
1 2 3 4 Σ Grade

6.0/4.0 VU Formale Methoden der Informatik
185.291 January, 23 2024

Kennzahl
(study id)

Matrikelnummer
(student id)

Familienname (family name) Vorname (first name) Gruppe
(version)

A

1.) Recall from the lecture the HALTING problem:

HALTING

INSTANCE: A non-empty program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I.

(Remark: For this exercise, we assume that if (Π, I) is an instance of HALTING,
then Π is not empty, i.e., Π contains at least one computation step. This assumption
does not affect the decidability of the problem.)

Consider now the following decision problem:

DIFF-10

INSTANCE: A program Π that is guaranteed to terminate, and takes an integer
as input and returns an integer as output.

QUESTION: Do there exist integers n1, n2, such that Π(n1) = Π(n2)− 10?

(a) Let Πint be the decision procedure that does the following:

• Πint takes as input a program Π, a string I, and an integer n.

• Πint emulates the first n steps of the run of Π on I. If Π terminates on I
within n steps, then Πint returns true. Otherwise, Πint returns false.

The following describes a reduction from HALTING to DIFF-10. Given
an arbitrary instance (Π, I) of HALTING, we construct an instance Π′ of
DIFF-10 as follows:

Boolean Π′ (Int n)
if Πint(Π, I, n) return 10; // Π and I are hard-coded in Π′

return 0;

Show the correctness of the reduction above, i.e., show that (Π, I) is a positive
instance of HALTING ⇐⇒ Π′ is a positive instance of DIFF-10.

(9 points)



(b) Please answer the following questions and explain your answers:

• Is DIFF-10 undecidable?

• Is DIFF-10 semi-decidable?

(6 points)



2.) (a) Consider the function M.

Algorithm 1: The function M

Input: x, y, two positive integers
Output: The computed positive integer value for x, y

1 if x == 1 then
2 return 2y;

3 else if y == 1 then
4 return x;

5 else return M(x− 1,M(x, y − 1));

i. Let N denote the natural numbers without 0. Use well-founded induction
to show

∀x ∀y
(
(x ∈ N ∧ y ∈ N) → M(x, y) ≥ 2y

)
.

ii. Suppose MC is an implementation of M in the C programming language with
x and y of type unsigned integers of size 32 bit (i.e., of type uint32 t). Is

M(x′, y′) = MC(x
′, y′)

true for all integers x′, y′ satisfying 1 ≤ x′, y′ ≤ UINT32 MAX, where UINT32 MAX

is the largest value for a variable of type uint32 t?
If so, then prove this fact. Otherwise provide a counterexample with an
exact explanation of what is computed and what is happening.

(12 points)



(b) Let f(x1, x2) = x1 ↔ x2 and f(x1, . . . , xn+1) = f(x1, . . . , xn) ↔ xn+1 for n > 2.

i. Apply Tseitin’s translation to f(x1, x2). What clauses do we get?

ii. What is the number of clauses in terms of n in a satisfiability-equivalent
CNF version f(x1, . . . , xn) obtained by a traditional CNF translation. O-
notaition is sufficient here.

iii. What is the exact number of clauses in terms of n in a logically equivalent
CNF version of f(x1, . . . , xn) obtained by Tseitin’s translation.

Explain and justify your answers in detail. (3 points)



3.) AAA

(a) Let p be the following IMP program loop, containing the integer-valued program
variables x, y, z:

x := 0; y := 0; z := n;
while y < n do
x := x+ 3 ∗ y;
y := y + 1;
z := z − 3 ∗ y + 3;

od

Provide a loop inductive invariant and loop variant and use them to prove the
total correctness of the Hoare triple:

[n > 0] p [x+ z ≥ y]

(9 points)



(b) Let x be an integer-valued. For each of the triples below, is there a state σ and
non-trivial assertion A such that

(i) σ ̸|= [x > 0] skip [A] ?

(ii) σ ̸|= [x > 0] abort [A] ?

(iii) σ ̸|= [x > 0] x := x+ 1 [A] ?

In each of the cases above, if such a state σ and non-trivial assertion A exist,
provide a concrete σ and A and justify your answers. Otherwise, explain why
there exist no such state σ and assertion A.

A non-trivial assertion is an assertion that is not equivalent to true nor false.
Recall that σ ̸|= [P ] p [Q] means that σ does not satisfy the Hoare triple
[P ] p [Q].

(6 points)



4.) (a) If there exists a simulation from Kripke structure M to Kripke structure M ′

we write M ⪯ M ′, and if there exists a bisimulation between M and M ′ we
write M ≡ M ′. Consider the following two statements. Either present a proof
if the statement is valid or state a counterexample otherwise.

i) The relation ⪯ is transitive, i.e. for all Kripke structures K,L,M :

If K ⪯ L and L ⪯ M then K ⪯ M .

ii) From M ⪯ M ′ and M ′ ⪯ M follows M ≡ M ′ for all Kripke structures M
and M ′.

(6 points)



(b) Consider the following Kripke structure M :

s0: {a} s1: {b} s3: {b}s2: {a,b} s4: {a}

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula φ holds; i.e. for which states si do
we have M, si |= φ?
(If φ is a path formula, list the states si such that M, si |= Aφ.)

φ CTL LTL CTL* States si

AXb □ □ □

E[a U (Gb)] □ □ □

F(Ga ∨Gb) □ □ □

(3 points)



(c) An LTL formula is a tautology if it holds for every Kripke structureM and every
path π in M . For each of the following formulas, prove that it is a tautology,
or find a Kripke structure M and path π in M for which the formula does not
hold and justify your answer.

i. G(Fa → a) → a U (G¬a)
ii. a U (G¬a) → G(Fa → a)

(6 points)


