1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 January 21, 2025						
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)			

1.) Recall from the lecture the **HALTING** problem:

HALTING

INSTANCE: A non-empty program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I.

(Remark: For this exercise, we assume that if (Π, I) is an instance of **HALTING**, then Π is not empty, i.e., Π must contain at least one computation step. This assumption does not affect the decidability of the problem.)

Consider now the following decision problem:

\mathbf{EQUAL}

INSTANCE: Programs Π_1 and Π_2 ; both are guaranteed to terminate, and take an integer as input and return an integer as output.

QUESTION: Do there exist integers n_1, n_2 , such that $\Pi_1(n_1) = \Pi_2(n_2)$?

(a) Let Π_{int} be the decision procedure that does the following:

- Π_{int} takes as input a program Π , a string *I*, and an integer *n*.
- Π_{int} emulates the first *n* steps of the run of Π on *I*. If Π terminates on *I* within *n* steps, then Π_{int} returns true. Otherwise, Π_{int} returns false.

The following describes a reduction from **HALTING** to **EQUAL**. Given an arbitrary instance (Π, I) of **HALTING**, we construct an instance (Π_1, Π_2) of **EQUAL** as follows:

```
Boolean \Pi_1 (Int n)
if \Pi_{int}(\Pi, I, n) return 1; // \Pi and I are hard-coded
return 0;
Boolean \Pi_2 (Int n)
return 1;
```

Show the correctness of the reduction above, i.e., show that (Π, I) is a positive instance of **HALTING** \iff (Π_1, Π_2) is a positive instance of **EQUAL**.

(9 points)

- (b) Please answer the following questions and explain your answers:
 - Is **EQUAL** undecidable?
 - Is **EQUAL** semi-decidable?

(6 points)

2.) (a) Let φ be the first-order formula

the first-order formula

$$\forall x \forall y \left[\left(r(x,y) \to (p(x) \to p(y)) \right) \land \left(r(x,y) \to (p(y) \to p(x)) \right) \right] \,.$$

- i. Is φ valid? If yes, present a proof. If no, give a counter-example and prove that it falsifies $\varphi.$
- ii. Replace r in φ by \doteq (equality) resulting in ψ . Is ψ E-valid? Argue formally!

(5 points)

(b) Show the following:

 φ^{EUF} is E-satisfiable iff $FC^{E}\wedge \mathit{flat}^{E}$ is E-satisfiable.

 FC^E and $flat^E$ are obtained from φ^{EUF} by Ackermann's reduction.(Hint: FC^E is the same for φ^{EUF} and $\neg \varphi^{EUF}$.)(10 points)

(a) Let p be the while-loop of the following IMP program containing the integer-valued program variables x, y, z, n:

```
\begin{array}{l} x := 0; y := n; z := n; \\ \textbf{while} \ z < n \ \textbf{do} \\ \textbf{if} \ z > n \ \textbf{then} \\ z := z - 1 \\ \textbf{else} \\ x := x + 3 * z; \\ y := y - 3 * z \\ \textbf{od} \end{array}
```

Which of the following program assertions are inductive loop invariants of p?

- $I_1: \quad x+y=z$
- $I_2: \quad x+z=y$
- $I_3: \quad z=n$

Give formal details justifying your answers. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample. (9 points)

3.)

(b) Let p be the following IMP program loop, containing the integer-valued program variables $x,y{:}$

```
while x = y do

x := y;

y := -x

od
```

Provide a non-trivial precondition ${\cal A}$ and a non-trivial postcondition ${\cal B}$ such that

- (i) $\{A\} p \{B\}$ is not valid;
- (ii) $\{A\} p \{B\}$ is valid but [A] p [B] is not valid;
- (iii) [A] p [B] is valid.

Trivial means equivalent to true or false, so your precondition A and postcondition B should not be equivalent to true or false. Give a short justification of your answers! (6 points)

- **4.)** (a) For $n \in \mathbb{N}$, let K_n denote the following Kripke structure:
 - K_n comprises n states s_0, \ldots, s_{n-1} .
 - For each pair of states s_i and s_j , there is a transition from s_i to s_j .
 - Every state s_i is labeled with the atomic proposition a.
 - Every state s_i of K_n is an initial state.

Kripke structure K_3 :

Kripke structure K_2 :

- i. Write down a simulation relation H witnessing $K_3 \preceq K_2$ which is not also a bisimulation relation. Explain why H is not a bisimulation relation.
- ii. How many simulations witnessing $K_3 \preceq K_2$ are there?

(6 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{FG}b$				
$\mathbf{A}[a \ \mathbf{U} \ b]$				
$(\mathbf{E}\mathbf{X}a)\wedge\mathbf{X}b$				

(3 points)

- (c) An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.
 - i. $\mathbf{X}[a \ \mathbf{U} \ \mathbf{G}b] \rightarrow [\mathbf{X}a \ \mathbf{U} \ \mathbf{G}b]$
 - ii. $[\mathbf{X}a \ \mathbf{U} \ \mathbf{G}b] \rightarrow \mathbf{X}[a \ \mathbf{U} \ \mathbf{G}b]$

(6 points)