1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 May 17, 2024

Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

1.) Recall the HALTING problem from the lecture:

HALTING

INSTANCE: A program Π that takes a string as input and a string I.
QUESTION: Does Π halt on I ?

Consider the following decision problem:

NON-EMPTINESS

INSTANCE: A program Π that takes a string over the alphabet $\Sigma=\{0,1\}$ as input and outputs true or false.

QUESTION: Is there an input string for which Π returns true?
(a) Provide a many-one reduction from HALTING to NON-EMPTINESS, i.e., a function that maps every instance (Π, I) of HALTING to some instance Π^{\prime} of NONEMPTINESS such that (Π, I) is a yes-instance of HALTING if and only if Π^{\prime} is a yes-instance of NON-EMPTINESS. Argue the correctness of your reduction.
(b) Show that NON-EMPTINESS is semi-decidable by providing a semi-decision procedure. For this task, you can assume the existence of the procedure $\Pi_{\text {int }}$ that does the following:

- $\Pi_{i n t}$ takes as input a program Π, a string I, and an integer n.
- $\Pi_{\text {int }}$ emulates the first n steps of the run of Π on I. If Π terminates on I within n steps with a return value true, then Π_{int} returns true. Otherwise, Π_{int} returns false.
2.) (a) Show that $b\langle j \triangleleft f\rangle \neq b \rightarrow b[j] \neq f$ is $\mathcal{T}_{\bar{A}}^{\bar{A}}$-valid.

Besides the equality axioms, you have the following ones for the arrays.

$$
\begin{aligned}
& \forall a \forall i \forall j(i \doteq j \rightarrow a[i] \doteq a[j]) \\
& \forall a \forall v \forall i \forall j(i \doteq j \rightarrow a\langle i \triangleleft v\rangle[j] \doteq v) \\
& \forall a \forall v \forall i \forall j(i \neq j \rightarrow a\langle i \triangleleft v\rangle[j] \doteq a[j]) \\
& \forall a \forall b((\forall j a[j] \doteq b[j]) \leftrightarrow a \doteq b)
\end{aligned}
$$

(array congruence)
(read-over-write 1)
(read-over-write 2)
(extensionality)

Please be precise and justify every proof step.
(b) Consider the clauses C_{0}, \ldots, C_{6} in dimacs format (in this order from top to bottom, shown in the box) which are given as input to a SAT solver.

- Apply CDCL using the convention that if a variable is assigned as a decision, then it is assigned 'true'. Select variables as decisions in increasing order of their respective integer IDs in the dimacs format, starting with variable 1. Recall that unit clauses require a special treatment.
- When the first conflict occurs, draw the complete implication graph, mark the first UIP, give the resolution derivation of the learned asserting clause that corresponds to

```
2 0
-140
-4 5 0
-2 -4 6 0
-3 -6 7 0
-7 9 0
-5 -6 -7 -9 0
```

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, y, z, n :

```
\(x:=0 ; y:=0 ; z:=0 ;\)
while \(x<n\) do
    \(x:=x+1\);
    \(y:=y+2\);
    \(z:=z+3\)
od
```

Provide a loop inductive invariant and loop variant and use them to prove the total correctness of the Hoare triple:

$$
[n>1] p[n=z-y]
$$

(b) Let p be the following IMP program loop, containing the integer-valued program variables x, y :

$$
\text { if } x<y \text { then } x:=x+y \text { else } y:=y+x
$$

Which of the following statements are true?
(i) $x<0 \Longrightarrow \mathrm{wlp}(p, x<0)$;
(ii) $x<0 \Longrightarrow \operatorname{wlp}(p, x>0)$;
(iii) $x<0 \Longrightarrow \operatorname{wlp}(p, x<y)$.

In each of the cases above, justify your answer.
4.) (a) Consider the Kripke structures M_{1}, M_{2} below, with initial states s_{0} and t_{0}, respectively.

Figure 1: M_{1}

Figure 2: M_{2}

Provide two distinct simulation relations witnessing $M_{1} \preceq M_{2}$. Are there any other simulation relations witnessing $M_{1} \preceq M_{2}$? Justify your answer.
(b) Consider the following Kripke structure M.

For each of the following formulae φ,
i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
ii. List the states s_{i} on which the formula φ holds; i.e., for which states do we have $M, s_{i} \models \varphi$?
Note: If φ is a path formula, list the states s_{i} on which $M, s_{i}=\mathbf{A} \varphi$.

φ	CTL	LTL	CTL* *	states s_{i}
FG a	\square	\square	\square	
GF a	\square	\square	\square	
$\neg \mathbf{A G} \neg b$	\square	\square	\square	
$\mathbf{E}(\mathbf{X} b \wedge \mathbf{F G} a)$	\square	\square	\square	
$c \mathbf{U} b$	\square	\square	\square	

(c) An LTL formula is a tautology if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and a path π in M for which the formula does not hold and justify your answer.
i. $a \mathbf{U}(\neg a \wedge \mathbf{X G} a) \Rightarrow \mathbf{G}(a \vee \mathbf{X} a)$
ii. $\mathbf{G}(a \vee \mathbf{X} a) \Rightarrow a \mathbf{U}(\neg a \wedge \mathbf{X G} a)$

