
EXAM IN “SEMI-STRUCTURED DATA” 184.705 22. 06. 2016

Study Code Student Id Family Name First Name

Working time: 100 minutes.
Exercises have to be solved on this exam sheet; Additional slips of paper will not be graded.
First, please fill in your name, study code and student number. Please, prepare your student id.

Exercise 1: (12)

Consider the following dtd schema file test.dtd:

<!ELEMENT A ((A | B), C?, B)>

<!ELEMENT B (#PCDATA | A | C)*>

<!ELEMENT C EMPTY>

<!ATTLIST A id ID #IMPLIED>

<!ATTLIST C letter (a|b|c|d) #IMPLIED>

Consider additionally the following eight different xml files. All of the following files are well-formed. In this exercise you
have to decide which of the following are valid according to test.dtd, assuming that the root element is A.

1. <A> valid © invalid ©

2. <A/> valid © invalid ©

3. <C/>test valid © invalid ©

4. <C/> valid © invalid ©

5. test<A>test valid © invalid ©

6. valid © invalid ©

7. valid © invalid ©

8. <C letter="a"/><C letter="d"/><C letter="c"/> valid © invalid ©

(For every correct answer 1.5 points, for every incorrect answer -1.5 points, for every unanswered question 0 points,
you can have at least 0 points on this exercise)

–1

Exercise 2: (15)
Decide which of the following statements are true or false.

1. Structured data can be represented as a graph. true © false ©

2. The “X” in XML stands for eXchangeable. true © false ©

3. An XML document is not a database. true © false ©

4. An XML document must be well-formed. true © false ©

5. DTDs are not XML documents. true © false ©

6. Validating errors cannot be ignored. true © false ©

7. DTDs are more expressive than XML schemas. true © false ©

8. Tree-based parsers use a constant amount of memory. true © false ©

9. XPath is a query language. true © false ©

10. XPath is more powerful than XSLT. true © false ©

(For every correct answer 1.5 points, for every incorrect answer -1.5 points, for every unanswered question 0 points,
you can have at least 0 points on this exercise)

–2

The following Exercises 3 – 7 are referring to the XML document euro.xml, which can be found on the last
page of this exam.

Exercise 3: (10)

Complete the following XML Schema document euro.xsd such that the euro.xml document is valid. Consider the following
specification:

• You only have to complete the type qualifyingType, the rest of the schema is already given.

• The element qualifying has at least one and at most 6 group elements.

• Every element group has exactly four team elements, followed by zero or an unbounded number of news elements.

• The content of a news element is mixed. The news element is allowed to have zero or an unbounded number of player
or team elements in any order.

• All attributes are required and of type xs:string.

• It is not required to define keys and key references.

File euro.xsd:

<!-- More space on the following page! -->

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="euro">

<xs:complexType>

<xs:sequence>

<xs:element name="teams" type="teamsType"/>

<xs:element name="player" maxOccurs="unbounded" type="playerType"/>

<xs:element name="qualifying" type="qualifyingType"/>

</xs:sequence>

<xs:attribute name="year" type="xs:nonNegativeInteger" use="required"/>

</xs:complexType>

</xs:element>

<xs:complexType name="teamsType">

<xs:sequence>

<xs:element name="team" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="shortname" type="xs:string" use="required"/>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="champion">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="yes"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

–3

<xs:complexType name="playerType">

<xs:attribute name="id" type="xs:integer" use="required"/>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="team" type="xs:string" use="required"/>

<xs:attribute name="no" type="xs:integer" use="required"/>

</xs:complexType>

<xs:complexType name="qualifyingType">

</xs:complexType>

</xs:schema>

–4

Exercise 4: (9)

Write an XPath expression for the following queries. These expressions will be evaluated over documents that are valid with
respect to euro.xsd.

1. Select all player elements with number (no) 11.

2. Select the shortname of all countries that have not been a champion.

3. Select the groups with only non-champion teams.

–5

Exercise 5: (10)

Consider the following XQuery squads.xq:

<squads>

{for $team in //teams/team

where $team/@shortname = ("FRA","WAL","SVK")

return

<nation name="{$team/@name}">

{for $player in //player

where $player/@team = $team/@shortname

return

<player no="{$player/@no}">

{$player/@name}

</player>}

</nation>}

</squads>

Write the output of squads.xq evaluated over euro.xml.
Whitespaces do not have to be formatted correctly.

–6

Exercise 6: (10)

Create an XSLT stylesheet squads.xsl that, after applied to euro.xml, outputs the same XML document as the XQuery
squads.xq on the previous page.

It is not allowed to use xsl:for-each and xsl:if.

Write the stylesheet squads.xsl below.

File groups.xsl:

<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml"/>

</xsl:stylesheet>

–7

Exercise 7: (9)

Consider the method run given below. Write the output of this method run, assuming the variable doc contains the DOM
representation of the XML document euro.xml.

public void run() throws Exception {

NodeList list = doc.getElementsByTagName("news");

for (int i = 0; i < list.getLength(); i++) {

Node n = list.item(i).getFirstChild();

String s = "";

do {

switch (n.getNodeType()) {

case Node.TEXT_NODE:

s += n.getNodeValue();

break;

case Node.ELEMENT_NODE:

if (n.getNodeName().equals("team")) {

XPathExpression xpe = xPath.compile("//teams/team[@shortname = \""

+ n.getAttributes().getNamedItem("short").getNodeValue() + "\"]");

Node name = (Node) xpe.evaluate(doc, XPathConstants.NODE);

s += name.getAttributes().getNamedItem("name").getNodeValue();

} else {

XPathExpression xpe = xPath.compile("//player[@id = \""

+ n.getAttributes().getNamedItem("id").getNodeValue() + "\"]");

Node name = (Node) xpe.evaluate(doc, XPathConstants.NODE);

s += name.getAttributes().getNamedItem("name").getNodeValue();

}

}

n = n.getNextSibling();

} while (n != null);

System.out.println(s);

}

}

Total points: 75

–8

You can remove this sheet!

File euro.xml:

<euro year="2016">

<teams>

<team shortname="SUI" name="Switzerland" champion="yes" />

<team shortname="FRA" name="France" champion="yes" />

<team shortname="ROU" name="Romania" />

<team shortname="ALB" name="Albania" />

<team shortname="ENG" name="England" />

<team shortname="SVK" name="Slovakia" />

<team shortname="WAL" name="Wales" />

<team shortname="RUS" name="Russia" />

<!-- -->

</teams>

<player id="0210" name="Gareth Bale" team="WAL" no="11"/>

<player id="0230" name="Jamie Vardy" team="ENG" no="11"/>

<player id="0160" name="Daniel Sturridge" team="ENG" no="15"/>

<player id="0301" name="Kingsley Coman" no="20" team="FRA"/>

<player id="0312" name="Antoine Griezmann" no="7" team="FRA"/>

<player id="0314" name="Yann Sommer" no="1" team="CHF"/>

<!-- -->

<qualifying>

<group name="A">

<team>FRA</team><team>SUI</team><team>ROU</team><team>ALB</team>

<news>

The last match in Group A ended with a draw between <team short="FRA" />

and <team short="CHF" \>. <player id="0314" /> was selected man of

the match.

</news>

</group>

<group name="B">

<team>ENG</team><team>SVK</team><team>WAL</team><team>RUS</team>

</group>

<!-- -->

</qualifying>

</euro>

–9

