1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 March 15, 2024

Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

Block 1.) Recall the following decision problem from the lecture:

3-COLORABILITY(3-COL)

INSTANCE: An undirected graph $G=(V, E)$, where V is the set of vertices and E is the set of edges.

QUESTION: Does there exist a total function μ from vertices in V to values in $\{1,2,3\}$ such that $\mu\left(v_{1}\right) \neq \mu\left(v_{2}\right)$, for any edge $\left[v_{1}, v_{2}\right] \in E$?

Consider now the following decision problem:

4-COLORABILITY(4-COL)

INSTANCE: An undirected graph $G=(V, E)$, where V is the set of vertices and E is the set of edges.

QUESTION: Does there exist a total function μ from vertices in V to values in $\{1,2,3,4\}$ such that $\mu\left(v_{1}\right) \neq \mu\left(v_{2}\right)$, for any edge $\left[v_{1}, v_{2}\right] \in E$?
1.a) The following describes a reduction from $\mathbf{3 - C O L}$ to $\mathbf{4}$-COL. Given an arbitrary instance $G=(V, E)$ of $\mathbf{3 - C O L}$, let G^{\prime} be the following graph:

$$
G^{\prime}=(V \cup\{u\}, E \cup\{[v, u] \mid v \in V\}) .
$$

Show that G is a yes-instance of $\mathbf{3 - C O L}$ if and only if G^{\prime} is a yes-instance of $\mathbf{4}$ - COL.
1.b) It is known that 3-COL is NP-complete. With this in mind, please answer the following questions and explain your answers:

- Is 4-COL NP-hard?
- Is 4-COL NP-complete? If so, provide a certificate relation and argue that it is polynomially balanced and polynomially decidable.

Block 2.)

2.a) Show that $b[j] \doteq f \rightarrow b\langle j \triangleleft f\rangle \doteq b$ is $\mathcal{T}_{A}^{=}$-valid.

Besides the equality axioms, you have the following ones for the arrays.

$$
\begin{aligned}
& \forall a \forall i \forall j(i \doteq j \rightarrow a[i] \doteq a[j]) \\
& \forall a \forall v \forall i \forall j(i \doteq j \rightarrow a\langle i \triangleleft v\rangle[j] \doteq v) \\
& \forall a \forall v \forall i \forall j(i \neq j \rightarrow a\langle i \triangleleft v\rangle[j] \doteq a[j]) \\
& \forall a \forall b((\forall j a[j] \doteq b[j]) \leftrightarrow a \doteq b)
\end{aligned}
$$

Please be precise and justify every proof step.
2.b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled).

$C_{1}:$	$\ell_{1} \vee \neg x \vee \neg y$	$C_{2}:$	$\neg \ell_{1} \vee x$	$C_{3}:$	$\neg \ell_{1} \vee y$
$C_{4}:$	$\neg \ell_{2} \vee \neg y \vee z$	$C_{5}:$	$\ell_{2} \vee y$	$C_{6}:$	$\ell_{2} \vee \neg z$
$C_{7}:$	$\neg \ell_{3} \vee \neg \ell_{1} \vee z$	$C_{8}:$	$\ell_{3} \vee \ell_{1}$	$C_{9}:$	$\ell_{3} \vee \neg z$
$C_{10}:$	$\neg \ell_{4} \vee \neg x \vee \ell_{2}$	$C_{11}:$	$\ell_{4} \vee x$	$C_{12}:$	$\ell_{4} \vee \neg \ell_{2}$
$C_{13}:$	$\neg \ell_{5} \vee \neg \ell_{3} \vee \ell_{4}$	$C_{14}:$	$\neg \ell_{5} \vee \ell_{3} \vee \neg \ell_{4}$	$C_{15}:$	$\ell_{5} \vee \ell_{3} \vee \ell_{4}$
$C_{16}:$	$\ell_{5} \vee \neg \ell_{3} \vee \neg \ell_{4}$				

(i) Reconstruct φ from $\hat{\delta}(\varphi)$ with a minimal number of connectives.
(ii) Suppose you want to check the validity of φ by resolution and $\hat{\delta}(\varphi)$. How do you proceed? Please explain your approach!

Block 3.)

3.a) Let p be the following IMP program loop, containing the integer-valued program variables x, y, z :

$$
\begin{aligned}
& \text { while } y \neq z \text { do } \\
& x:=x+2 ; \\
& z:=x-2 \\
& y:=y+z \\
& \text { od }
\end{aligned}
$$

Which of the following program assertions are inductive loop invariants of p ?

- $I_{1}: \quad x-z=2$
- $I_{2}: y=1 \wedge z=1$
- $I_{3}: y=x+z$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample and justify your answer.
3.b) Let x, y be integer-valued variables and p an arbitrary IMP program.

Assume that the Hoare triple $[x \neq y] \quad p \quad[x=y]$ for total correctness is valid. Then, which of the Hoare triples below are valid:
(i) $[x=1 \wedge y=1]$ if $x \neq y$ then p else abort $[x=y]$?
(ii) $[x=1 \wedge y=2]$ if $x \neq y$ then p else abort $[x=y]$?

For each of the triples, if the triple is valid, justify your answer. Otherwise, provide a counterexample.

Block 4.)

4.a) Consider the Kripke structures M_{1} and M_{2}. The initial states of M_{1} are s_{1} and s_{2} and the initial state of M_{2} is t_{1}.

Kripke structure M_{1} :

Kripke structure M_{2} :

i. Check whether M_{2} simulates M_{1}, i.e., provide a simulation relation that witnesses $M_{1} \preceq M_{2}$, or briefly explain why M_{2} does not simulate M_{1}.
ii. Check whether M_{1} simulates M_{2}, i.e., provide a simulation relation that witnesses $M_{2} \preceq M_{1}$, or briefly explain why M_{1} does not simulate M_{2}.
4.b) Consider the following Kripke structure M :

For each of the following formulae φ,
i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
ii. indicate for which combinations of variables (if any) in $s 2$, the formula is true in state $s 0$, i.e., for which Kripke structures M do we have $M, s 0 \models \varphi$? (Note: if φ is a path formula, we mean $M, s 0 \models \mathbf{A} \varphi$.)

φ	CTL	LTL	CTL *	$s 2:\{a\}$	$s 2:\{b\}$	$s 2:\{a, b\}$
$\mathbf{F} b$	\square	\square	\square	\square	\square	\square
$\mathbf{E}(b \mathbf{U} a)$	\square	\square	\square	\square	\square	\square
$\mathbf{X X} \neg b$	\square	\square	\square	\square	\square	\square
$\mathbf{G} \neg(a \leftrightarrow b)$	\square	\square	\square	\square	\square	\square
$\mathbf{E X}(b \wedge \mathbf{G} a)$	\square	\square	\square	\square	\square	\square

4.c) An LTL formula is a tautology if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.
i. $\mathbf{G}(\mathbf{F} a \leftrightarrow \mathbf{F} b) \rightarrow(\mathbf{G F} a \wedge \mathbf{G F} b)$
ii. $(\mathbf{G F} a \wedge \mathbf{G F} b) \rightarrow \mathbf{G}(\mathbf{F} a \leftrightarrow \mathbf{F} b)$

