1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 March 24, 2025							
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)				

Block 1.) Recall from the lecture the HALTING problem:

HALTING

INSTANCE: A non-empty program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I.

Consider now the following decision problem:

EQUAL

INSTANCE: Program II that is guaranteed to terminate, takes a natural number (excluding zero) as input and returns a natural number or zero as output.

QUESTION: Do there exist natural numbers n_1, n_2 , such that $n_1 + n_2 = \Pi(n_1) * \Pi(n_2)$?

1.a) Let Π_{int} be the decision procedure that does the following:

- Π_{int} takes as input a program Π , a string I, and a natural number n.
- Π_{int} emulates the first *n* steps of the run of Π on *I*. If Π terminates on *I* within *n* steps, then Π_{int} returns true. Otherwise, Π_{int} returns false.

The following describes a reduction from **HALTING** to **EQUAL**. Given an arbitrary instance (Π, I) of **HALTING**, we construct an instance (Π') of **EQUAL** as follows:

Boolean Π' (Int n) if (n < 2) return 1; if $\Pi_{int}(\Pi, I, n)$ return n + 1; // Π and I are hard-coded return 0;

Show the correctness of the reduction above, i.e., show that (Π, I) is a positive instance of **HALTING** \iff (Π') is a positive instance of **EQUAL**.

(9 points)

1.b) Please answer the following questions and explain your answers:

- Is **EQUAL** undecidable?
- Is **EQUAL** semi-decidable?

(6 points)

Block 2.)

2.a) Suppose a, b, c are unsigned integers in the programming language C and $a \le b$. Which problem can occur with a C statement c=(a+b)/2? What is a simple solution to the problem? (2 points)

2.b) Use the sparse method to translate the following formula φ^E

$$\neg \left(a \doteq b \land a \neq c \to \left(\left(a \doteq d \land e \neq f \land g \neq h\right) \lor g \neq i \lor h \neq j \lor \left(b \neq c \land g \doteq i \land i \neq j\right)\right)\right)$$

into a propositional formula φ^p such that φ^E is E-satisfiable if and only if φ^p is satisfiable. Simplify your formula before you construct the propositional skeleton and the transitivity constraints. In the simplifications steps, indicate the simple contradictory cycles and the pure literals.

Present an E-model for φ^E in a formally correct way.

(13 points)

Block 3.)

3.a) Let p be the following IMP program, containing the integer-valued program variables x, y, z:

$$\begin{aligned} x &:= n; y := 0; z := 0; \\ \text{while } x > 0 \text{ do} \\ z &:= z - 3 * x; \\ y &:= y + 6 * x; \\ x &:= x - 1 \\ \text{od} \end{aligned}$$

Give a variant and inductive invariant for the loop in p and prove the validity of the total correctness triple:

$$[n > 0] p [y + 2 * z = x]$$

(10 points)

3.b) Consider the following rule in Hoare logic:

$$\{A\} \mathbf{x} := \mathbf{y}; \mathbf{abort}; \mathbf{x} := \mathbf{y} \{B\}$$

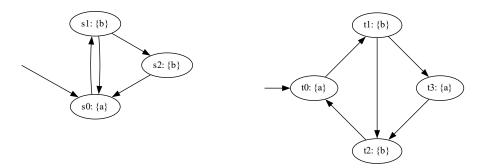
where A, B are arbitrary assertions and x, y are integer-valued IMP program variables. Is this rule sound? If yes, give a formal proof. Otherwise, give a counterexample and justify your answer.

(5 points)

Block 4.) 4.a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 and the initial state of M_2 is t_0 .

Kripke structure M_1 :

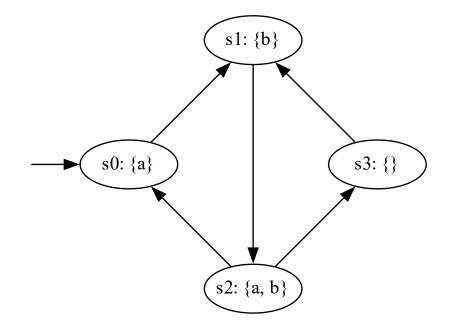
Kripke structure M_2 :



- i. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1 .
- ii. Check whether M_1 simulates M_2 , i.e., provide a simulation relation that witnesses $M_2 \preceq M_1$, or briefly explain why M_1 does not simulate M_2 .

(4 points)

4.b) Consider the following Kripke structure *M*:



For each of the following formulae φ ,

- i. indicate whether the formula is in LTL, CTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	LTL	CTL	CTL^*	States s_i
$\mathbf{X}[a \ \mathbf{U} \ b]$				
$\mathbf{A}\mathbf{X}b$				
$\mathbf{EG}(a \lor b)$				
$\begin{aligned} \mathbf{EG}(a \lor b) \\ \mathbf{F}(\neg a \land \neg b) \end{aligned}$				
$(\mathbf{E}\mathbf{X}a)\wedge\mathbf{X} agbreak \mathbf{X}$				

(5 points)

- **4.c)** Recall that a LTL formula φ is *satisfiable* if there exists a Kripke structure M and a path π in M such that $M, \pi \models \varphi$. In this case we call the pair (M, π) a model of φ .
 - i. Is there a satisfiable LTL formula φ such that every model of φ has at most three states?
 - ii. Is there a satisfiable LTL formula φ such that every model of φ has at least three states?

For each question, you should either

• Construct a satisfiable LTL formula φ such that every model of φ has at most/least three states and briefly explain why this is the case.

or

• Prove that no such formula exists by showing that every satisfiable LTL formula φ has a model with more/fewer than three states.

(6 points)

Grading scheme: 0-29 nicht genügend, 30-35 genügend, 36-41 befriedigend, 42-47 gut, 48-60 sehr gut