Abstraction and Performance in
Database Systems

Christoph Koch
EPFL DATA Lab

Contents

Expressiveness vs. efficient evaluation of declarative
languages

— How Georg shaped me and this talk

Domain-specific languages are hot across computer science
— DSLs vs declarative languages

Epidemiology of Database People Missing Boats Disorder
(DMBD)

— In DB systems: The Scalability Blunder: NoSQL

— In DB systems: How DSLs make DB performance work
mainstream ... and folklore.

— In DB theory: Where are the PODS people in the DSL revolution?
Opportunities: Non-Turing complete DSLs & FMT
What | do

My collaboration with Georg

20+ joint papers on expressiveness,
complexity, and efficient evaluation
of declarative/query languages.

 Things | learned from Georg:
How to do research, really
— How to write a PODS paper ©
Using declarative languages creatively

— Expressiveness vs. complexity is not a
zero-sum game!

— One can’t just write papers and have a
career here, but advance human
knowledge!

— Much more

Efficient Algorithms for Processing XPath Queries*

Georg Gottlob, Christoph Koch, and Reinhard Pichler

Database and Artificial Intelligence Group
Technische Universitit Wien, A-1040 Vienna, Austria
{gottlob, koch}@dbai.tuwien.ac.at, reini@logic.at

Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction’

Georg Gottlob
Database and Atrtificial Intelligence Group
Technische Universitat Wien
A-1040 Vienna, Austria

gottiob@dbai.tuwien.ac.at

ABSTRACT

Research on information extraction from Web pages (wrap-
ping) has seen much activity in recent times (particularly
systems implementations), but little work has been done on
formally studying the expressiveness of the formalisms pro-
posed or on the theoretical foundations of wrapping

In this paper, we first study monadic datalog as a wrap-
ping language (over ranked or unranked tree structures)
Using previous work by Neven and Schwentick, we show
that this simple language is equivalent to full monadic sec-
ond order logic (MSO) in its ability to specify wrappers.
We believe that MSO has the right expressiveness required
for Web information extraction and thus propose MSO as a
yardstick for evaluating and comparing wrappers.

Using the above result, we study the kernel fragment
Elog™ of the Elog wrapping language used in the Lixto sys-
tem (a visual wrapper generator). The striking fact here
is that Elog™ exactly captures MSO, yet is easier to use
Indeed, programs in this language can be entirely visually
specified. We also formally compare Elog to other wrapping
languages proposed in the literature

1. INTRODUCTION

The Web wrapping problem, i.c., the problem of extract-
ing structured information from HTML documents, is one of
high practical importance and has spurred a great amount
of work, including theoretical research (e.g., [5]) as well as
systems. Previous work can be classified into two categories,
depending on whether the HTML input is regarded as a se-
quential character string (TSIMMIS [27], Editor [5
FLORID [21], and DEBYE [18]) or a pre-parsed document
tree (for instance, WAF (28], XWrap [20], and Lixto' [8, 7])
The latter category of work thus assumes that systems may

*This work was supported by the Austrian Science Fund
(FWF) under project No. Z29-INF.
!See http://www.lixto. com.

Christoph Koch
Database and Atrtificial Intelligence Group
Technische Universitat Wien
A-1040 Vienna, Austria

koch@dbai.tuwien.ac.at

make use of an existing HTML parser as a front end
Taking a practical perspective, robust wrappers are easier
to build over pre-parsed documents, as the handling of the
intricacies of HTML is left to the parser and does not need
to be programmed from scratch into each wrapper being cre-
ated. This allows the wrapper implementor to focus on the
essentials of each wrapping task. Even from the standpoint
of theory, many practical problems are presumably simpler
to solve over the parse trees of documents rather than over
the documents themselves (that is, as strings). %
It is understood in the literature that the scope of wrap-
ping is a conceptually limited one. A wrapper is assumed
to extract relevant data from a possibly poorly structured
source and to put it into the desired representation formal-
ism by applying a number of transformational changes close
to the minimum possible. A wrapping language that permits
arbitrary data transformations may be considered overkill
One may thus want to look for a wrapping language over
document trees that (i) has a solid and well understood the-
oretical foundation, (ii) provides a good trade-off between
complexity and the number of practical wrappers that can
be expressed, (iii) is casy to use as a wrapper programming
language, and (iv) is suitable for being incorporated into
visual tools, since ideally all constructs of a wrapping lan-
guage can be realized through corresponding visual primi-
tives. This paper exhibits and studies such languages
The core notion that we base our wrapping approach on
is the one of an information extraction function. An in-
formation extraction function takes a labeled unranked tree
(representing a Web document) and returns a subset of its
nodes or, viewed differently, subtrees rooted by these nodes
In the context of the present paper, a wrapper is a program
which implements one or several such functions. That way
we can take a tree, re-label its nodes, and declare some of
them as irrelevant, but we cannot significantly transform its
original structure. This coincides with the intuition that a
wrapper may change the presentation of relevant informa-
tion, its packaging or data model (which does not apply in

the case of Web wrapping), but does not handle substantial

The years 0 to 13AG

| did more work on declarative languages
— E.g. for probabilistic databases and video games

| moved more into systems

How could | combine declarative languages,
expressiveness/efficiency with systems?

— Domain-specific languages

— Databases and compilation/code generation for
performance.

This is what | currently mostly do.

Declarative languages and DSLs

 Domain-specific languages (DSLs)
— Engineered languages
— Usually Turing-complete

— Embedded DSL: classical PL (e.g. Java) + library (domain-
specific vocabulary)

 SQL is a DSL (domain = database querying)
— But most new DSLs are not very declarative.

* |In Turing-complete DSLs: (compiler) optimizations tend
to be local and sometimes brittle.

DSLs are hot!

* Motivation: not declarativity but performance

— Compensate for the failure of Dennard scaling and
Moore’s law.

— We don’t know how to build robust optimizing
compilers with deep/global optimizations.

— Consequence: Domain-specific compilation -
opportunities for automatic software specialization.

* People all over CS are flocking to DSLs
— Computer architecture. ASPLOS; Chisel, ...
— HPC & Graphics: OpenGL, Halide, ...
— Systems, databases: LegoBase, S-Store...

DSLs and code generation

Software specialization by compilation.

» Staging/partial evaluation (e.g. specialize DBMS code for a given
schema).

DSL compiler frameworks allow to easily add domain-specific

code optimizations.

* Usage in domain makes them robust.

e Squid: github.com/epfldata/squid [Parreaux, Shaikhha, K., GPCE2017,
Scala2017, POPL2018]

Increasingly, DSLs enable code generation that matches or
outperforms human systems programming experts!

* Observed in multiple domains, e.g. linear transforms [Spiral], OLAP
[LegoBase], OLTP [S-Store]

“Abstraction without Regret” [Rompf&Odersky, CACM; K.,
CIDR2013]

TpmC (transactions/min)

S-Store TPC-C benchmark results

10000000
1000000 - ”%
NN
100000 / /%
N
10000 7 ’%
1000 - ’ /5
/s
_ / R
100 / /*
o 7\l 7
Scala C++[34] | Scala
MySQL | VoltDB | OLTPX Naive C++ [34] Revised | HW S-Store
WW=1 | 3512 | 70349 | 167007 | 747 2663092 1795411 1017520 2492911
@BW=5 | 3384 | 201142 | 160112 = 178 |2673561|1795910| 846982 2215348
©W=10| 3377 | 226710 | 149402 | 78 2670703 | 1795614 | 709949 |2101276

Dashti, John, K., 2014

DSLs and the role of database research

* Relational databases created many firsts.
e SQL is still the most successful DSL

« RDBMS shows how to build an entire system, the entire stack, for
executing SQL efficiently.

* Algebras, plan languages, cost-based optimization, logical vs. physical
data representation; managing the memory hierarchy, mem
hierarchy-aware operator implementation.

— The basic pipeline and architecture is the foundation of all
modern DSL-based systems.

— Some credit is given (e.g. GraphLab), but the database
contribs are increasingly taken as a historical footnote

across CS.
e Also, are we still innovating in any significant way?

DSLs and the role of database research

Database performance techniques are becoming
mainstream ... and the role of databases fades

away. In two ways:

— The contributions of the DB community are
becoming a historical footnote.
e Database ideas stop being considered database ideas.

— Databases functionality is integrated into other
kinds of systems, and classical DBMS will be used
in fewer scenarios.

Example 1: row/columnar representations

Much hyped (M. Stonebraker). Various DBMS
built - Vertica, SAP Hana, ...

But: It’s CS folklore now.

Ubiquituous in programming tools
— List<Pair<Int, Int>>: n+1 objects
— Pair<List<Int>, List<Int>>: 3 objects

— Makes a huge performance difference in OO runtime
systems, e.g. JVM - boxing/unboxing overheads!!!

Heavily used in HPC, graphics, ML, ...

Example 2: GRACE Hash join

riginal

Hgs h—]01n Relation OUT:’UT Partitions
. < Partition both L] INPUT 2
Classical database course relations using hach | 51|11 e, S
. . nh: Rt in * o0 h o
material. Seems uniquely parttion iwill only | [J
about databases (?) B =
. . . Partitions
Main-mem DB case: hash join L RES
. < Read in a partition hash Ri (k < B-1 pages)
becomes the trival ok hashitusing o | | O~
. . :). OCan DD
implementation. matching partition | ... = m
L. . of S, search for 0 Input buffer Output
G RAC E h a S h -J O I n - m a I n m e m matches. \D—mk/ B main memory buffers Disk

hash join + staging for the mem hierarchy.

Mem hierarchy considerations have by now been better
analyzed/addressed by the compilers, computer
architecture and HPC communities.

— general/automatic algo transformation techniques exist (loop

tiling & superoptimization; see Aho et al. Dragon Book 2" Ed.
Chapter 11)

A case of missing the boat

* |sthere anything about DB Performance that won’t be
absorbed into the CS systems/performance mainstream?

* Conjecture: No.
* Experience in the DBLab project (github.com/epfldata/

dblab) [Shaikhha, ..., K., VDLB 2014, SIGMOD 2016,
TODS2018, JFP2018].

— We are building a library of compiler optimizations for data-
intensive systems, by abstracting from a database system
(LegoBase).

— After cleaning up, none seem really specific to databases.

* Thisis a problem for the future of database research.

Database People Missing Boats
Disorder (DMBD) - a pandemic?

* Causes:
— Lack of care to recognize major CS trends (early)
— Lack of effort to abstract&generalize results

— Catering too much to reviewers in a calcified &
broken system of conferences.

 Symptoms: Rectal pain, depression
* Treatment: ???

Another case of MtB in DB systems: NoSQL

* There always was distributed and parallel databases
research.

— Banned from first-rate publication venues
— Few systems built - not “sexy” enough.

* Then Google and Facebook wanted scalable
databases, and we couldn’t offer them.

* Consequences today:

— A massive loss of prestige for our community

— A widely-held belief that one has to look for SOSP rather
than SIGMOD for good DB research.

— Genuine contributions of the DB community do not get
acknowledged and cited, but reinvented.

A third MtB case: DB Theory

e Estimated # of PODS papers talking of DSLs,
ever: 0

 Pub. venues for foundational DSL work: POPL,
SIGGRAPH, ASPLQOS, ...
— Citation in-degree into DB theory literature: ~0

Opportunities

Many results from DB Theory, finite model theory
on non-Turing complete languages carry over to
modern DSLs.

People in other domains do not know these
results and find them exciting, when applied to
their DSL.

E.g. collection programming languages like Spark
are essentially just nested relational algebra...

My experience at a DSL summer school.

Quiz
From: K, “Exploiting Domain-Specific Knowledge: [...] Part 1: Lessons on DSLs learned
by the DB community”, DSL Design&Implementation Summer School, 2016.

Consider the following DSL:

* purely functional Scala, with “if” as the only control structure

* Types built from Int, List, and tuples

* List ops: singleton constr, empty list, map(x => ...), flatten, list concat ++
* Tuple construction (...) and projection _i

* (deep) equality test =; the identity function

Let us call this language (Scala/List) Monad Calculus (MC) to have a label.

Example:

scala> val R = List(l)++List(2); val S = List(1l)++List(3)
R: List[Int] = List(1l, 2)
S: List[Int] = List(1l, 3)

scala> R.map(r => S.map(s =>
if (r==s) List((r,s)) else List()).flatten).flatten

res2: List[(Int, Int)] = List((1l,1))

Quiz: What can you do in MC?

R.map(r => S.map(s =>
if (r==s) List((r,s)) else List()).flatten).flatten

 Joins? ---yes

* Arbitrary “conjunctive queries” --- yes

e Arbitrary SQL select-from-where queries --- no, conditions (<)!
 Test whether two values are not equal --- yes (else)

 Test whetheranitemisnotinalist --yes(!) List.filter(x=> x==a) == List()
 Aggregations: select count(*) from ... ---no

* Testing on order/look sideways, sorting a list of integers? --- no

* Reachability in a graph given by the edge relation? ---no

Quiz: What can you do in MC?

R.map(r => S.map(s =>
if (r==s) List((r,s)) else List()).flatten).flatten

* Does every program terminate? ---yes

* How bigis the largest value than can be produced? --- polynomial in input

 How quickly does every prog terminate? --- PTIME

* All queries of relational algebra ---yes !l

* Only queries expressible in relational algebra ---yes % repr 11111111

* Can every program be parallelized? --- yes, fantastically
well! (ACO)

-- given polynomially much hardware, every program runs in CONSTANT time!!!!
-- if you have only constantly much hardware => Brent Scheduling Principle

Quiz: Extending MC

R.map(r => S.map(s =>
if (r==s) List((r,s)) else List()).flatten).flatten

* Testing on order/look sideways, sorting a list of integers? --- no
e List.map preserves order but can’t “query” it.
 But what if | want a DSL that can do this?

Could add List.foldLeft, and nothing else.

* Does every program still terminate? ---yes
* Does every program still run in PTIME? --- no, nonelementary!

The FOI[X]

co-xe, complets Arithmetic Hierarchy FO(N) Te. complete
Halt .) Halt
co-re. FOVY(N) re. FO4(N)
Recursive
Primitive Recursive
. EXPTIME
SO(LFP) SO[2m""]
QSAT PSPACE complete
PSPACE
FO[2"”"] FO(PFP) SO(TC) SO[R°W)

PTIME Hierarchy SO NP complete

SAT

co-NP complete
SAT

co-NP SOV

NP N co-NP

+*"*+, P complete

FO [.nO(l)] "'.H”m_“‘ >
FO(LFP) SO(Horn) o .

FO[(logn)°W)] '.': “truly NC
FO[log] feasible” AC!
FO(CFL) SAC!

FO(TC) SO(Krom):~—2SAT NL comp. —7 NL

FO(DTC) 2COLOR L comp. L
FO(REGULAR) NC!
FO(COUNT) ThC?
FO LOGTIME Hierarchy AC?

GRADUATE

DSL Zoo

TEXTS"PRCOMPUT

Descriptive
Complexity

Writhmetic Hivrarces = =

A P ——

—-.auf__.-' ren ———— 0N~
PO ecursive ==

Primitive Recurvive

sinx) EXPTIME
e
o) R— PSPACE roany ST
NP POl AR e T lererem <~ |
camphos T 4 > ._'.‘ \r Livhe
ot NP O NP 2
-
2 DR
tOe = Ty Feasibie” Y-
" rOpibeg nd*Y) N
NP
—
feg(CHL)

TEOTCL Neadeterministic Logspese b

FOuT Logsgace
n"n. S
ACt Logarithmie: Fime Hiersoohy

Neil Immerman

Cogprigiiod Maten

Database theory work that we need
more of

1. Results on complexity and efficiency that
systems people can understand to be
relevant to them, and which carry over to
new languages, e.g.

— Georg’s work on hypertree decompositions
— Result cardinality bounds - AGM bound

— Worst-case optimal joins

2. Results that bridge the gap between PODS
and POPL/SIGGRAPH/ASPLOS work.

Summary

* Try not to miss the DSL boat.

e |f this advice is useful to you, you ultimately
have Georg to thank for it ©

