EXAM IN “SEMI-STRUCTURED DATA” 184.705 27. 06. 2017
Study Code Student Id Family Name First Name

Working time: 100 minutes.
Exercises have to be solved on this exam sheet; Additional slips of paper will not be graded.
First, please fill in your name, study code and student number. Please, prepare your student id.

Exercise 1: (12)

Consider the following XML schema file test.xsd:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="A">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="A" type="xsd:boolean" maxOccurs="2"/>
<xsd:element name="B" type="B" maxOccurs="2"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="B">
<xsd:complexType mixed="false">
<xsd:sequence>
<xsd:element name="A" type="B" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="B" mixed="true">
<xsd:choice>
<xsd:element name="size" type="xsd:integer"/>
</xsd:choice>
</xsd:complexType>
</xsd:schema>

Furthermore, consider the eight different XML files, which are listed below.

You may assume that each of the following XML files is well-formed. The point is to determine the validity according to
test.xsd.

Check which of the following XML files are valid according to test.xsd.

1. <A><A>1<size>-42</size> valid O invalid O
2. valid O invalid O
3. <A><A>1<size>-42</size><A>1 valid O invalid O
4. <size>-42</size> valid O invalid O
5. <A><size>large</size> valid O invalid O
6. <A><A>1<A>1<A>1<size>-42</size> valid O invalid O
7. <A><KA>1<A>1 valid () invalid O
8. <A><size>1</size><A><size>1</size> valid O invalid O

(For every correct answer 1.5 points, for every incorrect answer -1.5 points, for every unanswered question 0 points,
you can have at least 0 points on this exercise)

Exercise 2:
Decide which of the following statements are true or false.
1. The usual data model for semi-structured data are complete binary trees.
2. XML is a restriction of HTML.
3. Both XML Schemas and DTDs are written in XML syntax.
4. XPath is part of the XQuery W3C standard.
5. XPath is part of the XSLT W3C standard.
XML is often used as Network protocol.
Not all well-formed XML documents are valid.

DOM is a tree-based API for manipulating XML documents.

Bt B =

Namespace URIs are always valid XML names.

10. Unprefixed attributes are in the default namespace.

true O
true O
true O
true O
true O
true O
true O
true O
true O
true O

(15)

false O
false O
false O
false O
false O
false O
false O
false O
false O
false O

(For every correct answer 1.5 points, for every incorrect answer -1.5 points, for every unanswered question 0 points,

you can have at least 0 points on this exercise)

The following Exercises 3 — 7 are referring to the XML document gamescollection.xml, which can be found
on the last page of this exam.

Exercise 3: (12)

Complete the DTD games.dtd, so that XML documents structured like gamescollection.xml (see attachment) are valid
according to this DTD. Consider the following points when creating the DTD:

e A game element contains exactly one name element, any number of developer elements, exactly one year element, at
least one platform element, any number of genre elements and might contain one dlcs element (in that order).

e FEach game element has an attribute key with a unique attribute value and might have an rating attribute storing a
number between 0 and 10.

e The dlcs element contains one or more dlc elements.

e The series elements contain exactly one name element, followed by at least one genre element, and exactly one games
element, which itself contains one or more reference elements.

e All reference elements have an attribute ref which refers to the key of a game element.

e If not specified make reasonable assumptions on the types of elements.

File games.dtd:
<!ELEMENT gamescollection (game | series)*>

Exercise 4: (10)

Consider the following XPath queries applied to the document gamescollection.xml (see attachement).

e If the given XPath expression selects the empty node set, write as output “empty output”

e If a number is selected as the result (count,sum,...), write as output this number.

Now give the outputs of the respective XPath queries:

sum(//@rating)

//game [@key=//series//reference/Qref] [last ()] /name/text ()

//game [@rating] [last ()]/platform

//game[last ()] [@rating] /platform

//game [not (@key=//@ref)] /year

Exercise 5:

Consider the following XQuery expression xquery.xq:

<developers>
{
for $d in distinct-values(//developer)
for $g in //game[developer = $d]
where $g/year > 1993 and $g/year <= 2013
order by $d ascending, $g/year descending
return
<dev name="{$d}">{$g/name/text () }</dev>
}

</developers>

Now give the output of xquery.xq applied to gamescollection.xml.

You do not need to consider whitespace issues.

Exercise 6: (10)

Create an XSLT-Stylesheet xslt.xsl, which returns, applied to documents of the form gamescollection.xml the following
output:

The output is an HTML document.

Output all PS4 games of a document of the form gamescollection.xml.

If a game has a rating greater then 7, also output the text: “Rating: Excellent Game!”.

Additionally, for every game list all series, which reference this game.

Consider the following output that your XSLT-Stylesheet xslt.xsl shall return applied to gamescollection.xml:

<html><head><title>My PS4 Games</title></head>
<body>
<h1>My PS4 Games</h1>
<h2>Uncharted: Drake’s Fortune</h2>
Serie:Uncharted

Serie:Drake’s Anthology

<h2>Uncharted 4: A Thief’s End</h2>
Rating: Excellent Game!

Serie:Uncharted

</body>
</html>

Now write the XSLT-Stylesheet xslt.xsl. You do not need to consider whitespace issues.

File xslt.xsl:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform">

</xsl:stylesheet>

Exercise 7: (10)

Complete the method insDLC, which has two parameters key and dlcName. The method should use DOM to apply the
following changes to the document stored in the variable doc:

e The dlc dlcName should be added to the game with the key key.

e If the element dlcs does not exist for this game, then such an element should be created as well.

You do not need to be concerned with error handling in this task. You can assume that a game with the key key exists in
the document.

private static XPath xPath = XPathFactory.newInstance().newXPath();
Document doc;

public void insDLC (String key, String dlcName) throws Exception {

Total points: 75

You may separate this page!

File gamescollection.xml:

<?xml version="1.0" encoding="utf-8"7>
<gamescollection>
<game rating="7" key="Unchartedl">
<name>Uncharted: Drake’s Fortune</name>
<developer>ND</developer>
<year>2007</year>
<platform>PS3</platform>
<platform>PS4</platform>
</game>
<game rating="8" key="Uncharted4">
<name>Uncharted 4: A Thief’s End</name>
<developer>ND</developer>
<year>2016</year>
<platform>PS4</platform>
</game>
<series>
<name>Uncharted</name>
<genre>Action-adventure</genre>
<games>
<reference ref="Unchartedl"/>
<reference ref="Uncharted4"/>
</games>
</series>
<game rating="9" key="XCOM">
<name>UF0: Enemy Unknown</name>
<developer>MP</developer>
<developer>MG</developer>
<year>1994</year>
<platform>D0S</platform>
<platform>PS1</platform>
</game>
<game rating="8" key="DSA1">
<name>Die Schicksalsklinge</name>
<developer>Attic </developer>
<year>1992</year>
<platform>D0S</platform>
<platform>Amiga</platform>
</game>
<game key="LastofUs">
<name>The Last of Us</name>
<developer>ND</developer>
<year>2013</year>
<platform>PS3</platform>
<genre>survival horror</genre>
<genre>Action-adventure</genre>
<dlcs><dlc>The Last of Us: Left Behind</dlc></dlcs>
</game>
<series>
<name>Die Nordland-Trilogie</name>
<genre>RPG</genre>
<games><reference ref="DSA1"/></games>
</series>
<series>
<name>Drake’s Anthology</name>
<genre>Action-adventure</genre>
<games><reference ref="Unchartedl"/></games>
</series>
</gamescollection>

