shown in
Listing 5.3.

1 % all edges labeled with ’+’ must be active
2 % and there may be no acitve edge labeled with ’-’
3 p1: #_t(+) - #(+) == 0 AND #(-) == 0;

Listing 5.3: example of a comment

76

5.5. Syntax of the GRAPPA pattern language for GrappaVis

5.5.3 Syntax

In this section the exact definition of the syntax is presented.

The representation of variables and numbers is specified by the following definitions.

VarToken:

-- ‘[a-zA-Z]’
� ‘[a-zA-Z0-9]’ �� �-�

NumToken:

--
� �� ‘[0-9]’ � -�

AddVariable:
-- 〈VarToken〉 -�

Variable:
-- 〈VarToken〉 -�

The difference between an AddVariable and a Variable is that the first may only occur
within a functional combination while the latter replaces a whole acceptance pattern.

EdgeLabelToken:

--
� �� �‘[a-zA-Z0-9]’� ‘-’ �� ‘+’ �� ‘#’ �� ‘!’ �� ‘?’ �� ‘*’ �

� �-�
Num:
-- � 〈NumToken〉�‘-’〈NumToken〉 �� ‘(’〈Num〉‘)’ �

�-�Comparator*:
-- � ‘<’� ‘<=’ �� ‘==’ �� ‘!=’ �� ‘>=’ �� ‘>’ �

� -�

Starting from here the rules to build an acceptance pattern are presented.

Function:
-- �� ‘#’� ‘#_t’ �� ‘(’ 〈EdgeLabelToken〉 ‘)’

� � ‘min’� ‘min_t’ �� ‘max’ �� ‘max_t’ �� ‘sum’ �� ‘sum_t’ �� ‘count’ �� ‘count_t’ �

� ‘(’ ‘)’ �
� -�

MultiplicativeExpression:
-- �� � 〈NumToken〉� ‘(’ 〈Num〉 ‘)’ �� ‘*’ �� 〈Function〉 -� The syntax of MultiplicativeExpres-

sion guarantees that negative coeffi-
cients are always enclosed by brack-
ets.

77

5. Graphical user interface

AdditiveExpression:

-- �� ‘-’ ���〈MultiplicativeExpression〉� 〈AddVariable〉 ��
� �〈MultiplicativeExpression〉� 〈AddVariable〉 ��� ‘+’� ‘-’ �� �
� � -�

RelationalExpression:
-- �〈AdditiveExpression〉 〈Comparator〉 〈Num〉� ‘(’ 〈Expression〉 ‘)’ �� 〈Variable〉 �

� -�

ConditionalNotExpression1:
-- �‘NOT’ 〈ConditionalNotExpression〉� 〈RelationalExpression〉 ��-�
ConditionalAndExpression1:

-- 〈ConditionalNotExpression〉
� 〈ConditionalNotExpression〉 ‘AND’ �� � -�

ConditionalOrExpression1:

-- 〈ConditionalAndExpression〉
� 〈ConditionalAndExpression〉 ‘OR’ �� � -�

ConditionalXOrExpression1:

-- 〈ConditionalOrExpression〉
� 〈ConditionalOrExpression〉 ‘XOR’ �� � -�

Expression*:
-- 〈ConditionalXOrExpression〉 -�

AcceptPattern:
-- 〈Expression〉 -�

Definition:
-- 〈Variable〉 �‘:=’ 〈AdditiveExpression〉� ‘:’ 〈AcceptPattern〉 �� ‘;’ -�

The reason why “:=” is used for AdditveExpressions and “:” for AcceptPatterns is to
make the productions easily distinguishable.

ExpressionList:

--
� 〈Definition〉 �� � ‘<EOF>’ -�

78

5.6. Using GrappaVis for ADFs

For parsing every production – not marked with “*” – is represented by a corresponding
class within GrappaVis. These classes are used to represent the syntax-tree. Productions
with “*” are omitted, i. e. children of them are added directly to the parent. Productions
marked with “1” are represented in the syntax-tree only if they have more than one
child. This keeps the syntax-tree more manageable, because unnecessary productions
are removed. The ConditionalNotExpression is only kept in the syntax-tree if there is a
“NOT” at the corresponding position in the acceptance pattern to parse.

5.6 Using GrappaVis for ADFs
GrappaVis is also able to specify and evaluate ADF-instances. The handling is basically
the same as for GRAPPA-instances with only minor differences.

After starting GrappaVis GRAPPA-mode is preselected. The current mode of GrappaVis
is always displayed in the title of the program, i. e. either “(GRAPPA)” or “(ADF)” is
shown as part of the title as depicted in Fig. 5.23a resp. Fig. 5.23b.

(a) GRAPPA-mode (b) ADF-mode

Figure 5.23: editing modes of GrappaVis

For an existing instance it is not possible to change the mode. If a new instance should
be generated a window is shown – Fig. 5.24 – where the user can choose if he wants to
specify a GRAPPA or an ADF-instance. Depending on the selected mode GrappaVis
offers the appropriate evaluation-methods in the evaluation-toolbox, i. e. no evaluation
methods for GRAPPA are offered for ADF-instances and the other way round.

Figure 5.24: select the type to specify

The acceptance conditions for ADFs must be in the format, which is used by DIAMOND,
i. e.

ac(<node>,<acceptance condition>).

79

5. Graphical user interface

where <node> specifies the id of the node where the acceptance condition given in
<acceptance condition> should be applied.

The assignment of the acceptance condition to a node is done by the specification of the
acceptance condition itself, hence no further assignment within GrappaVis is necessary.

Some examples for acceptance conditions are given in Listing 5.4:

1 ac(a,and(or(b,a),c)).
2 ac(b,or(d,and(c,a))).
3 ac(c,c(v)).
4 ac(d,c(f)).

Listing 5.4: acceptance conditions for ADF

The expressions c(f) resp. c(v) in the Lines 3 and 4 represent the constants falsum
resp. verum. For a more elaborate description of the syntax consult [ES13].

5.7 Configuration of evaluation methods

To evaluate a given GRAPPA-instance, external programs need to be called and those
programs may differ from system to system, or the start parameters may be differ-
ent, especially if GrappaVis is executed on different operating systems. To keep the
configuration of these calls flexible all necessary options can be expressed in the file
semantics.properties.

In Listing 5.5 an example is given. In Line 1 the number of different evaluation methods,
which are configured in this file, has to be defined.

1 no=1
2
3 Name0=Model-semantics (Grappa static)
4 DelFiles0=1
5 Option0=GrappaStaticEncoding
6 PreRun0=encodings/clingo -n0 %filename% encodings/basicDefs.lp

↪→ encodings/toADF.lp
7 Run0=encodings/clingo -n0 %filename% encodings/basicDefs.lp

↪→ encodings/model.lp

Listing 5.5: evaluation method configuration

For every configuration options are available, always followed by the id of the current
configuration:

Name The string defined here is displayed in the drop-down list for selecting an
evaluation method.

DelFiles The program writes temporary files. If this setting is ≥ 1 GrappaVis deletes
those files when the solver finishes.

80

5.7. Configuration of evaluation methods

Run Here the command-line to execute a program can be defined. In most cases
GrappaVis has to export a file which is an input for the external tool. The
name of this temporary file is specified by GrappaVis and therefore can not
be defined statically in the configuration file. To let GrappaVis know at
which position the filename should be inserted into the command-line, the
placeholder “%filename%” is used.

PreRun This setting is only used by the modes GrappaToAdfDiamond and AdfDy-
namic. Apart from that the function of this parameter is the same as for
Run.

Option Here the evaluation method is defined. Possible values are:

GrappaStaticEncoding This option handles all static semantics for GRAPPA-
instances. Which semantics is executed depends on the files which are passed
to the ASP-Solver.

GrappaDynamicEncodingAdm

GrappaDynamicEncodingPref

GrappaDynamicEncodingComp

The three options above handle the corresponding semantics – admissible,
preferred and complete – for the dynamic encoding approach.

GrappaToAdfDiamond With this option the GRAPPA-instance is converted
into an ADF-instance. For this the parameter PreRun – in Line 6 of
Listing 5.5 – is necessary, because the conversion again uses the ASP-solver.
Which semantics is applied is determined by a parameter1 which is passed to
the DIAMOND solver within the parameter Run – in Line 7.

AdfDiamond This mode uses the DIAMOND-solver to evaluate an ADF-
instance. Which semantics is applied is determined by a parameter which is
passed to the DIAMOND solver.

AdfToGrappaDynamicAdm

AdfToGrappaDynamicPref

AdfToGrappaStatic

The three modes above convert an ADF-instance to a GRAPPA-instance
and then exhibit the same functionality as the corresponding modes for
GRAPPA, i. e. GrappaDynamicEncodingAdm, GrappaDynamicEncodingPref,
GrappaStaticEncoding

1Refer to the DIAMOND manual [ES13] for parameter description.

81

5. Graphical user interface

5.8 Design decisions

5.8.1 Used software

GrappaVis is written in Java. The main reason for this decision is the fact that a very
powerful and publicly available2 graph-drawing framework, namely JGraphX [JGr16], is
available for Java. Furthermore, JGraphX comes with an included graph editor, which
is the base of GrappaVis and has been adapted and extended to meet the demands of
editing and evaluating GRAPPA-instances.

To handle saving and loading files, the package XStream [CW16] was used. It provides
an easy approach to (de)serialize objects.

The parser – for e. g. reading the input language of GRAPPA – is based on the
JavaCC [Mic16] framework.

For parsing command-line parameters the Apache Commons CLI [Fou16] was used.

5.8.2 Regarding an editor for acceptance patterns

Although support for editing acceptance patterns directly within GrappaVis would
have been a convenient feature, a simple textbox would not have sufficed because more
advanced features of an ordinary text-editor like copy/ paste, undo/redo functions would
have been missing. Moreover, it was not the goal to implement a (new) full-fledged text-
editor. Therefore, every user can use his preferred text-editor to specify the acceptance
patterns which then can be imported into GrappaVis.

2BSD-license

82

CHAPTER 6
Experimental evaluation

In this chapter results of testing and evaluating the encodings are presented. Because
for GRAPPA there are no solvers available yet, existing solvers for ADFs were used to
cross-check the results. To this end conversion-routines were implemented to convert
ADF to GRAPPA – and the other way round – which are described in this chapter.
Moreover, a small command-line program was implemented to easily generate random
GRAPPA-instances. The parameters and usage of the program are also presented in this
chapter.

6.1 Conversion from GRAPPA to ADF

A conversion from GRAPPA to ADF-instances was implemented. This conversion is
based on the procedure described in [BW14]:

Definition 6.1. For a LAGG = (S,E,L, λ, α) define its associated ADFAG as (S,E,CG)
where

CG(s) =
∨

T⊆parE(s):α(s)(mT
s)=t

(∧
r∈T

r ∧
∧

r∈parE(s)\T
¬r
)
.

To compute CG(s) for every s ∈ S the encodings developed for the static encoding in
Chapter 3 is used with some modifications.

The input-file is basically the same as for the static encoding described in Section 3.1
with the only difference that a new atom aktNode(s) is added to let the program know
that the acceptance pattern is computed for node s. The computation of CG(s) works
only on a “subset” of the GRAPPA-instance, i. e. only the acceptance pattern of the s
and the parent nodes of s are required. Therefore, the input-file can be stripped off the
atoms

83

6. Experimental evaluation

• s(X) where X 6∈ {s} ∪ parE(s)

• e(X,Y) where Y 6= s

Because the input is basically the same for the static encoding the basic definitions,
described in Section 3.3, can be used as usual. Only a few rules have to be added to
retrieve the desired result, namely the set T =

{
T | T ⊆ parE(s) : α(s)(mT

s) = t
}
.

To retrieve T all possible subsets of parents of s are guessed in Line 3 of Listing 6.1. In
Line 5 all interpretations T are removed for which the acceptance pattern of s evaluates
to false, i. e. atom nomodel is derived for node s.

So every answer-set found for this program corresponds to a T ∈ T , where the atom
in(0,r) corresponds to r ∈ T and out(0,r) corresponds to r ∈ parE(s) \ T .

1 guess(0).
2 % Candidate Guess

3 in(0,S) | out(0,S) :- s(S,_), e(S,X,_), aktNode(X).
4
5 :- aktNode(X), s(X,P), nomodel(0,P).
6
7 ok(0) :- #false. % to avoid warnings of the solver

Listing 6.1: compute CG(s) (from file toADF.lp)

Example 6.1. This example is taken from [BW14]. Let S = {a, b, c, d} a LAG and
L = {+, -}. The graph in Fig. 6.1 shows the labels of each link. The acceptance pattern
for all nodes is

#t(+)−#(+) = 0 ∧#(-) = 0

a b

c d

+ +

+

-

Figure 6.1: GRAPPA-instance of Exam-
ple 6.1

a b

c d

Figure 6.2: resulting ADF of Exam-
ple 6.1

The acceptance conditions for the four nodes are computed like this:

• node a: parE(a) = ∅, the ASP-program yields one answer-set T with neither in
nor out atoms. ⇒ T1 = ∅, T = {T1}

84

6.1. Conversion from GRAPPA to ADF

CG(a) =
∨
T∈T

(∧
r∈T

r ∧
∧

r∈parE(a)\T
¬r
)

=
∧
r∈T1

r ∧
∧

r∈parE(a)\T1

¬r

=
∧
r∈∅

r ∧
∧

r∈∅\∅
¬r

= > ∧ >
= >

• node b: parE(b) = {b}, the ASP-program yields one answer-set including in(b)
⇒ T1 = {b} , T = {T1}

CG(b) =
∨
T∈T

(∧
r∈T

r ∧
∧

r∈parE(b)\T
¬r
)

=
∧
r∈{b}

r ∧
∧

r∈{b}\{b}
¬r

= b ∧ >
= b

• node c: parE(c) = {a, b}, the ASP-program yields one answer-set including in(a)
and in(b) ⇒ T1 = {a, b} , T = {T1}

CG(c) =
∨
T∈T

(∧
r∈T

r ∧
∧

r∈parE(c)\T
¬r
)

=
∧

r∈{a,b}
r ∧

∧
r∈{a,b}\{a,b}

¬r

= a ∧ b ∧ >
= a ∧ b

• node d: parE(d) = {b}, the ASP-program yields one answer-set including out(b)
⇒ T1 = ∅, T = {T1}

CG(d) =
∨
T∈T

(∧
r∈T

r ∧
∧

r∈parE(d)\T
¬r
)

=
∧
r∈∅

r ∧
∧

r∈{b}\∅
¬r

= > ∧ ¬b
= ¬b

This yields the ADF-instance shown in Fig. 6.2.

4

85

6. Experimental evaluation

6.2 Conversion from ADF to GRAPPA
A conversion from ADF to GRAPPA was implemented as well. This is easier than the
other way round, because only two steps have to be performed – also described in [BW14]:

1. Label every edge from the ADF-instance with the label of the source node.

2. To obtain the acceptance pattern for GRAPPA replace every occurrence of a node
n within an acceptance pattern of ADF by #(n) = 1.

Example 6.2. Let D = (S,L,C) an ADF, S = {a, b, c}, L = {(a, c), (b, c)}, φc = a ∧ ¬b
an acceptance pattern for node c.

The corresponding acceptance pattern of node c is

#(a) = 1 ∧ ¬#(b) = 1,

where a, b are edgelabels, in the resulting GRAPPA-instance.

a b

c

Figure 6.3: ADF instance of Example 6.2

a b

c

ba

Figure 6.4: conversion result of Example 6.2

4

6.3 GRAPPA-instance generation
To generate random GRAPPA-instances a command-line tool was implemented, which is
called gen.jar.

The following parameters must be provided for execution:

• -cnt: specifies how much GRAPPA-instances should be generated

• -n, -nodes: specifies the number of nodes the GRAPPA-instances should com-
prise

• -e, -edges: specifies the number of edges the GRAPPA-instances should com-
prise

• -f, -file: specifies the name of the file(s) to generate. To the name given here
a number is appended by the generator to distinguish the different files.

For example a call of the generator looks like this:

java -jar gen.jar -cnt 5 -n 10 -e 20 -f grappa/inst10_20

The given call will generate five GRAPPA-instances with ten nodes, twenty edges and
write them into the directory “grappa” with the names inst10_1.xml ... inst10_5.xml

86

6.4. Performance

Between which nodes the edges are placed is determined randomly, as well as the
acceptance patterns of the statements.

6.4 Performance

Performance was not the main concern on developing the encodings for GRAPPA, because
at the moment there are not any other GRAPPA-solvers to compare them to anyway.
Even so some comparisons were done between the static and dynamic approach and
also between the presented GRAPPA-encodings and existing ADF-solvers by converting
GRAPPA-instances to ADF-instances and the other way round.

The tests were executed on a Thinkpad Yoga with an i7-4500U processor 1.80GHz and 8
GB RAM. This is not a machine for benchmarking, but these performance tests should
only give an impression how the different encodings and solvers perform.

6.4.1 Dynamic vs. static encoding

As expected the static encoding is much slower than the dynamic encoding. The reason
is obvious: In the static case the encoding needs to take care about parsing patterns and
is designed to work on every possible instance. The dynamic encoding does not need to
consider that. This runtime difference is significant. On a random instance of 10 nodes
and 20 edges the static encoding for the admissible semantics was interrupted after 15
minutes whereas the dynamic encoding finished on the same instance within 35 seconds.

Still the dynamic encoding in this form soon reaches its limits. On an instance with 20
nodes and 40 edges the solver needs more than 8 minutes to compute the admissible
interpretations. At this point an ASP preprocessing tool for decomposing rule-bodies,
which was originally introduced in [MW12] and further extended in [Bic15], was used
to improve the performance. With this tool the same instance was solved within about
30 seconds. Actually the solving takes about 20 seconds and the remaining time is used
by GrappaVis for post-processing the results, because there are already over 250 000
admissible interpretations. The runtime of the tool itself is already included in the 20
seconds. For comparison: The instance with the 10 nodes is solved in less than 1 second
with the decomposition tool, in contrast to 35 seconds without. This configuration is
referred as optimized dynamic encoding.

But the amount of resulting interpretations for a semantics also causes another problem,
namely that for even larger instances – therefore potentially exponential more admissible
interpretations – GrappaVis is not longer able to handle them. Some tests were done on
instances with up to 50 nodes. Although they were solvable, even if it took some minutes,
GrappaVis crashed due to memory shortage.

To get an impression of the performance of the different encodings, in Table 6.1 runtimes
of the encodings are listed. The presented times are results of running 20 different
instances and are denoted “< t sec” indicating that all instances were processed in less

87

6. Experimental evaluation

than t seconds. The times given in column “opt” are resulting from the dynamic encoding
togther with the preprocessing tool from [Bic15].

static dynamic opt
admissible > 10 min < 35 sec < 2 sec
complete > 10 min > 10 min < 4 sec
preferred (not impl.) > 10 min < 3 sec

Table 6.1: comparison of runtimes for instances with 10 nodes

In Table 6.2 a comparison of the performance of the optimized dynamic encoding is given
for different instance sizes. The instance size is given by two numbers, e. g. 10/20, where
the first gives the number of nodes (10) and the second the number of edges (20). The
presented times are results of running 20 different instances and are denoted “< t sec
(X/20)” indicating that X instances – out of 20 instances – were processed in less than t
seconds.

10/20 20/50 50/120
admissible < 2 sec (20/20) < 30 sec (20/20) (out of mem)

complete < 4 sec (20/20) < 7 sec (18/20)
< 17 sec (20/20)

< 30 sec (17/20)
< 52 sec (19/20)
< 135 sec (20/20)

preferred < 3 sec (20/20) < 6 sec (19/20)
< 34 sec (20/20) > 10 min

Table 6.2: runtimes for different instance sizes

6.4.2 GRAPPA vs. ADF

In Table 6.3 runtimes of different solvers are given as a result of processing 20 different
ADF-instances. Again the smaller sign “<” indicates that all instances were processed
in less than the given time. There were no significant runtime differences between the
different instances.

DIAMOND is a solver for ADF-instances [ES13] and for “GRAPPA dyn. opt” the ADF-
instance is converted to a GRAPPA-instance– as described in Section 6.2 – and then
evaluated by the optimized dynamic encoding.

DIAMOND GRAPPA dyn. opt
admissible < 5 sec < 15 sec
complete < 5 sec < 40 sec
preferred < 6 sec < 30 sec

Table 6.3: comparison of runtimes for ADF-instances with 10 nodes

88

6.4. Performance

Obviously it is not the best idea to solve ADF-instances by converting them to GRAPPA-
instances instead of using a native ADF-solver. The reason why the GRAPPA approach
here is much slower, is – most probably – that the conversion of ADF to GRAPPA
inherently increases the complexity of the instance. Moreover, GRAPPA is the more
general framework and therefore the encoding is more complex than the encoding of an
ADF-instance.

Similar as in Table 6.3, in Table 6.4 runtimes of different solvers are given as a result
of processing 20 different GRAPPA-instances. To process the GRAPPA-instances with
DIAMOND the instances are converted to ADF as described in Section 6.1.

DIAMOND GRAPPA dyn. opt
admissible < 5 sec < 3 sec
complete < 3 sec < 4 sec
preferred < 3 sec < 3 sec

Table 6.4: comparison of runtimes for GRAPPA-instances with 10 nodes

In this case the runtime differences are not as significant as before, when ADF was
converted to GRAPPA. Still it is surprising that the evaluation with DIAMOND is
that fast, because the stated runtime includes also the required conversion time. Even
more astonishing if considered that the conversion from GRAPPA to ADF requires an
ASP-solver call for each node.

89

CHAPTER 7
Conclusion and future work

Dung introduced AFs in his landmark work [Dun95], which inspired many generalizations
of AFs and among them, GRAPPA – presented in [BW14] – is one of the most recent
and most general frameworks. But so far GRAPPA was “only” a theoretical concept.
Therefore the main goal of this work is to provide tools to make GRAPPA available for
practical use.

To this end a static ASP-encoding for GRAPPA has been presented, i. e. with this
encoding GRAPPA-instances can be evaluated over different semantics. This encoding
is static in a way, that it does not change for different instances and supports model,
admissible and complete semantics. To overcome side-effects in the encoding, which arise
on using ASP-aggregates together with the saturation methodology, reformulations for
default ASP-aggregates have been developed and applied to the encodings. These refor-
mulations ensure that the indented behavior of an aggregate is not altered unintentionally
by saturation.

Because the static encoding approach is limited in terms of the possibilities to formulate
more complex semantics, a new dynamic approach has been introduced. This approach
is exploiting two things: The encoding is written for each instance individually, therefore
some preprocessing of the instance can be done. Moreover the encoding utilizes a
methodology to encode an NP-complete problem into one single rule-body. Thus not
only an encoding for admissible and complete semantics, but also for preferred semantics
has been provided, what has not been possible for the static encoding.

Furthermore GrappaVis was developed and has been presented as a graphical tool to
specify GRAPPA-instances and further to evaluate them. For evaluation GrappaVis
performs the necessary processing of the specified GRAPPA-instance for a selected
evaluation method.

91

7. Conclusion and future work

But basically GrappaVis is a graph-editor and a tutorial on how to use GrappaVis

• to draw a graph,

• to assign acceptance patterns to nodes of the graph,

• to execute evaluations methods, i. e. different semantics provided by different
encodings or other tools,

• to compare different evaluation methods on a given GRAPPA-instance

has been presented.

Finally, to verify the newly developed encodings, conversions from ADF to GRAPPA, and
the other way round, have been implemented to enable the use of existing solvers for ADF.
Moreover, the usage of a tool to generate GRAPPA-instances has been explained. Also
some performance comparisons have been done, which have shown clearly, that the most
promising approach for evaluating GRAPPA-instances is the dynamic approach together
with a preprocessing-tool, which optimizes the encoding. Surprisingly the solvers for
ADF are performing very well, too, i. e. even though the instances have to be converted
from GRAPPA to ADF the overall performance is not much slower.

In general, further research towards performance optimization can be done. Especially
the preprocessing of the dynamic encoding has been implemented in a straight forward
approach. That means that there are some points which could be reconsidered if there is a
more sophisticated way to implement them, to improve the overall performance. Moreover,
the usage of ADF solvers for GRAPPA-instances can be examined on a broader base,
i. e. with more and larger instances, to get an impression how the performance changes
in comparison to the “native” optimized dynamic encoding. Also the conversion routine
from GRAPPA to ADF could be a starting point, because the developed conversion is
based on the static encoding. Maybe a dynamic approach for the conversion can speed
up the conversion and therefore also the overall performance.

Another point for future research is the implementation of more semantics, as for example
the stable model semantics or the grounded semantics.

Regarding GrappaVis there are many things which could be improved or changed. For
example a full-fledged editor could be integrated, which would simplify the handling of
acceptance patterns. Moreover, the handling of the results of an evaluation could be
improved. At the moment GrappaVis has problems to handle evaluations which yield
more than 250 000 results1. Moreover, the handling of ADFs could be improved, because
at the moment the support of ADFs is implemented only on a rudimentary basis.

1Keep in mind that for an instance with n nodes, evaluated over the admissible encoding, there are 3n

results in the worst case.

92

Index

ADF, 2, 3, 8–11, 30, 65, 75, 79–81, 83–89,
92

admissible, 10
characteristic operator, 10
complete, 10
model, 10
preferred, 10

AF, 8
acceptable, 8
admissible, 8
attack, 8
complete, 8
conflict-free, 8
preferred, 8

ASP, IX, XI, 2, 3, 5, 14–16, 18–24, 27,
29–31, 33, 44, 55, 57–59, 81, 84,
85, 87, 89, 91

answer-set, 20
atom
ground, 18
non-ground, 18

body, 15
bounded arity, 31
constraint, 16
default negation, 19
derive, 15
disjunctive program, 30
domain predicate, 25
dynamic encoding, 31
fact, 16
grounding, 18
head, 15
interpretation, 20

interval, 18
model, 20
candidate, 20
minimal, 20

normal program, 30
program, 15
disjunctive, 16
ground, 18
non-ground, 18
normal, 16

reasoning
brave, 29
cautious, 29

reduct, 19
rule, 15
disjunctive, 15
fires, 15
ground, 18
non-ground, 18
normal, 16
positive, 16

safe variable, 18
saturation, 23
stable model, 20
stable model semantics, 19
static encoding, 31
strong negation, 19

characteristic operator
GRAPPA, 14
LAG, 11

complexity
combined complexity, 31
data complexity, 30

93

functional combination, 34

GRAPPA, VII, IX, XI, 2, 3, 8, 11, 29–
31, 36–39, 48, 57, 58, 65, 75, 79,
81–83, 86–89, 91, 92

acceptance pattern, 13
basic acceptance pattern, 13
characteristic operator, 14
instance, 12
reasoning
brave, 29
cautious, 29

satisfaction relation, 14
term, 13

GrappaVis, IX, XI, 3, 55, 65, 66, 68, 75,
76, 79–82, 87, 91, 92

acceptance pattern panel, 67
acceptance pattern section, 67
comparison section, 67
default label, 67
drag and drop, 65
drag-source, 65
drop-position, 65
drop-target, 65

drawing area, 66
editing mode
edge, 69
node, 69

evaluation panel, 67
evaluation toolbox, 67
logging area, 66
overview panel, 66
performance
overall, 75
Postprocessing, 75
preprocessing, 75
solving, 75

result entry
<empty>, 72
<none>, 72

status bar, 66
template panel, 66

LAG, 11

characteristic operator, 11
semantics, 12

Link
active, 11

meet operator, 7, 10

oracle, 30

polynomial hierarchy, 29
predicate

accept, 43, 51, 52
activeedge, 45, 62
activelabelcount, 36, 39, 45, 48, 49
aktNode, 83
alcount, 45, 47, 48
alcount_max, 49
and, 34, 36, 38, 39, 41
arg, 56
ass, 56, 57, 63
ass2, 62, 63
b, 23
basicpattern, 34, 36–39, 41–44
cnt, 25
cntActLabel, 46
distactivelabel, 44, 47, 48
distinctactivelabel, 37, 39, 47, 49
distinctlabel, 37, 39
distintactivelabel, 44
distlabel, 44, 45, 48
dom, 25, 26
dom_cntActLabel, 46
e, 21, 34, 37, 84
eq, 42
false, 42
g, 23
geq, 42
gt, 42
guess, 22, 45, 51, 52, 54
in, 24, 25, 27, 28, 40, 51, 52, 84, 85
intv, 18, 19
ismodel, 43
label_max, 48
label_min, 48

94

labelcount, 37, 39
lcount, 44
leq, 42, 56, 57
lhspat, 42, 50
lhspat_dom, 50
lt, 42
maxactivelabel, 38, 39, 46, 49
maxalabel, 46–48
maxDom, 38, 49, 71
maxlabel, 38, 39
maxtlabel, 44
maxVal, 46
min, 25
minactivelabel, 38, 39, 45, 46, 49
minalabel, 45, 46, 48, 49
minalablel_dom, 46
minDom, 38, 71
minlabel, 38, 39
mintlabel, 44
mterm, 48–50
mterm_max, 48–50
neg, 36, 38, 39, 41
neq, 42
nomodel, 43, 84
notaccept, 43, 52
ok, 24, 26, 28, 29, 45, 52, 53
or, 34, 36, 38, 39, 41
out, 25, 27, 28, 40, 51, 52, 84, 85
p, 26
pattern, 41–43
r, 23
s, 21, 28, 34, 39, 41, 84
sat, 56, 57, 59–61, 63
sat2, 63
saturate, 63
sum, 25
sumactivelabel, 39, 47, 49
sumalabel, 47
sumlabel, 39
sumtlabel, 44
term, 34, 37, 39
true, 42
undec, 41, 51, 52, 61, 62

undef, 54
unsat, 56, 57, 59–61, 63
unsat2, 63
valid, 22
validColoring, 22
xor, 34, 36, 38, 39, 41

syntax
AcceptPattern, 78
accPattern, 36
AdditiveExpression, 78
AddVariable, 77
aggregate, 16
aggregate atom, 16
atom, 16
binary atom, 16
body, 15
Comparator, 77
comparator, 17
ConditionalAndExpression, 78
ConditionalNotExpression, 78
ConditionalOrExpression, 78
ConditionalXOrExpression, 78
constant, 17
Definition, 78
EdgeLabelToken, 77
Expression, 78
ExpressionList, 78
Function, 77
head, 15
id, 35
Integer, 35
MultiplicativeExpression, 77
Num, 77
NumToken, 77
RelationalExpression, 78
rule, 15
s, 35
term, 17, 36
tuple, 16
Variable, 77
variable, 17
VarToken, 77

95

three-valued logic
completion, 8
extension, 7
information order
sets, 8
variables, 7

interpretation, 7
literal, 7

two-valued logic
boolean formula, 6
extension, 6
formula, 6
interpretation, 6
syntax, 5

96

Glossary

ASCII American Standard Code for Information Interchange 15, 75

DIAMOND DIAlectical MOdels eNcoDing; a system to evaluate ADF instances
([ES13]) 2, 79, 81, 88, 89

e. g. from Latin, abbreviation of exempli gratia (“for example”) 2, 3, 5,
6, 17, 36, 37, 48, 75, 82, 88

GRAPPA GRaph-based Argument Processing with Patterns of Acceptance
[BW14] VII, IX, XI, XIII, XIV, 2, 3, 8, 11–14, 29–31, 33, 34, 36–40,
48, 50–52, 54–59, 61, 65–67, 71–73, 75, 79–84, 86–89, 91, 92

i. e. from Latin, abbreviation of id est (“it is”); usually spoken as “that
is” XI, 1, 2, 6, 9, 13, 15–17, 21, 22, 24, 30, 31, 34, 49, 51, 52, 54,
56–58, 61, 62, 65, 66, 69, 72, 79, 81, 83, 84, 91, 92

iff if and only if 6–8, 10, 12, 14, 51, 54, 62

Potassco Potsdam Answer Set Solving Collection [GKK+11] 15

resp. respectively 2, 6, 29–31, 36, 42, 43, 48, 50, 51, 56–58, 60, 71, 73, 79,
80

s. t. such that 8, 20, 21, 29, 54, 56

w. l. o. g. without loss of generality 22
w. r. t. with respect to 2, 8, 20

97

Acronyms

ADF abstract dialectical framework XIII, 2, 3, 8–11, 30, 65, 75, 79–81,
83–89, 92

AF argumentation framework XI, XIII, 1, 2, 8, 9, 91
AI Artificial Intelligence XI, 1

ASP Answer Set Programming IX, XI, XIII, 2, 3, 5, 14–25, 27, 29–31, 33,
44, 51, 55, 57–59, 81, 84, 85, 87, 89, 91

LAG labeled argument graph 11, 12, 14, 83, 84
LHS left-hand-side 34, 36, 37

QBF quantified boolean formula 2

RHS right-hand-side 34, 36, 37

99

Bibliography

[AB94] Krzysztof R. Apt and Roland N. Bol. Logic Programming and Negation:
A Survey. J. Log. Program., 19/20:9–71, 1994.

[AFG15] Mario Alviano, Wolfgang Faber, and Martin Gebser. Rewriting recursive
aggregates in answer set programming: back to monotonicity. TPLP,
15(4-5):559–573, 2015.

[AP09] Leila Amgoud and Henri Prade. Using arguments for making and explain-
ing decisions. Artif. Intell., 173(3-4):413–436, 2009.

[BBD+12] Cristian E. Briguez, Maximiliano Celmo Budán, Cristhian A. D. Deagus-
tini, Ana Gabriela Maguitman, Marcela Capobianco, and Guillermo Ri-
cardo Simari. Towards an Argument-based Music Recommender System.
In Bart Verheij, Stefan Szeider, and Stefan Woltran, editors, Compu-
tational Models of Argument - Proceedings of COMMA 2012, Vienna,
Austria, September 10-12, 2012, volume 245 of Frontiers in Artificial
Intelligence and Applications, pages 83–90. IOS Press, 2012.

[BD07] Trevor J. M. Bench-Capon and Paul E. Dunne. Argumentation in artificial
intelligence. Artif. Intell., 171(10-15):619–641, 2007.

[BH08] Philippe Besnard and Anthony Hunter. Elements of Argumentation. MIT
Press, 2008.

[Bic15] Manuel Bichler. Optimizing Non-Ground Answer Set Programs via Rule
Decomposition. Bachelor’s thesis, Vienna University of Technology, 2015.

[Bid91] Nicole Bidoit. Negation in Rule-Based Database Languages: A Survey.
Theor. Comput. Sci., 78(1):3–83, 1991.

[BLS14] Maximiliano Celmo Budán, Mauro Javier Gómez Lucero, and Guillermo Ri-
cardo Simari. An AIF-Based Labeled Argumentation Framework. In
Christoph Beierle and Carlo Meghini, editors, Foundations of Informa-
tion and Knowledge Systems - 8th International Symposium, FoIKS 2014,
Bordeaux, France, March 3-7, 2014. Proceedings, volume 8367 of Lecture
Notes in Computer Science, pages 117–135. Springer, 2014.

101

[BPW14] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations
of Dung Frameworks and Their Role in Formal Argumentation. IEEE
Intelligent Systems, 29(1):30–38, 2014.

[BSE+13] Gerhard Brewka, Hannes Strass, Stefan Ellmauthaler, Johannes Peter
Wallner, and Stefan Woltran. Abstract Dialectical Frameworks Revisited.
In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013, pages 803–809. IJCAI/AAAI, 2013.

[BW10] Gerhard Brewka and Stefan Woltran. Abstract Dialectical Frameworks.
In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, Ontario, Canada,
May 9-13, 2010, pages 102–111. AAAI Press, 2010.

[BW14] Gerhard Brewka and Stefan Woltran. GRAPPA: A Semantical Framework
for Graph-Based Argument Processing. In Torsten Schaub, Gerhard
Friedrich, and Barry O’Sullivan, editors, ECAI 2014 - 21st European
Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent Systems (PAIS
2014), volume 263 of Frontiers in Artificial Intelligence and Applications,
pages 153–158. IOS Press, 2014.

[CMS04] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Guillermo Ricardo
Simari. A first approach to argument-based recommender systems based on
defeasible logic programming. In James P. Delgrande and Torsten Schaub,
editors, 10th International Workshop on Non-Monotonic Reasoning (NMR
2004), Whistler, Canada, June 6-8, 2004, Proceedings, pages 109–117,
2004.

[CMS07] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and Guillermo Ricardo
Simari. Recommender System Technologies based on Argumentation 1. In
Ilias Maglogiannis, Kostas Karpouzis, Manolis Wallace, and John Soldatos,
editors, Emerging Artificial Intelligence Applications in Computer En-
gineering - Real Word AI Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies, volume 160 of Frontiers
in Artificial Intelligence and Applications, pages 50–73. IOS Press, 2007.

[CW16] XStream Committers and Joe Walnes. XStream. http://x-stream.
github.io/index.html, 2016. [Online; accessed 10-January-2016].

[Dun95] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artif. Intell., 77(2):321–358, 1995.

102

http://x-stream.github.io/index.html
http://x-stream.github.io/index.html

[DWW14] Martin Diller, Johannes Peter Wallner, and Stefan Woltran. Reasoning
in Abstract Dialectical Frameworks Using Quantified Boolean Formulas.
In Simon Parsons, Nir Oren, Chris Reed, and Federico Cerutti, editors,
Computational Models of Argument - Proceedings of COMMA 2014, Atholl
Palace Hotel, Scottish Highlands, UK, September 9-12, 2014, volume 266
of Frontiers in Artificial Intelligence and Applications, pages 241–252. IOS
Press, 2014.

[EFFW07] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Com-
plexity results for answer set programming with bounded predicate arities
and implications. Ann. Math. Artif. Intell., 51(2-4):123–165, 2007.

[EFLP00] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declar-
ative Problem-solving Using the DLV System. In Jack Minker, editor,
Logic-based Artificial Intelligence, pages 79–103. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

[EG95] Thomas Eiter and Georg Gottlob. On the Computational Cost of Disjunc-
tive Logic Programming: Propositional Case. Ann. Math. Artif. Intell.,
15(3-4):289–323, 1995.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog.
ACM Trans. Database Syst., 22(3):364–418, 1997.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
Set Programming: A Primer. In Sergio Tessaris, Enrico Franconi, Thomas
Eiter, Claudio Gutierrez, Siegfried Handschuh, Marie-Christine Rousset,
and Renate A. Schmidt, editors, Reasoning Web. Semantic Technologies
for Information Systems, 5th International Summer School 2009, Brixen-
Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures,
volume 5689 of Lecture Notes in Computer Science, pages 40–110. Springer,
2009.

[EIKP08] Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, and Axel
Polleres. Rules and Ontologies for the Semantic Web. In Cristina Baroglio,
Piero A. Bonatti, Jan Maluszynski, Massimo Marchiori, Axel Polleres,
and Sebastian Schaffert, editors, Reasoning Web, 4th International Sum-
mer School 2008, Venice, Italy, September 7-11, 2008, Tutorial Lectures,
volume 5224 of Lecture Notes in Computer Science, pages 1–53. Springer,
2008.

[EIP+06] Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman Schindlauer,
and Hans Tompits. Reasoning with Rules and Ontologies. In Pedro
Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler,
editors, Reasoning Web, Second International Summer School 2006, Lisbon,

103

Portugal, September 4-8, 2006, Tutorial Lectures, volume 4126 of Lecture
Notes in Computer Science, pages 93–127. Springer, 2006.

[Ell12] Stefan Ellmauthaler. Abstract Dialectical Frameworks; properties, com-
plexity, and implementation. Master’s thesis, Vienna University of Tech-
nology, 2012. Diplomarbeit.

[ELS98] Thomas Eiter, Nicola Leone, and Domenico Saccà. Expressive Power and
Complexity of Partial Models for Disjunctive Deductive Databases. Theor.
Comput. Sci., 206(1-2):181–218, 1998.

[ES13] Stefan Ellmauthaler and Hannes Strass. The DIAMOND System for
Argumentation: Preliminary Report. CoRR, abs/1312.6140, 2013.

[Fou16] Apache Software Foundation. Commons CLI. https://commons.
apache.org/proper/commons-cli/, 2016. [Online; accessed 10-
January-2016].

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and com-
plexity of recursive aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

[GKK+11] Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski,
Torsten Schaub, and Marius Thomas Schneider. Potassco: The Potsdam
Answer Set Solving Collection. AI Commun., 24(2):107–124, 2011.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

[GL88] Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for
Logic Programming. In Robert A. Kowalski and Kenneth A. Bowen, edi-
tors, Logic Programming, Proceedings of the Fifth International Conference
and Symposium, Seattle, Washington, August 15-19, 1988 (2 Volumes),
pages 1070–1080. MIT Press, 1988.

[GL02] Michael Gelfond and Nicola Leone. Logic programming and knowledge
representation - The A-Prolog perspective. Artif. Intell., 138(1-2):3–38,
2002.

[GPW07] Thomas F. Gordon, Henry Prakken, and Douglas Walton. The Carneades
model of argument and burden of proof. Artif. Intell., 171(10-15):875–896,
2007.

[JGr16] JGraph Ltd. JGraphX. https://github.com/jgraph/jgraphx,
2016. [Online; accessed 10-January-2016].

104

https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://github.com/jgraph/jgraphx

[Joh90] David S. Johnson. A catalog of complexity classes. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity (A),
pages 67–161. 1990.

[KL94] Hans Kleine Büning and Theodor Lettmann. Aussagenlogik - Deduktion
und Algorithmen. Leitfäden und Monographien der Informatik. Teubner,
1994.

[Kle09] Stephen C. Kleene. Introduction to Metamathematics. Ishi Press Interna-
tional, March 2009.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artif.
Intell., 138(1-2):39–54, 2002.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The DLV system for
knowledge representation and reasoning. ACM Trans. Comput. Log.,
7(3):499–562, 2006.

[Mic16] Sun Microsystems. JavaCC. https://javacc.java.net/, 2016. [On-
line; accessed 10-January-2016].

[MT99] Victor W. Marek and Mirosław Truszczyński. Stable Models and an
Alternative Logic Programming Paradigm. In K. Apt, V. W. Marek,
M. Truszczyński, and D. S. Warren, editors, The Logic Programming
Paradigm – A 25-Year Perspective, pages 375–398. Springer, 1999.

[MW12] Michael Morak and Stefan Woltran. Preprocessing of Complex Non-
Ground Rules in Answer Set Programming. In Agostino Dovier and
Vítor Santos Costa, editors, Technical Communications of the 28th Inter-
national Conference on Logic Programming, ICLP 2012, September 4-8,
2012, Budapest, Hungary, volume 17 of LIPIcs, pages 247–258. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[PHR+11] Philippe Pasquier, Ramon Hollands, Iyad Rahwan, Frank Dignum, and Liz
Sonenberg. An empirical study of interest-based negotiation. Autonomous
Agents and Multi-Agent Systems, 22(2):249–288, 2011.

[PS01] Alessandro Provetti and Tran Cao Son, editors. Answer Set Programming,
Towards Efficient and Scalable Knowledge Representation and Reasoning,
Proceedings of the 1st Intl. ASP’01 Workshop, Stanford, March 26-28,
2001, 2001.

105

https://javacc.java.net/

[RS09] Iyad Rahwan and Guillermo Ricardo Simari. Argumentation in Artificial
Intelligence. Springer Verlag, 2009.

[SA15] Christian Strasser and G. Aldo Antonelli. Non-monotonic logic. In
Edward N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Fall 2015 edition, 2015. http://plato.stanford.edu/archives/
fall2015/entries/logic-nonmonotonic/.

[Sim11] Guillermo Ricardo Simari. A Brief Overview of Research in Argumentation
Systems. In Salem Benferhat and John Grant, editors, Scalable Uncertainty
Management - 5th International Conference, SUM 2011, Dayton, OH,
USA, October 10-13, 2011. Proceedings, volume 6929 of Lecture Notes in
Computer Science, pages 81–95. Springer, 2011.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring
exponential time: Preliminary report. In Alfred V. Aho, Allan Borodin,
Robert L. Constable, Robert W. Floyd, Michael A. Harrison, Richard M.
Karp, and H. Raymond Strong, editors, Proceedings of the 5th Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin,
Texas, USA, pages 1–9. ACM, 1973.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput.
Sci., 3(1):1–22, 1976.

[SW14] Hannes Strass and Johannes Peter Wallner. Analyzing the Computa-
tional Complexity of Abstract Dialectical Frameworks via Approximation
Fixpoint Theory. In Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna,
Austria, July 20-24, 2014, pages 101–110. AAAI Press, 2014.

[SW15] Hannes Strass and Johannes Peter Wallner. Analyzing the computational
complexity of abstract dialectical frameworks via approximation fixpoint
theory. Artif. Intell., 226:34–74, 2015.

[vdWDM+11] Thomas L. van der Weide, Frank Dignum, John-Jules Ch. Meyer, Henry
Prakken, and Gerard Vreeswijk. Multi-criteria argument selection in
persuasion dialogues. In Liz Sonenberg, Peter Stone, Kagan Tumer,
and Pinar Yolum, editors, 10th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan, May 2-6,
2011, Volume 1-3, pages 921–928. IFAAMAS, 2011.

106

http://plato.stanford.edu/archives/fall2015/entries/logic-nonmonotonic/
http://plato.stanford.edu/archives/fall2015/entries/logic-nonmonotonic/

	Introduction
	Preliminaries
	Logic
	af
	adf
	grappa
	asp
	Complexity

	Static encodings
	Description of the input
	States of nodes
	Basic definitions
	Model semantics
	Admissible semantics
	Complete semantics

	Dynamic encodings
	Admissible semantics
	Complete semantics
	Preferred semantics

	Graphical user interface
	Parts of the user interface
	Drawing a graph
	Handling acceptance patterns
	Evaluation of grappa-instances
	Syntax of the GRAPPA pattern language for GrappaVis
	Using GrappaVis for ADFs
	Configuration of evaluation methods
	Design decisions

	Experimental evaluation
	Conversion from GRAPPA to ADF
	Conversion from ADF to GRAPPA
	grappa-instance generation
	Performance

	Conclusion and future work
	Index
	Bibliography

