1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 March 15, 2024								
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)					

Block 1.) Recall the following decision problem from the lecture:

3-COLORABILITY(3-COL)

INSTANCE: An undirected graph G = (V, E), where V is the set of vertices and E is the set of edges.

QUESTION: Does there exist a total function μ from vertices in V to values in $\{1, 2, 3\}$ such that $\mu(v_1) \neq \mu(v_2)$, for any edge $[v_1, v_2] \in E$?

Consider now the following decision problem:

4-COLORABILITY(4-COL)

INSTANCE: An undirected graph G = (V, E), where V is the set of vertices and E is the set of edges.

QUESTION: Does there exist a total function μ from vertices in V to values in $\{1, 2, 3, 4\}$ such that $\mu(v_1) \neq \mu(v_2)$, for any edge $[v_1, v_2] \in E$?

1.a) The following describes a reduction from **3-COL** to **4-COL**. Given an arbitrary instance G = (V, E) of **3-COL**, let G' be the following graph:

$$G' = (V \cup \{u\}, E \cup \{[v, u] \mid v \in V\}).$$

Show that G is a yes-instance of **3-COL** if and only if G' is a yes-instance of **4-COL**. (9 points)

- **1.b)** It is known that **3-COL** is NP-complete. With this in mind, please answer the following questions and **explain your answers**:
 - Is **4-COL** NP-hard?
 - Is **4-COL** NP-complete? If so, provide a certificate relation and argue that it is polynomially balanced and polynomially decidable.

(6 points)

Block 2.)

2.a) Show that $b[j] \doteq f \rightarrow b \langle j \triangleleft f \rangle \doteq b$ is $\mathcal{T}_A^=$ -valid. Besides the equality axioms, you have the following ones for the arrays.

(array congruence)
(read-over-write 1)
(read-over-write 2)
(extensionality)

Please be precise and justify every proof step.

(12 points)

2.b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled).

C_1 :	$\ell_1 \vee \neg x \vee \neg y$	C_2 :	$\neg \ell_1 \lor x$	C_3 :	$\neg \ell_1 \lor y$
C_4 :	$\neg \ell_2 \vee \neg y \vee z$	C_5 :	$\ell_2 \vee y$	C_6 :	$\ell_2 \vee \neg z$
$C_7:$	$\neg \ell_3 \vee \neg \ell_1 \vee z$	C_8 :	$\ell_3 \lor \ell_1$	C_9 :	$\ell_3 \vee \neg z$
$C_{10}:$	$\neg \ell_4 \vee \neg x \vee \ell_2$	$C_{11}:$	$\ell_4 \lor x$	$C_{12}:$	$\ell_4 \vee \neg \ell_2$
C_{13} :	$\neg \ell_5 \vee \neg \ell_3 \vee \ell_4$	$C_{14}:$	$\neg \ell_5 \lor \ell_3 \lor \neg \ell_4$	$C_{15}:$	$\ell_5 \vee \ell_3 \vee \ell_4$
$C_{16}:$	$\ell_5 \vee \neg \ell_3 \vee \neg \ell_4$				

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$ with a minimal number of connectives.
- (ii) Suppose you want to check the validity of φ by resolution and $\hat{\delta}(\varphi)$. How do you proceed ? Please explain your approach!

(3 points)

3.a) Let p be the following IMP program loop, containing the integer-valued program variables x, y, z: while $u \neq z$ do

while
$$y \neq z$$
 do
 $x := x + 2;$
 $z := x - 2;$
 $y := y + z$
od

Which of the following program assertions are inductive loop invariants of p?

- $I_1: x-z=2$
- $I_2: \quad y=1 \wedge z=1$
- $I_3: \quad y = x + z$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample and justify your answer.

(9 points)

3.b) Let x, y be integer-valued variables and p an arbitrary IMP program.

Assume that the Hoare triple $[x \neq y] p [x = y]$ for total correctness is valid. Then, which of the Hoare triples below are valid:

- (i) $[x = 1 \land y = 1]$ if $x \neq y$ then p else abort [x = y]?
- (ii) $[x = 1 \land y = 2]$ if $x \neq y$ then p else abort [x = y]?

For each of the triples, if the triple is valid, justify your answer. Otherwise, provide a counterexample.

(6 points)

4.a) Consider the Kripke structures M_1 and M_2 . The initial states of M_1 are s_1 and s_2 and the initial state of M_2 is t_1 .

Kripke structure M_1 : S1: {a} S2: {a} S2: {a} S5: {c} C} Kripke structure M_2 : Kripke structure M_2 : Kripke structure M_2 : $1: {a}$ $1: {a}$ $1: {$

- i. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1 .
- ii. Check whether M_1 simulates M_2 , i.e., provide a simulation relation that witnesses $M_2 \preceq M_1$, or briefly explain why M_1 does not simulate M_2 .

(4 points)

4.b) Consider the following Kripke structure *M*:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. indicate for which combinations of variables (if any) in s2, the formula is true in state s0, i.e., for which Kripke structures M do we have $M, s0 \models \varphi$? (Note: if φ is a path formula, we mean $M, s0 \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	$s2:\{a\}$	$s2:\{b\}$	$s2:\{a,b\}$
$\mathbf{F} b$						
$\begin{array}{l} \mathbf{E} \ (b \ \mathbf{U} \ a) \\ \mathbf{XX} \neg b \end{array}$						
$\mathbf{XX} eg b$						
$\mathbf{G}\neg(a\leftrightarrow b)$						
$\mathbf{EX}(b\wedge\mathbf{G}a)$						

(5 points)

- **4.c)** An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.
 - i. $\mathbf{G}(\mathbf{F}a \leftrightarrow \mathbf{F}b) \rightarrow (\mathbf{GF}a \wedge \mathbf{GF}b)$
 - ii. $(\mathbf{GF}a \wedge \mathbf{GF}b) \rightarrow \mathbf{G}(\mathbf{F}a \leftrightarrow \mathbf{F}b)$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut