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INSTITUT FÜR LOGIC AND COMPUTATION

ABTEILUNG DATENBANKEN UND ARTIFICIAL INTELLIGENCE

Splitting Argumentation Frameworks
with Collective Attacks

DBAI-TR-2024-126

Giovanni Buraglio Wolfgang Dvořák
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Abstract. A recurring notion in the abstract argumentation community is that of collective
attacks, whereby a set of arguments, rather than a single one, attacks another argument.
The resulting frameworks capturing this phenomenon are referred to as SETAFs. Given the
possibility of facing an exponential runtime in the size of the framework, techniques have
been presented to compute extensions of a given framework incrementally, i.e. restricting
the search space to sub-frameworks only, and then combining the obtained results. Existing
research has primarily focused on approaches based on SCC-recursiveness, where SETAFs
are evaluated along their strongly connected components (SCCs) using generalized seman-
tics and dedicated algorithms. Splitting approaches are more general in this regard, as they
do not have to consider SCCs individually and can be used on top of arbitrary argumenta-
tion solvers. Splitting techniques have been successfully applied in abstract argumentation
but have been neglected for SETAFs so far. Towards filling this gap our work investigates
the concept of (modification-based) splitting for SETAFs. We show that a splitting-based
approach is possible for common semantics (such as admissible, complete, grounded, pre-
ferred, and stable), generalizing corresponding results of AFs, which can be seen as a re-
stricted class of SETAFs. Along the way, we point out intricate details that are obvious or
trivial for AFs, but help us to understand the underlying ideas in greater detail than before.
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1 Introduction
Most argumentation problems are intractable in general, which means even the best-known meth-
ods for solving these problems oftentimes cannot avoid exploring the whole exponential size
solution-space. The fewer arguments we have to consider for each problem, the more efficient
an approach can be in general, which is why in the setting of abstract argumentation (see [9]) it can
be advantageous to evaluate only parts of a framework at once and then combine the results. One
approach to do this is splitting, as introduced by Baumann for Dung-style argumentation frame-
works (AFs) [2] and later considered in other settings [16, 3, 4]. A popular syntactic addition
within argumentation frameworks that has been regarded in the community are collective attacks
(due to Nielsen and Parsons [17]), the resulting frameworks are called SETAFs [13, 12, 5]. Collec-
tive attacks have proven useful for the instantiation of structured argumentation, see e.g. [7, 14, 8].
However, a splitting approach for SETAFs has not yet been introduced; in this paper we close this
gap and investigate interesting differences and similarities to the simpler AF-case, which ultimately
shines a new light on the existing ideas on splitting. We show that if we carefully generalize the
underlying intuitions, SETAFs yield an elegant splitting procedure for most common semantics.
Splitting techniques have also been introduced for Abstract Dialectical Frameworks (ADFs) [16].
However, even though SETAFs can be modeled through ADFs, it is not obvious how these re-
sults are applicable in the context of SETAFs—as ADFs deal with simple links and propositional
acceptance conditions whereas SETAFs rely on directed hypergraphs.

Similar to the structure of [2], on this work, we consider directional splitting, which means that
we split a large SETAF SF into two sub-frameworks SF1 and SF2 in a way s.t. only SF1 influences
SF2, but not the other way around. Clearly, the choices within the subframework SF1 determine
the acceptable arguments in SF2, which has to be accounted for in order to correctly solve rea-
soning problems. In general, for such a scenario there are two approaches: (a) SF2 is evaluated
w.r.t. generalized semantics, that take the decisions in SF1 into account, or (b) the modification-
based approach, i.e., SF2 is syntactically modified, to simulate the effects of the decisions in
SF1. While (a) is used for example in SCC-recursiveness [12] (i.e., an approach based on the
strongly-connected components), AFs with input/output [1], or decomposition-based techniques
for AFs [15], approach (b) allows us to use unmodified out-of-the-box argumentation solvers on
both sub-frameworks. In this paper we will present a modification-based splitting approach for
SETAFs. This paper is organized as follows.

• In Section 2 we recall the definition of SETAFs and their semantics, as well as the splitting
approach in AFs.

• Throughout Section 3 we explain the intuitions and intricacies of splitting in the context of
collective attacks and justify our design choices for the splitting algorithm.

• Section 4 contains the resulting definition of the splitting approach for SETAFs, as well as
the theoretical underpinning for its correctness. Moreover, we establish its connection to the
directionality principle—a desirable result we already know from AFs.

• Finally, in Section 5 we conclude and discuss related work.
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2 Background
In this section, we recall the definition of argumentation frameworks with collective attacks (SETAFs)
[17, 13, 5] and their semantics. As we will see, with a slight abuse of notation, we can view Dung-
style argumentation frameworks (AFs) [9] as a special case of SETAFs.

Definition 1. A SETAF is a pair SF = (A,R) where A is a finite set of arguments, and R ⊆
(2A \ {∅}) × A is the attack relation. For an attack (T, h) ∈ R we call T the tail and h the head
of the attack. SETAFs (A,R), where for all (T, h) ∈ R it holds that |T | = 1, amount to (standard
Dung) AFs. We usually write (t, h) to denote the set-attack ({t}, h). For S ⊆ A, we say S attacks
an argument a ∈ A if there is an attack (T, a) ∈ R with T ⊆ S. Moreover, for a set B ⊆ A we say
that S attacks B if S attacks some b ∈ B. We use S+

R to denote the set {a | S attacks a} and define
the range of S (w.r.t. R), denoted S⊕R , as the set S ∪ S+

R .

The fundamental notions of conflict and defense from Dung-style AFs naturally generalize to
SETAFs. These notions are the basis for the semantics we investigate in this paper.

Definition 2. Let SF = (A,R) be a SETAF. A set S ⊆ A is conflicting in SF if S attacks a for
some a ∈ S. S ⊆ A is conflict-free in SF , if S is not conflicting in SF , i.e. if T ∪ {h} 6⊆ S for
each (T, h) ∈ R. cf(SF ) denotes the set of all conflict-free sets in SF . An argument a ∈ A is
defended (in SF ) by a set S ⊆ A if for each B ⊆ A, such that B attacks a, also S attacks B in
SF . A set T ⊆ A is defended (in SF ) by S if each a ∈ T is defended by S (in SF ).

The semantics we study in this work are the admissible, complete, grounded, preferred, and
stable semantics, which we will abbreviate by adm, com, grd, pref, and stb, respectively [17, 13,
10]. Moreover, we use σ(SF ) to denote the set of extensions of SF under semantics σ.

Definition 3. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf(SF ). Then,

• S ∈ adm(SF ), if S defends itself in SF ,

• S ∈ com(SF ), if S ∈ adm(SF ) and a ∈ S for all a ∈ A defended by S,

• S ∈ grd(SF ), if S ∈ com(SF ) and there is no T ∈ com(SF ) s.t. T ⊂ S,

• S ∈ pref(SF ), if S ∈ adm(SF ) and there is no T ∈ adm(SF ) s.t. T ⊃ S, and

• S ∈ stb(SF ), if S⊕R = A.

The relationship between the semantics has been clarified in [17, 13, 10] and matches with the
relations between the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF ) ⊆ pref(SF ) ⊆ com(SF ) ⊆ adm(SF ) ⊆ cf(SF )

We now recall Baumann’s splitting approach for AFs [2] (in a slightly adapted equivalent form
to fit our notation).
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Definition 4. Let F = (A,R) be an AF, F1 = (A1, R1) and F2 = (A2, R2) two sub-frameworks
of SF s.t. A1 ∩ A2 = ∅, A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 with R3 ⊆ A1 × A2. We call the
triple (F1, F2, R3) a splitting of F . For such a splitting the (E,R3)-reduct w.r.t. E ⊆ A1 is the AF
AF ′ = (A′, R′) with A′ = A2 \ E+

R3
and R′ = R2 ∩ (A′ × A′). The set of undecided arguments

w.r.t. E ⊆ A1 is defined as UE = A1 \ E⊕R1
.

We will later generalize the notion of the reduct to be applicable in the context of SETAFs.

Definition 5. Let (F1, F2, R3) be a splitting for an AF F and E an extension of F1. Moreover, take
F ′2 = (A′2, R

′
2) as the (E,R3)-reduct of F2 and UE as the set of undecided arguments w.r.t. E. The

(UE, R3)-modification of F2 is defined as modUE ,R3(F
′
2) = (A′2, R

′
2 ∪ {(b, b) | ∃a ∈ UE : (a, b) ∈

R3}).

It is easy to see that the definition of the modification does not actually rely on the undecided
arguments, but rather uses the arguments as means to obtain the links which stem from undecided
arguments. Later on, we will make use of this fact to simplify the respective notions. Baumann [2]
showed that by this definition it is possible for a splitting to compute the extensions for each sub-
framework separately.

Theorem 6 ([2]). Let (F1, F2, R3) be a splitting for an AF F = (A,R) with Fi = (Ai, Ri) and
σ ∈ {cf, adm, stb, com, pref, grd}.

1. If E1 ∈ σ(F1) and E2 ∈ σ(modUE ,R3(F
′
2)), then E1 ∪ E2 ∈ σ(F ).

2. If E ∈ σ(F ), then E ∩ A1 ∈ σ(F1) and E ∩ A2 ∈ σ(modUE ,R3(F
′
2)).

3 Towards Splitting for SETAFs
In this section, we introduce fundamental ideas for defining divide and conquer algorithms based
on splitting in the presence of collective attacks. As a starting point, we generalize the notion of
splitting introduced in [2] for Dung-style AFs. For this, we will in the following provide compre-
hensive intuitions.

Definition 7. Let SF = (A,R) be a SETAF, SF1 = (A1, R1) and SF2 = (A2, R2) two sub-
frameworks of SF such that A1 ∩ A2 = ∅, A = A1 ∪ A2 and R = R1 ∪ R2 ∪ R3 with R3 ⊆(
(2A1 \ {∅}) ∪ 2A2

)
× A2. We call a splitting of SF the triple (SF1, SF2, R3). Moreover, we say

that R3 is the set of links of the splitting (SF1, SF2, R3).

In a nutshell, we investigate a large SETAF SF that has two sub-frameworks SF1 and SF2

with attacks within themselves, and attacks R3 that stem from A1 (at least in part) and target only
arguments in SF2. The general idea is to compute extensions of SF1 and SF2, which combined
give us extensions of SF . Due to the links from SF1 to SF2 we have to modify SF2 according to
the extension(s) of SF1 to account for the prior accepted and rejected arguments.
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3.1 Simple Splitting for SETAFs
We take here into account SETAF splittings where the whole tail of the links is separated from
the respective heads. Notice that, whereas these are indeed straightforward generalizations of AF
splittings [2], they represent only a specific class of the splittings introduced by Definition 7. In
Section 3.2, we will investigate the problem of splitting SETAFs in full generality.

Example 8. Consider the SETAF SF below with its splitting (SF1, SF2, R3), with SF1 = (A1, R1)
and SF2 = (A2, R2). The dashed line indicates the separation between the sub-frameworks. The
goal is to compute the extensions of SF by computing the extensions of SF1 and (a modified
version of) SF2 separately. Note that throughout the remaining part of this paper we will refer to
the splitting in question always as (SF1, SF2, R3), unless indicated otherwise.

a b

c d

e

f

g

A1 =
R1 =
A2 =
R2 =
R3 =

{a, b, c, d}
{(a, a), (a, b), (c, d), (d, c), (c, a)}
{e, f, g}
{(e, f), (f, e), ({e, f}, g)}
{({b, d}, e), (d, f)}

One can verify that SF1 has two preferred extensions: E1 = {b, c} and E2 = {d}. Let us first
consider E1. Since d is defeated in SF1 we can argue that the links (i.e., attacks in R3) do not
at all affect the arguments in SF2, and we can just evaluate SF2 “as is” to obtain the extensions
E1,1 = {e, g} and E1,2 = {f, g}. We can combine the extensions from SF1 and SF2 to obtain
{b, c, e, g} and {b, c, f, g}, which are indeed preferred extensions of SF . Now on the other hand
if we consider E2, it is non-trivial how this affects SF2: while f is defeated by d, e is targeted by
an attack from the accepted argument d and the argument b, which in SF1 is neither accepted nor
outright rejected by E2. In the following, we will argue how to properly deal with these cases and
introduce a splitting method that correctly characterizes all extensions.

In the example above we can see that the status of the arguments in SF1 w.r.t. the extension
of SF1 we investigate determines whether and how the arguments in SF2 are affected. Indeed, in
the AF case the status of the single argument in the tail of a link solely determines whether the
head is removed or not from the second sub-framework, or whether a self-attack is added to it (c.f.
Definitions 4 and 5). Similarly for SETAFs, it is possible to distinguish three different scenarios
for the status of the arguments in A1 after evaluating SF1, corresponding to the cases where the
argument is accepted (i.e., in an extension E1 ∈ σ(SF1)), defeated (in (E1)

+
R1

) or undecided (in
A1 \ (E1)

⊕
R1

). Note however, that while on AFs the status of a link and its one tail argument
coincide, for SETAFs links (like any other attack) can have multiple tail arguments. Hence, the
status of a link (T, h) ∈ R3 of a splitting (SF1, SF2, R3) can be determined after evaluating SF1

as follows: (i) all of the arguments in the tail of a link (that are also in SF1) are accepted (i.e.,
in an extension E1 ∈ σ(SF1)), (ii) at least one argument in the tail of a link is defeated by E1

(in (E1)
+
R1∪R3

) or (iii) no argument is defeated but at least one is undecided (in A1 \ E⊕R1
). In

what follows, we consider cases (i)-(iii) separately and show an intuition on how these need to be
treated. We start with (i) in the Example 9, depicting a situation where the attack ({x, y}, z) is
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in. As one can see, in certain circumstances the above definition of a splitting corresponds to a
straightforward generalization of the AF case.

Example 9. Consider the AF F (left), and the SETAF SF (right) with its splitting (SF1, SF2, R3).

a b c
v

w

x

y
z

We look at the preferred extensions {a} for the first part of F , and see that b in the second part
is defeated. Thus, by the approach of [2], b is removed when we look at the modified second
framework, and its outgoing attack towards c as well. We trivially obtain {c} as a preferred
extension for the modified right part. We combine {a} ∪ {c} to obtain {a, c} as the only preferred
extension for F .

Analogously, we have {v, w} as a preferred extension in SF1. Hence, we remove x from SF2

to obtain the modified framework SF ?
2 . As in the AF case, any outgoing attack from x (no matter

if other arguments are in the tail, like y in our case) cannot affect their targeted argument (z), as z
is defended against this attack. Hence, we remove the entire attack and obtain SF ?

2 = ({y, z}, ∅)
which trivially yields {y, z} as its preferred extension. As a result, one gets {v, w} ∪ {y, z} as a
preferred extension for SF .

We next discuss case (ii) for the status of a link in Example 10 below.

Example 10. For the SETAF SF below, we identify the preferred extension {w, y} in the first
part (i.e., {w, y} ∈ pref(SF1)). Given that w ∈ E, we get that x is defeated, which means the
link ({x, y}, z) can be seen as out. Intuitively, z needs no more counter-attack for this incoming
attack—since x is already defeated. For this reason, such an attack does not affect the modification
of SF2. Hence, the modified SF ?

2 is as depicted on the right, preserving z as an acceptable
argument. Note also that any possible outgoing attacks of z remain untouched. We thus have
{w, y} ∈ pref(SF1) and {z} ∈ pref(SF ?

2 ) as preferred extensions of SF1 and SF ?
2 , respectively.

It is easy to see that {w, y} ∪ {z} is a preferred extension of SF .

w x

y
z

w x

y
z

Different considerations are due whenever the original SETAF contains a link which is unde-
cided, corresponding to case (iii).

Example 11. Consider the SETAF SF displayed below (left) and E = {y} ∈ pref(SF1). x is
undecided w.r.t. E, i.e., x ∈ A1 \ E⊕R1

. This makes the status of ({x, y}, z) undecided as well,
enforcing a modification of the right part of the SETAF. Analogous to the approach for AFs, we
add a self-attack on z, obtaining SF ?

2 = ({z}, {(z, z)}) (right). Intuitively, this models the fact
that z cannot be accepted in SF ?

2 , since there is at least one attack that z is not defended against.
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On the other hand, z is not rejected, i.e., if z were to attack other arguments in SF2 they need
defence against z. Hence, we cannot outright remove z as in case (ii). In this situation, one gets
∅ ∈ pref(SF ?

2 ). Hence, {y} ∪ ∅ is a preferred extension of SF .

x

y
z

x

y
z

Examples 9, 10, and 11 above display only a special case of splitting for SETAFs, where the
whole tail of an attack is separated from its target. Hence, as of now performing splitting-based
techniques in the presence of collective attacks represents an easy and straightforward generaliza-
tion of its AF counterpart. This stems from the fact that modification is only slightly impacted
by the presence of multiple arguments in the tail of a link. Consequently, minor adjustments are
needed to handle such situations. However, due to their rich syntax, SETAFs allow for another
possible way to separate an attack via splitting. In the following, we consider SETAF splittings in
full generality.

3.2 Diagonal Splitting for SETAFs
The enriched syntax of SETAFs allows us to take into account splittings that separate arguments
taking part in the same collective attack. In particular, it is possible to split a SETAF in such a
way that two parts of the same tail of a link end up being in different sub-frameworks. This is
captured by the possibility of having R3 ⊆

(
(2A1 \ {∅}) ∪ 2A2

)
× A2 as for our Definition 7. We

investigate such scenarios in connection with the cases (i)-(iii) as before. Note however that we
need to consider the cases more carefully, as we now also consider links (T, h) ∈ R3 where the
tail T is spread over both A1 and A2. More formally we call a link (T, h) ∈ R3:

(i) in iff @a ∈ T s.t. a ∈ E+
R1∪R3

and ∀a ∈ T ∩ A1, a ∈ E,

(ii) out iff ∃a ∈ T s.t. a ∈ E+
R1∪R3

or

(iii) undec iff @a ∈ T s.t. a ∈ E+
R1∪R3

and ∃a ∈ T ∩ A1 s.t. a ∈ A \ E⊕R1
.

We again give the necessary intuitions for each case, starting with (i).

Example 12. For the below SETAF SF (left), we consider {x} ∈ adm(SF1). Therefore, intuitively
it is the remaining part of the attack stemming from y that is decisive for the status of the target
argument z. Since x is accepted, it suffices for the success of the attack ({x, y}, z) to consider
the status of y alone. Therefore, one can solely consider the remaining part of the attack in SF2.
Resulting from this, we obtain SF ?

2 = ({y, z}, {(y, z)}) (right). Given that {y} ∈ adm(SF ?
2 ), we

retrieve {x} ∪ {y} as an admissible set of SF .

x

y

z
x

y

z
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More generally, given a set of arguments E which is accepted in SF1, the success of any link
(T, h) ∈ R3 where T ∩ A1 ⊆ E is dependent only on the status of T \ E in SF2. Opposite
considerations can be made when arguments in the links’ tails are defeated (case (ii)).

Example 13. Consider the following SETAF SF (left) with E = {w} ∈ adm(SF1). As in Exam-
ple 10, the argument w ∈ E attacks part of the link’s tail (i.e. x), thereby neutralizing the collective
attack ({x, y}, z). As a result, w is compatible with both y and z. More formally, the rightmost
part of SF is modified to obtain SF ?

2 = ({y, z}, ∅) (middle). Indeed, their set-union {w} ∪ {y, z}
is an admissible set of SF . Note that this case (ii) can also occur via a link. Consider the split-
ting for the SETAF SF † (right) where {a, b} is a preferred extension in the left sub-framework.
Since a defeats c, the link ({b, c}, d)) has to be deleted in the modified framework, even though all
tail-arguments of the link within A1 (i.e., in our case b) are accepted.

w

x

y

z

w

x

y

z

a

b

c

d

As before, we can directly exploit (ii) in order to guide the modification of SF2 to get extensions
for the whole SETAF. It is however less straightforward to find a correct modification for case (iii),
where a link is undecided due to what happens in SF1.

Example 14. For SF (left), we have E = ∅ ∈ adm(SF1) which means x ∈ A1 \ E⊕R1
, i.e.,

the link ({x, y}, z) is undecided. By naively applying the same technique as in the AF case (see
Example 11), we make z self-attacking. However, it is not immediately clear whether one should
modify SF2 to include (y, z) ∈ R?

2 or not. It turns out that both options, i.e., (a) including (y, z),
and (b) not including (y, z) both lead to an undesired result.

x

y

z w

v

x

y

z w

v

(a)

x

y

z w

v

(b)

We see that {v} is admissible in both case (a) and (b). However, the additional self-loop (z, z)
resulting from modification makes z not acceptable in both cases. This is in contrast with the fact
that ∅ ∪ {v, z} is indeed an admissible extension of SF .

We see that a naive generalization of the AF approach, where we blindly make those arguments
that are attacked by an undecided attack self-attacking, does not work as intended. In contrast to
the AF case, these attacks can still be counter-attacked if in the second part of the framework an
argument of the tail is attacked—as is the case in Example 14 where y is defeated by v. In this
situation, z should remain acceptable. In particular, we have to ensure that (1) {z} is conflict-free
in the modified SF ?

2 , and (2) z can only be accepted if the remaining part of the attack ({x, y}, z)
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is counter-attacked (e.g., in Example 14, if y is attacked). In fact, being out, the attack (y, z) is too
weak and gets overwritten by the undec self-loop over z, thereby letting the status of z be entirely
dependent on that of x. This is in opposition to what happens in the original SETAF, where the
acceptance of z depends on the fact that y is defeated.

In order to present a splitting-based algorithm that works in a truly incremental and modular
fashion, we consider a possible modification that is intermediate between adding an attack or not.
For this, we have to make sure that the remaining part of the link is not “powerful” enough to
actually defeat z—while at the same time indicating a need for z to defend against the remaining
part of the attack. In the SCC-recursive schema for SETAFS [12] this issue has been resolved
by marking certain attacks as mitigated attacks, i.e., those are attacks that have to be counter-
attacked in order to accept the target argument, but cannot be used to attack the target argument
in order to defend some other argument. In a nutshell, a conflict-free set is admissible if for each
attack towards the set (mitigated or not) a non-mitigated counter-attack exists. However, in our
modification-based approach we cannot add new syntactic concepts and adjusted semantics but
have to encode this behavior within the standard SETAF syntax. A way to do this is by adding
a self-attacking argument in the second sub-framework which participates in the collective attack
along with the remaining part of it. This duplicate argument carries out the work of the undecided
argument that is lost after splitting. Such modification can be visualized in the following example.

Example 15. Contrary to the idea of mitigated attacks discussed before, we do not need label-
ing for attacks in this scenario. Instead, we add a dummy argument ∗ for the undecided attack
({x, y}, z) such that ∗ is self-attacking and attacks z together with y (via the attack ({∗, y}, z)).

x

y

z w
x

y

z w

∗

Modifying the second part of the framework in this way successfully neutralizes the acceptance
of w, which is now faced by an undecided attack. Notably, the second part of the framework is
identical to the whole SETAF prior to modification.

Such an addition can result in augmenting the number of arguments and attacks in the rightmost
part of the framework. More importantly, such an unwanted outcome can be easily avoided. In
fact, we can employ the very same target argument to do the job that was previously done by the
dummy argument. As a consequence, the dummy argument becomes obsolete, and the modified
attack collapses onto one singular (set)-self-attack on the target, as the next example illustrates.

Example 16. As a final strategy we introduce a more concise and elegant modification of the
second part of the framework at hand. Instead of using a dummy argument to make the attack
towards z undecided, we choose to use z itself. This way, we obtain the expected result without
creating a duplicate of x in the second part of the framework. This means, to account for the
attack ({x, y}, z) with the undecided argument x in the original framework (left), we introduce
in the modification the attack ({y, z}, z) which is a “set-self-attack” (right). Note that z is not a
classic “self-attacker” as in the AF-case, since we do not introduce an attack (z, z).
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x

y

z

w
x

y

z

w

In the modification (right), the attack ({z, y}, z) can never defeat its head z (since its conflicting
tail {y, z} would have to be accepted). Since z is not defeated, it is undecided, which carries over
to w via the unaltered attack (z, w). This yields the admissible set ∅ ∪ {y} as desired.

As a sanity check, note that this is indeed a generalization of the AF modification. In fact, for
attacks (T, h) with |T | = 1, e.g. for (T, h) = ({t}, h), we have T \ {t} = ∅. Thus, we add the
self-attack (∅ ∪ {t}, t) which is the attack (t, t).

4 Reduct, SETAF Modification, and Splitting Theorem
In this section, we introduce the formal definitions that are needed to prove the correctness of
our proposed splitting-based algorithm. Following [2], we generalize the notions of reduct and
modification, in application to the rightmost part of the original SETAFs. Intuitively, the reduct
takes care of the arguments in SF2 that are already defeated byE1 by removing them, and modifies
the links that we characterize as in–case (1)—s.t. the remaining attack appears in the reduct SF ′2.
The modification then “modifies” the undecided links by adding the targeted argument to the tail—
we add (set-)self-attacks, as discussed in Example 16.

Hence, after computing an extension E1 in SF1, we obtain the reduct of SF2 w.r.t. E1 (i.e.,
SF ′2) as follows:

1. We remove the arguments a ∈ (E1)
+
R3

which are defeated by E1, together with their in-
and outgoing attacks, which we realize by only keeping those attacks from R2 which are
completely within the new set of arguments A′2 (as in the original approach of Baumann),

2. we add the remaining part T ∩ A′2 of a link (T, h) ∈ R3 if the tail arguments in T ∩ A1 are
all in E1 and no tail argument t ∈ T is defeated via R3 (as showcased in Example 12), given
that there are any tail-arguments left in SF2 (i.e., T ∩ A′2 6= ∅).

This allows us to retain all the information concerning defeated arguments and in attacks of SF1.
Formally this translates to the following notion of reduct (which we illustrate in Example 20):

Definition 17 (Reduct). Let (SF1, SF2, R3) be a splitting for a SETAF SF . We define the (E1, R3)-
reduct (or simply reduct) of SF2 for some extension E1 of SF1 as the SETAF SF ′2 = (A′2, R

′
2)

where, A′2 = {a ∈ A2 | a /∈ (E1)
+
R3
} and

R′2 ={(T, h) ∈ R2 | T ⊆ A′2, h ∈ A′2} ∪
{(T ∩ A′2, h) | (T, h) ∈ R3, T ∩ A′2 6= ∅, h ∈ A′2, T ∩ A1 ⊆ E1, T ∩ (E1)

+
R3

= ∅}
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We have argued throughout this paper that in fact, when dealing with undecidedness, what
guided our intuition towards a certain modification is not the status of the arguments in SF1,
but rather the status of the links (corresponding to cases (i)-(iii)). In fact, if we closely examine
Definition 5 we can see that even in the AF case we add self-attacks to those arguments that are
targeted by an undecided link—the set UE of undecided arguments is merely a tool to formally
obtain those links. In the context of SETAFs, where an attack is not associated to exactly one
attacker, this becomes even more evident. Hence, we decide to slightly tweak the definition to
omit such detour, and base our notion solely on the undecided links.

Definition 18 (Undecided Links). Given a splitting (SF1, SF2, R3) for a SETAF SF and an ex-
tension E1 ∈ SF1 we define the set of undecided links w.r.t. E1 as:

UE1
R3

= {(T, h) ∈ R3 | T ∩ (E1)
+
R1∪R3

= ∅ and ∃t ∈ T : t ∈ A1 \ (E1)
⊕
R1
}

In what follows, we define the modification, which is applied on the reduct, and accounts for
the effects of the undecided links. In particular, for each undecided link, we add to the targeted
argument a (set-)self-attack incorporating the remaining part of the link (as intuitively explained in
Example 16).

Definition 19 (Modification). Let (SF1, SF2, R3) be a splitting for a SETAF SF and E1 an exten-
sion of SF1. Take SF ′2 as the (E1, R3)-reduct of SF2 and UE1

R3
as the set of undecided links w.r.t.

E1. We denote with modE1
R3
(SF ′2) the UE1

R3
-modification (or simply modification) of SF ′2 s.t.:

modE1
R3
(SF ′2) = (A′2, R

′
2 ∪ {((T ∩ A′2) ∪ {h}, h) | (T, h) ∈ U

E1
R3
, h ∈ A′2})

Before we present the main result of this paper we want to illustrate Definitions 17–19 in the
following example, while covering many interesting cases at once.

Example 20. In (a) we have a new SETAF SF with a splitting that separates the arguments
A1 = {a, b, c, d} from A2 = {v, w, x, y, z}. We see that E1 = {c} is admissible in the left part
of the splitting. In (b) we see the reduct w.r.t. the set {c}, where a and d are defeated by c (as
{c}+R1

= {a, d}) and b is undecided. This reduct contains from the right part all arguments except
z, which is defeated by c (as {c}+R3

= {z}). We see that most attacks are removed from the right
part, but (x,w) persists (since it is in R2 and all involved arguments remain), and the attack
({c, y}, x) is changed to (y, x). The attack ({b, z}, y) is removed since z is defeated. The attack
({b, w}, v) is also removed, as b is undecided (i.e., {b, w} ∩A1 * E1). However, in (c) we see that
the latter case is important for the modification: the attack ({b, w}, v) is an undecided link, which
means in the modification we introduce the attack ({v, w}, v). For the right part of the splitting we
see that {y, w} is admissible, and obtain {c, y, w} as an admissible set for SF .

a b

c

d

v

w

z

x y

(a) SETAF SF

a b

c

d

v

w

z

x y

(b) ({c}, R3)-reduct

a b

c

d

v

w

z

x y

(c) U{c}R3
-modification
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Note that in the first step, for the left part of the splitting, instead of the set {c} we could also
investigate the admissible sets ∅, {a}, or {a, d}, which result in different reducts and modifications.

Having these notions at hand, we now establish the adequacy of our splitting technique for
SETAFs. We start by establishing that (a) conflict-freeness of the sub-frameworks SF1 and SF2

carries over to the whole SETAF SF , and (b) conflict-free sets of SF induce conflict-free subsets
in SF1 and SF ′2.

Proposition 21. Let (SF1, SF2, R3) be a splitting for a SETAF SF = (A,R) with SF1 = (A1, R1)
and SF2 = (A2, R2). Let SF ?

2 = modE1
R3
(SF ′2).

1. If E1 ∈ cf(SF1) and E2 ∈ cf(SF ?
2 ), then E1 ∪ E2 ∈ cf(SF ).

2. If E ∈ cf(SF ), then E ∩ A1 ∈ cf(SF1) and E ∩ A2 ∈ cf(SF ′2).

Proof. (1.) We need to show for each (T, h) ∈ R1 ∪ R2 ∪ R3 that T ∪ {h} * E = E1 ∪ E2. Let
SF ′2 = (A′2, R

′
2) and SF ?

2 = (A?
2, R

?
2). If (T, h) ∈ R1 we immediately get T ∪ {h} * E, since

we know E1 is conflict-free in SF1. For (T, h) ∈ R2 there are two cases: either (a) the attack
is removed when we construct the reduct or (b) the attack remains, i.e., (T, h) in SF ?

2 . Case (a)
happens if some a ∈ T ∪{h} is attacked by E1, i.e., (T ∪{h})∩ (E1)

+
R1∪R3

6= ∅. Then at least one
argument a ∈ T ∪ {h} of the attack does not occur in the modification (i.e., (T ∪ {h}) * A?

2), and
since we assume E2 ∈ cf(SF ?

2 ) we know E2 ⊆ A?
2. Hence we obtain T ∪ {h} * E. For case (b)

we get from E2 ∈ cf(SF ?) that at least one argument a ∈ T ∪ {h} is not in E2, which also means
T ∪ {h} * E. Finally, for (T, h) ∈ R3 we again consider two cases: (a) T ∩ A1 ⊆ E1, and (b)
T ∩A1 * E1. For case (a) we either have T ⊆ A1 in which case h ∈ (E1)

+
R3

and we obtain h /∈ E
(since then h /∈ A′2 while we know E2 ⊆ A′2), or if T * A1 we get an attack (T ∩ A′2, h) ∈ R?

2 (if
otherwise T∩A′2 = ∅ this means we removed some a ∈ T∩A2 when constructing the reduct, which
means a /∈ E2 and consequently a /∈ E), which since E2 ∈ cf(SF ?

2 ) either means T ∩A′2 * E2 or
h /∈ E ′2, both give us T ∪{h} * E. For case (b) we have T ∩A1 * E1, which means T ∪{h} * E.

(2.) Suppose now that E ∈ cf(SF ). From this we derive that E ∩A1 ∈ cf(SF1) because every
subset of a conflict-free set is also conflict-free. We now show that E ∩ A2 ∈ cf(SF ′2). Given
that E ∈ cf(SF ), then for all T ⊆ E ∩ A1 and a ∈ E ∩ A2, we have (T, a) /∈ R3. Hence, no
argument in E is deleted going from SF2 to the reduct SF ′2. Thus, we conclude that E ∩A2 ⊆ A′2.
Moreover, by E ∈ cf(SF ) we know for each (T, h) ∈ R2 that T ∪ {h} * E which carries over to
SF ′2, since the attacks in R2 may be removed, but are never changed. Finally, whenever for a link
(T, h) ∈ R3 with T ∩ A1 ⊆ E we add an attack (T ∩ A′2, h) ∈ R′2 when constructing the reduct,
we also obtain (T ∩ A′2) ∪ {h} * E since otherwise T ∪ {h} ⊆ E. Therefore, E ∩ A2 ∈ cf(SF ′2)
concluding the proof.

Finally, we are ready to characterize the splitting algorithm by proving the main theorem of this
paper for the standard Dung semantics. In particular, we show that 1. if one computes an extension
E1 in SF1, then applies the previously discussed reduct and modification, and obtains an extension
E2 of the remaining sub-framework, the set-union of the two indeed make for an extension of
the whole framework SF . This characterizes the incremental computation of the extension E
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by evaluating the two sub-frameworks. Conversely, we show that 2. if we project an arbitrary
extension E of the whole framework SF to the sub-frameworks, we obtain extensions E1 for SF1

and E2 for the (w.r.t. E1)-modified version of SF2. This result generalizes the corresponding result
of AFs [2].

Due to space constraints we present proof details only for admissible semantics, which are
prototypical for the other semantics. Details for the remaining semantics can be found in the
appendix.

Theorem 22. Let (SF1, SF2, R3) be a splitting for a SETAF SF = (A,R) with SF1 = (A1, R1),
SF2 = (A2, R2), and σ ∈ {stb, adm, com, pref, grd}.

1. If E1 ∈ σ(SF1) and E2 ∈ σ
(
modE1

R3
(SF ′2)

)
, then E1 ∪ E2 ∈ σ(SF ).

2. If E ∈ σ(SF ), then E ∩ A1 ∈ σ(SF1) and E ∩ A2 ∈ σ
(
modE∩A1

R3
(SF ′2)

)
.

Proof. (admissible). (1.) Since admissibility implies conflict-freeness, we know from Proposi-
tion 21 that E = E1 ∪ E2 ∈ cf(SF ). We need to show that E defends itself in SF , i.e. for all
a ∈ E, if (T, a) ∈ R1 ∪R2 ∪R3, then (T ′, t) ∈ R1 ∪R2 ∪R3 for T ′ ⊆ E and t ∈ T . Consider an
argument a ∈ E1. E1 defends a from each attack in R1 towards a since E1 ∈ adm(SF1). There-
fore, E1 ∈ adm(SF ). Consider now an argument a ∈ E2 and an arbitrary attack (T, a) ∈ R2 ∪R3

towards a. If T ∩ (E1)
+
R1∪R3

6= ∅ we know a is defended (in SF ) by E1 against (T, a) and we
are done, hence, we proceed with the assumption T ∩ (E1)

+
R1∪R3

= ∅. This means that either
(T ∩ A′2, a) ∈ R?

2 (via the reduct) or ((T ∩ A′2) ∪ {a}, a) ∈ R?
2 (via the modification). Since

a ∈ E2 and E2 ∈ adm(SF ?
2 ) we know there is a counter-attack in R?

2 which defends a. Even in
case ((T ∩ A′2) ∪ {a}, a) ∈ R?

2 this counter-attack cannot be against a since this violates conflict-
freeness of E2 in SF ?

2 . Hence, there is some (S, t) ∈ R?
2 s.t. S ⊆ E2 and t ∈ T ∩ A′2 with

t /∈ S. Hence, either (a) (S, t) ∈ R2 in which case a is defended by E in SF or (b) there is some
(S ′, t) ∈ R3 with S ′ ⊃ S s.t. S ′ ∩ A1 ⊆ E1, in which case a is defended (in SF ) by E via the
attack (S ′, t) since then S ′ ⊆ E1 ∪E2. In any case we showed that a is defended in SF by E, i.e.,
E ∈ adm(SF ).

(2.) By Proposition 21 we get E1 = E ∩ A1 ∈ cf(SF1) and E2 = E ∩ A2 ∈ cf(SF ′2). Since
E is defends itself in SF we get E ∩ A1 ∈ adm(SF1) because (SF1, SF2, R3) is a splitting of
SF , i.e. no argument in E ∩ A1 is attacked by a subset of A2 or defended by E ∩ A2. That is,
in SF1 every attack towards an argument in E ∩ A1 is countered by E ∩ A1. It remains to show
that E ∩ A2 ∈ adm(SF ?

2 ). Consider now an argument a ∈ E2 and an arbitrary attack (T, a) ∈ R?
2

against a. This attack (T, a) either corresponds to an attack (T, a) ∈ R2 or (T ′, a) ∈ R3 with
T ′ ⊃ T \ {a} (which accounts for both the case of addition in the reduct and the modification).
In both cases we have that T ∩ (E1)

+
R1∪R3

= ∅ (or T ′ ∩ (E1)
+
R1∪R3

= ∅, resp.) as otherwise
(T, a) would not be in R?

2. However, since a is defended by E in SF , there is a counter-attack
(S, t) ∈ R2 ∪ R3 s.t. S ⊆ E and t ∈ (T \ {a}) (or t ∈ (T ′ \ {a}), resp.). If (S, t) ∈ R2 then
from S ⊆ E and E2 ⊆ A′2 (which we get from E2 ∈ cf(SF ′2) via Proposition 21) and the fact that
then (S, t) ∈ R′2 since S ∪ {t} ⊆ A′2 we get that E2 defends a via (S, t) against (T, a) in SF ?

2 .
If (S, t) ∈ R3 since S ⊆ E we have S ∩ A1 ⊆ E1, and hence we get an attack (S ∩ A′2, t) ∈ R′2



14 TECHNICAL REPORT DBAI-TR-2024-126

which again defends a against (T, a) in SF ?
2 . Hence, in every case a is defended in SF ?

2 , i.e.,
E2 ∈ adm(SF ?

2 ).

To further establish the adequacy of our splitting approach for SETAFs, we want to high-
light that we retain the close connection to the directionality principle [12] already proven for
AFs [3]. Before introducing the definition of directionality, we first recall the notion of influ-
ence: in a SETAF SF = (A,R) an argument a ∈ A influences an argument b ∈ A if there
is a path (a, p1, . . . , pn, b) in SF s.t. for 1 ≤ i < n, (Ti, pi+1) ∈ R with pi ∈ Ti, as well as
(T0, p1), (Tn, b) ∈ R with a ∈ T0, pn ∈ Tn holds (i.e., there is a path from a to b if we “break
up” the hyperedges to standard directed edges—the primal graph of SF ). A set S ⊆ A is an
uninfluenced set in SF (denoted S ∈ US(SF )) if no a ∈ A \ S influences any b ∈ S. In other
words, a set S is uninfluenced in SF if it has no incoming edges. In a nutshell, directionality states
that the projection SF↓ U of a SETAF SF to an uninfluenced set U yields the same extensions as
the original framework (ignoring the arguments removed under projection).

Definition 23. A semantics σ satisfies directionality if for all SETAFs SF and every U ∈ US(SF )
it holds σ(SF ↓ U) = {E ∩ U | E ∈ σ(SF )}, where SF ↓ U = (U, {(T ′, h) | (T, h) ∈ R, h ∈
U, T ′ = T ∩ U, T ′ 6= ∅}).

We are now able to generalize the following result regarding directionality from AFs [3, Theo-
rem 4.13].

Theorem 24. Let σ be a semantics s.t. |σ(SF )| ≥ 1 for each SETAF SF . If σ allows splitting (i.e.,
Theorem 22 holds for σ) then σ satisfies directionality.

Proof. Assume towards contradiction this is not the case, i.e., for some SETAF SF = (A,R) and
some U ∈ US(SF ) it holds σ(SF↓U) 6= {E ∩ U | E ∈ σ(SF )}. Observe that (SF↓U , SF2, R3)
is a splitting of SF , where SF2 = (A \ U,R ∩ (2A\U × (A \ U))) and R3 contains exactly those
attacks of SF that are neither in SF↓U nor SF2.

(6⊆): This means there is some E1 ∈ σ(SF ↓ U) s.t. E1 6= {E ∩ U} for any E ∈ σ(SF ). By
Theorem 22 and since |σ(SF ?

2 )| ≥ 1 we get E2 ∈ σ(SF ?
2 ), where SF ?

2 = modE1
R3
(SF ′2) and SF ′2

is the (E1, R3)-reduct of SF2. Then by Theorem 22 we get E1 ∪ E2 ∈ σ(SF ), a contradiction to
the assumption that there is no E ∈ σ(SF ) s.t. E1 = E ∩ U .

(6⊇): This means there is some E ∈ σ(SF ) s.t. there is no E1 ∈ σ(SF↓U) with E1 = {E∩U},
directly contradicting Theorem 22.

5 Discussion
In this paper, we introduced a modification-based splitting approach for SETAFs, and showed that
it generalizes the important key features of its AF counterpart. In the following, we clarify the
relation of our splitting approach to SCC-recursiveness (as due to [12] for SETAFs) and splitting
for abstract dialectal frameworks (ADFs) [16]. In the incremental computation approach induced
by the SCC-recursive property, one computes the extensions in subframeworks of a given SETAF,
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and ultimately combines the thereby computed extension parts (as in the splitting approach). In
contrast to splittings however, this is restricted to subframeworks that make up strongly connected
components w.r.t. the primal graph of the SETAF. Splitting on the other hand is more general in this
regard, as the subframeworks do not have to be strongly connected. Finally, SCC-recursiveness
relies on a generalized semantics to deal with the decisions of prior parts of the framework, in
contrast to the syntactic manipulation-based approach of splitting.

ADFs [6] are an expressive argumentation formalism, where each argument is associated with
a propositional formula over arguments as variables as an acceptance condition. It is well-known
that SETAFs can be interpreted as a special kind of ADFs with acceptance conditions in the form of
a conjunction of disjunctive clauses of negated literals [11]. That is, in principle we can apply ADF
splitting to SETAFs. However, it is not clear that following the ADF approach the modified second
framework again is of the desired (SETAF-like) form and whether one can avoid certain overheads
in the simpler case of SETAFs. Upon closer inspection and with minor syntactic manipulation
the ADF approach in the special case of SETAF-like frameworks is similar to what we discussed
in Example 15, where we introduced artificial “dummy”-arguments. However, such a trick is not
needed in our case, as we have illustrated.

In summary, we showed how the splitting technique can be applied in the context of collective
attacks, where in contrast to the AF case also intricate situations like “diagonal splitting” can occur.
We furthermore showed that the splitting theorem holds in the setting of SETAFs, and established
that we retain the strong link to directionality which is known for AFs.

Our result can serve as a starting point for more general splitting ideas like parameterized split-
ting (cf. [4] for AFs), as well as a broader consideration in the context of dynamic argumentation.
Future work includes the generalization to parameterized splitting also for SETAFs, as well as an
implementation of the algorithm.
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A Proof of Theorem 22
Theorem 22. Let (SF1, SF2, R3) be a splitting for a SETAF SF = (A,R) with SF1 = (A1, R1),
SF2 = (A2, R2), and σ ∈ {stb, adm, com, pref, grd}.

1. If E1 ∈ σ(SF1) and E2 ∈ σ
(
modE1

R3
(SF ′2)

)
, then E1 ∪ E2 ∈ σ(SF ).

2. If E ∈ σ(SF ), then E ∩ A1 ∈ σ(SF1) and E ∩ A2 ∈ σ
(
modE∩A1

R3
(SF ′2)

)
.

Proof. In what follows, we prove 1. and 2. for each semantics. For notational convenience, let
E = E1 ∪ E2 and let SF ′2 = (A′, R′) be the reduct of SF2 w.r.t. E1 = E ∩ A1, and SF ?

2 =
(A?, R?) = modE1

R3
(SF ′2) be the modification.

(stable). (1.) From Proposition 21 together with the assumptions that E1 ∈ stb(SF1) and
E2 ∈ stb(SF ?

2 ), we know that E = E1 ∪ E2 ∈ cf(SF ). Let a ∈ A \ E, we show that a ∈ E+
R . If

a ∈ A1 by E1 ∈ stb(SF1) we get a ∈ (E1)
+
R1

, which immediately gives us a ∈ E+
R . If a ∈ A2,

either a ∈ A′ = A? or a /∈ A′ = A?. If a /∈ A′ = A? this can only be because a ∈ (E1)
+
R3

which gives us a ∈ E+
R . If a ∈ A′ = A? then by E2 ∈ stb(SF ?) we get a ∈ (E2)

+
R?

2
. Hence,

either E2 defeats (in SF ?
2 ) a via some (T, a) ∈ R2 (in which case a ∈ E+

R ) or via some other
(T, a) ∈ R?

2 \ R2, which can only be the remaining part of an attack from R3. Clearly in this case
a /∈ T (as then (T, a) would not defeat a), so we know (T, a) is not constructed from an undecided
link in UE1

R3
(which do not occur in stable semantics as A1 = E1 ∪ (E1)

+
R1

). Instead, we must have
obtained (T, a) while constructing the reduct, i.e., there is an attack (T ′, a) ∈ R3 with T ′ ⊃ T , and
T ′ ∩ A1 ⊆ E1. From this we get T ′ ⊆ E, and consequently a ∈ E+

R3
. In all cases we get a ∈ E+

R ,
which means A = E ∪ E+, i.e., E ∈ stb(SF ).

(2.) Assume E ∈ stb(SF ). From this we know that E⊕R = A = A1 ∪ A2. We first prove that
E1 = E∩A1 ∈ stb(SF1). From Proposition 21 we knowE∩A1 ∈ cf(SF1). Since (SF1, SF2, R3)
is a splitting of SF we know that the only attacks towards arguments in A1 are from R1, so we
immediately get (E ∩ A1)

⊕
R1

= A1, i.e., E1 ∈ stb(SF1). We know turn to prove E2 = E ∩ A2 ∈
stb(SF ?

2 ). First, notice that SF ?
2 = SF ′2 because UE1

R3
= ∅. From Proposition 21 we again obtain

E2 ∈ cf(SF ′2). Let a ∈ A′2 \ E2. We show a ∈ (E2)
+
R′

2
. Since E ∈ stb(SF ) we know a ∈ E+

R

which means (a) a ∈ E+
R2

or (b) a ∈ E+
R3

. In case (a) we have an attack (T, a) ∈ R2 with T ⊆ E2,
and since E2 ⊆ A′2 (which is because E2 ∈ cf(SF ′)) and also a ∈ A′2 by assumption we know
(T, a) ∈ R′2, i.e., a ∈ (E2)

+
R′

2
. If (b) is the case we know that there is some (T, a) ∈ R3 with

T ⊆ E, i.e., T ∩ A1 ⊆ E1. Clearly since E is conflict-free in SF we have T ∩ (E1)
+
R1∪R3

= ∅
which means in SF ′2 we have an attack (T ∩ A′2, a). Since T ∩ A′2 ⊆ E2 we get a ∈ (E2)

+
R′

2
. In

both cases we get E2 ∪ (E2)
+
R′

2
= A′2, i.e., E2 ∈ stb(SF ′2) = stb(SF ?

2 ).
(complete). (1.) Given statement 1 of admissible semantics proven above, we only need to

show that a ∈ E1 ∪ E2 for all a ∈ A defended by E1 ∪ E2 in SF . Assume towards contradiction
that there is an a ∈ (A1 ∪A2) \ (E1 ∪E2) defended by E1 ∪E2. From E1 ∈ com(SF1), we know
that a /∈ A1 \E1. Hence, a ∈ A2 \E2 and, because (SF1, SF2, R3) is a splitting and E1 ∈ cf(SF1),
we obtain a ∈ A′2 \ E2. Indeed, if a ∈ (E1)

+
R3

, then E1 ∪ E2 defends a from an attack of E1,
which is against conflict-freeness of E1 ∪ E2. Consider now possible attacks scenarios towards a:
if a is not attacked, then it would be in every complete extension, hence E2 /∈ com(SF ?

2 ). If a is
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attacked by some set of arguments T , then (T, a) ∈ R2 or (T, a) ∈ R3. We show that both cases
lead to a contradiction. Consider now (T, a) ∈ R2. Again, in this case we distinguish three attack
scenarios:

1. (T, a) ∈ R2 with T ∩ (E1)
+
R1∪R3

6= ∅. Since a is defended by E1 ∪ E2, such attacks are
countered by E1 via a link. Given that (T, a) /∈ R?

2 (eliminated by the reduct), a is vacuously
defended by E2 in SF ?

2 . Thus, E2 /∈ com(SF ?
2 ).

2. (T, a) ∈ R2 \ {(a, a)} with T ∩ (E1)
+
R1∪R3

= ∅. This means there is a counter-attack
(S, t) ∈ R2 ∪R3 with S ⊆ E1 ∪E2. Given that the reduct and modification do not eliminate
such attacks, a is defended by E2 in SF ?

2 . Thus, E2 /∈ com(SF ?
2 ).

3. (T, a) = (a, a) ∈ R2 with T ∩ (E1)
+
R1∪R3

= ∅. From SETAF Fundamental Lemma [17] and
the assumption that a is defended by E1 ∪ E2, we get that E1 ∪ E2 ∪ {a} is an admissible
(and thus conflict-free) extension in SF . Since a is a self-attacking argument, we derive a
contradiction.

All of the above derive a contradiction. Therefore, we now consider the case where (T, a) ∈ R3.
SinceE1∪E2 defends a, we know that for some t ∈ T∩A1, (E1, t) ∈ R1 or for some t ∈ T∩A2 and
S ⊆ E1∪E2, (S, t) ∈ R3. In the first case, the reduct of SF2 does not contain (T ∩A′2, a) because
T ∩ (E1)

+
R1
6= ∅. Hence, a is unattacked in R′2. For the same reason, and given that (E1)

+
R1∪R3

⊇
(E1)

+
R1

, we also know that T ∩ (E1)
+
R1∪R3

6= ∅. Thus, (T, a) /∈ UE1
R3

and a is unattacked in R?
2.

Again, a is vacuously defended by E2 in SF ?
2 and E2 /∈ com(SF ?

2 ). Contradiction. Consider now
the case where (S, t) ∈ R3 for some S ⊆ E1∪E2 and t ∈ T ∩A2. if S ⊆ E1, then T ∩ (E1)

+
R3
6= ∅

and (T ∩ A′2, a) /∈ R′2. For the same reason as before, (T ∩ A′2, a) /∈ R?
2. Hence, a is vacuously

defended byE2 in SF ?
2 andE2 /∈ com(SF ?

2 ). If S 6⊆ E1, then (S∩A′2, t) ∈ R′2 because S∩A′2 6= ∅,
t ∈ A′2, S ∩ A1 ⊆ E1 and S ∩ (E1)

+
R1∪R3

= ∅. We derive directly that (S ∩ A′2, t) ∈ R?
2 since

the modification does not delete attacks. Hence, E2 defends a in SF ?
2 . Finally, this contradicts our

hypothesis that E2 ∈ com(SF ?
2 ), concluding the proof.

(2.) Admissibility of E1 = E ∩A1 and E2 = E ∩A2 has been shown above. We need to show
that for all a defended by E1 in SF1 and by E2 in SF ?

2 , we have a ∈ E1 and a ∈ E2 respectively.
Let us consider E1 first. Towards contradiction, assume there is an a ∈ A1 \ E1 such that a is
defended by E1. This implies that a is such that a ∈ A1 ∪ A2 \ E and a is defended by E, in
contradiction with the completeness of E in SF . Consider now E2. As before, we need to show
that there is no a ∈ A′2 \ E2 such that E2 defends a in SF ?

2 . Again, assume that there is such an
a ∈ A′2 \ E2. As before, we consider possible attack scenarios towards a. If a does not receive
any attack in SF ?

2 , then for every attack (T, a) ∈ R2 ∪ R3 it holds that T ∩ (E1)
+
R1∪R3

6= ∅ ((T, a)
was eliminated by the reduct). Hence, E1 defends a in SF , in contradiction with E ∈ com(SF ).
Assume now that a receives an attack in SF ?

2 , then for all (T, a) ∈ R?
2 we have (S, t) ∈ R?

2 for
some S ⊆ E2 and t ∈ T , as we assume thatE2 defends a inR?

2. Note that t /∈ S, as otherwise (S, t)
would not counter the attack (T, a) which we assumed. But we know (S, t) ∈ R?

2 corresponds to
some attack in R2∪R3. If (S, t) ∈ R2 we have that E defends a in SF (via (S, t)), a contradiction
to E ∈ com(SF ). If on the other hand there is some (S ′, t) ∈ R3 with S ′ ⊃ S we know that also
S ′∩A1 ⊆ E1, as otherwise we would have t ∈ S (if (S, t) was introduced in via the modification),
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which we already ruled out. Finally, the attack (T, a) is either in R2 or corresponds to some attack
(T ′, a) ∈ R3 with T ′ ⊆ T \ {a}, in both cases SF defends a via (S, t) or (S ′, t) against the attack.
Hence, we derive a contradiction to E ∈ com(SF ). As every possible way a could be defended by
E2 in SF ?

2 but not in E2 leads to a contradiction, this cannot be the case, hence, E2 ∈ com(SF ?
2 ).

(preferred). (1) From statement 1 for admissible semantics above, we derive that E1 ∪ E2 ∈
adm(SF ). Moreover, from hypothesis we have that there is no S1 ∈ adm(SF1) such that S1 ⊃ E1

and no S2 ∈ adm(SF ?
2 ) such that S2 ⊃ E2. We need to prove that there is no S ∈ adm(SF ) such

that S ⊃ E = E1∪E2. Towards contradiction, suppose there is such an S. Then S1 = S∩A1 ⊃ E1

or S2 = S ∩ A2 ⊃ E2. Consider the first case. Since E1 ∈ pref(SF1) by hypothesis, it must
hold that S1 /∈ adm(SF1). However, this is in contradiction with statement 2 shown above for
the admissible semantics (i.e. if S ∈ adm(SF ) and (SF1, SF2, R3) is a splitting for SF , then
S ∩ A1 ∈ adm(SF1)). Consider now the case where S2 ⊃ E2. We can assume S ∩ A1 = E1,
as otherwise we derive a contradiction as above. Similarly to the case before, it must hold that
S2 /∈ adm(SF ?

2 ). Again, since we assumed S ∈ adm(SF ), then it must hold that S2 ∈ adm(SF ?
2 )

(statement 2 of admissible semantics). Both directions lead to a contradiction, hence there is no
S ∈ adm(SF ) such that S ⊃ E1 ∪ E2. Thus we conclude that E1 ∪ E2 ∈ pref(SF ).

(2.) By hypothesis, we have E ∈ pref(SF ) and hence, there is no S ∈ adm(SF ) such that
S ⊃ E. Moreover, by statement 2 of admissible semantics, we get E ∩ A1 ∈ adm(SF1) and
E ∩ A2 ∈ adm(SF ?

2 ). Consider now E ∩ A1. By directionality of preferred semantics [12] we
obtain E ∩ A1 ∈ pref(SF1). For E ∩ A2, assume now there is an S2 ∈ adm(SF ?

2 ) such that
S2 ⊃ E ∩A2. For statement 1 of admissible semantics, (E ∩A1) ∪ S2 is admissible in SF which
contradicts the maximality of E. This conclude the proof.

(grounded). (1) Since the grounded extension is also complete, we only need to show that
E1 ∪ E2 is the minimal complete extension in SF . Suppose the contrary is true: there is a set
S ∈ com(SF ) such that S ⊂ E1 ∪E2. Hence, S1 = S ∩A1 ⊂ E1 or S2 = S ∩A2 ⊂ E2. Consider
the first case. From the statement 2 of complete semantics above, we derive that S1 ∈ com(SF1).
But this contradicts our hypothesis thatE1 ∈ grd(SF1), since S1 would be the⊆-minimal complete
extension of SF1. Hence, S1 = E1. For the second case, we can assume S∩A1 = E1 (as otherwise
we derive a contradiction via the first case) and we deduce again from statement 2 of complete
semantics that S2 ∈ com(SF ?

2 ). However, by hypothesis we have that E2 = grd(SF ?
2 ), which is

incompatible with that fact that S2 ⊂ E2. Both cases lead to a contradiction, hence we derive that
E1 ∪ E2 = grd(SF ).

(2) By hypothesis, we have E ∈ grd(SF ) and hence, there is no S ∈ adm(SF ) such that
S ⊂ E. Moreover, by statement 2 of complete semantics, we get E ∩ A1 ∈ com(SF1) and
E ∩ A2 ∈ com(SF ?

2 ). Consider now E ∩ A1. By directionality of grounded semantics [12] we
obtain E ∩ A1 ∈ grd(SF1). For E ∩ A2, assume now there is an S2 ∈ com(SF ?

2 ) such that
S2 ⊂ E ∩ A2. For statement 1 of complete semantics, (E ∩ A1) ∪ S2 is complete in SF which
contradicts the minimality of E. This conclude the proof.


