1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 January, 23 2024									
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	(version)					

1.) Recall from the lecture the **HALTING** problem:

HALTING

INSTANCE: A non-empty program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I.

(Remark: For this exercise, we assume that if (Π, I) is an instance of **HALTING**, then Π is not empty, i.e., Π contains at least one computation step. This assumption does not affect the decidability of the problem.)

Consider now the following decision problem:

DIFF-10

INSTANCE: A program Π that is guaranteed to terminate, and takes an integer as input and returns an integer as output.

QUESTION: Do there exist integers n_1, n_2 , such that $\Pi(n_1) = \Pi(n_2) - 10$?

(a) Let Π_{int} be the decision procedure that does the following:

- Π_{int} takes as input a program Π , a string I, and an integer n.
- Π_{int} emulates the first *n* steps of the run of Π on *I*. If Π terminates on *I* within *n* steps, then Π_{int} returns true. Otherwise, Π_{int} returns false.

The following describes a reduction from **HALTING** to **DIFF-10**. Given an arbitrary instance (Π, I) of **HALTING**, we construct an instance Π' of **DIFF-10** as follows:

```
Boolean \Pi' (Int n)
if \Pi_{int}(\Pi, I, n) return 10; // \Pi and I are hard-coded in \Pi'
return 0;
```

Show the correctness of the reduction above, i.e., show that (Π, I) is a positive instance of **HALTING** $\iff \Pi'$ is a positive instance of **DIFF-10**.

(9 points)

(b) Please answer the following questions and explain your answers:

- Is **DIFF-10** undecidable?
- Is **DIFF-10** semi-decidable?

2.) (a) Consider the function M.

Algorithm 1: The function M			
Input: x, y , two positive integers			
Output: The computed positive integer value for x, y			
1 if $x == 1$ then			
2 return $2y$;			
3 else if $y == 1$ then			
4 return x ;			
5 else return $M(x - 1, M(x, y - 1));$			

i. Let $\mathbb N$ denote the natural numbers without 0. Use well-founded induction to show

 $\forall x \,\forall y \, \big((x \in \mathbb{N} \land y \in \mathbb{N}) \to \mathrm{M}(x, y) \ge 2y \big).$

ii. Suppose M_C is an implementation of M in the C programming language with x and y of type unsigned integers of size 32 bit (i.e., of type uint32_t). Is

$$\mathcal{M}(x',y') = \mathsf{M}_{\mathsf{C}}(x',y')$$

true for all integers x', y' satisfying $1 \le x', y' \le \texttt{UINT32_MAX}$, where $\texttt{UINT32_MAX}$ is the largest value for a variable of type $\texttt{uint32_t}$?

If so, then prove this fact. Otherwise provide a counterexample with an exact explanation of what is computed and what is happening.

(12 points)

- (b) Let $f(x_1, x_2) = x_1 \leftrightarrow x_2$ and $f(x_1, \dots, x_{n+1}) = f(x_1, \dots, x_n) \leftrightarrow x_{n+1}$ for n > 2.
 - i. Apply Tseitin's translation to $f(x_1, x_2)$. What clauses do we get?
 - ii. What is the number of clauses in terms of n in a satisfiability-equivalent CNF version $f(x_1, \ldots, x_n)$ obtained by a traditional CNF translation. Onotaition is sufficient here.
 - iii. What is the exact number of clauses in terms of n in a logically equivalent CNF version of $f(x_1, \ldots, x_n)$ obtained by Tseitin's translation.

Explain and justify your answers in detail. (3 points)

(a) Let p be the following IMP program loop, containing the integer-valued program variables $x,y,z\colon$

$$\begin{array}{l} x := 0; y := 0; z := n; \\ \textbf{while } y < n \ \textbf{do} \\ x := x + 3 * y; \\ y := y + 1; \\ z := z - 3 * y + 3; \\ \textbf{od} \end{array}$$

Provide a loop inductive invariant and loop variant and use them to prove the total correctness of the Hoare triple:

$$[n > 0] \quad p \quad [x + z \ge y]$$

(9 points)

3.)

- (b) Let x be an integer-valued. For each of the triples below, is there a state σ and non-trivial assertion A such that
 - (i) $\sigma \not\models [x > 0]$ skip [A]?
 - (ii) $\sigma \not\models [x > 0]$ abort [A]?
 - (iii) $\sigma \not\models [x > 0] \quad x := x + 1 \quad [A]$?

In each of the cases above, if such a state σ and non-trivial assertion A exist, provide a concrete σ and A and justify your answers. Otherwise, explain why there exist no such state σ and assertion A.

A non-trivial assertion is an assertion that is not equivalent to true nor false. Recall that $\sigma \not\models [P] p [Q]$ means that σ does not satisfy the Hoare triple [P] p [Q].

- 4.) (a) If there exists a simulation from Kripke structure M to Kripke structure M' we write $M \preceq M'$, and if there exists a bisimulation between M and M' we write $M \equiv M'$. Consider the following two statements. Either present a proof if the statement is valid or state a counterexample otherwise.
 - i) The relation \leq is transitive, i.e. for all Kripke structures K, L, M:

If $K \leq L$ and $L \leq M$ then $K \leq M$.

ii) From $M \preceq M'$ and $M' \preceq M$ follows $M \equiv M'$ for all Kripke structures M and M'.

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{A}\mathbf{X}b$				
$\mathbf{E}[a \ \mathbf{U} \ (\mathbf{G}b)]$				
$\mathbf{F}(\mathbf{G}a\vee\mathbf{G}b)$				

(3 points)

- (c) An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.
 - i. $\mathbf{G}(\mathbf{F}a \to a) \to a \ \mathbf{U} \ (\mathbf{G}\neg a)$ ii. $a \ \mathbf{U} \ (\mathbf{G}\neg a) \to \mathbf{G}(\mathbf{F}a \to a)$