1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) June 24, 2022					
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)		

Block 1.) We call an undirected graph G = (V, E) a *mirror-graph* if the following holds:

- 1. $V = V_1 \cup V_2$ with $|V_1| = |V_2|, V_1 \cap V_2 = \emptyset$,
- 2. $E = E_1 \cup E_2 \cup \{(v_1^*, v_2^*)\}$ with $E_i \subseteq V_i \times V_i, v_i^* \in V_i$ for $i \in \{1, 2\}$,
- 3. there is a bijective mapping $m: V_1 \to V_2$ s.t. $(v_i, v_j) \in E_1$ if and only if $(m(v_i), m(v_j)) \in E_2$,
- 4. For the two vertices v_1^*, v_2^* from 2. it holds $m(v_1^*) = v_2^*$.

In other words, a mirror graph consists of two "mirrored" copies of a graph that are connected by one "bridge"-edge between two corresponding vertices. For example:

 G_1 is a mirror graph with $m(v_i) = v'_i$ for $1 \le i \le 4$.

 G_2 is not a mirror graph (none of the three edges could be the "bridge"-edge).

Consider the following variant of the problem **3-COLORABILITY**.

MIRROR-GRAPH 3-COLORABILITY (M-3COL)

INSTANCE: A mirror-graph G = (V, E).

QUESTION: Does there exist a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $(v_1, v_2) \in E$?

1.a) Briefly argue why M-3COL is in NP. You may use the fact that 3-COLORABILITY is NP-complete. (2 points)

1.b) The following function f provides a polynomial-time many-one reduction from the problem **3-COLORABILITY** to **M-3COL**: for an undirected graph G = (V, E), let f(G) = (V', E'), where

$$\begin{array}{lll} V' &=& V \cup \{v' \mid v \in V\}; \text{ and} \\ E' &=& E \cup \{(v'_i, v'_j) \mid (v_i, v_j) \in E\} \cup \{(v_b, v'_b)\}, \end{array}$$

where $v_b \in V$ is a arbitrary vertex from G.

Show the correctness of the reduction, i.e., show: G is a yes-instance of **3-COLORABILITY** $\iff f(G)$ is a yes-instance of **M-3COL**. (9 points) **1.c)** In what follows assume the reduction from **3-COLORABILITY** to **M-3COL** is correct, and recall that **3-COLORABILITY** is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):

- **M-3COL** is NP-hard
- $\circ~{\rm An}$ exponential-time algorithm for ${\rm M-3COL}$ shows P=NP
- $\circ~$ There is a polynomial-time many-one reduction from ${\bf SAT}$ to ${\bf M-3COL}$

(4 points)

Block 2.)

2.a) Let \mathcal{T}_E^{di} be a first-order theory containing all axioms of the theory of equality \mathcal{T}_E (including substitution axiom schemes for p and f) and the two axioms:

$$\forall x \forall y \ \left(p(x,y) \to \left(p(x,f(x,y)) \land p(f(x,y),y) \right) \right)$$
 (p-density)

$$\forall x \forall y \ \left(p(x,y) \to x \neq y \right)$$
 (p-irreflexivity)

Use the semantic argument method to prove the following:

Let \mathcal{I} be a \mathcal{T}_E^{di} -interpretation structure with $\mathcal{I} \models p(a, b)$, then it holds that $\mathcal{I} \models f(a, b) \neq a \land f(a, b) \neq b \land a \neq b$. (7 points)

2.b) Let φ be any propositional formula in negation normal form (NNF).

Prove by induction: If φ contains only pure literals, then φ is satisfiable.

Recall that a literal ℓ is pure in a formula φ in NNF, if ℓ occurs in φ , but the complement of ℓ , ℓ^c , does not occur in φ , where ℓ^c is *b* if ℓ is $\neg b$ and ℓ^c is $\neg b$ if ℓ is *b*. Please be precise. Indicate which induction concept you use and which statement you prove. (8 points)

Block 3.)

3.a) Let p be the following IMP program, containing the integer-valued program variables x, y, z:

$$\begin{aligned} x &:= 0; y := 10; z := 6; \\ \text{while } z > 0 \text{ do} \\ y &:= y - 2; \\ x &:= x + 2 * y - 4 * z + 5; \\ z &:= z - 1; \\ \text{od} \end{aligned}$$

Give a loop invariant and variant for the **while** loop in p and prove the validity of the total correctness triple $[2z = y + 2 \land z \ge 0] p [y = x + 16]$.

Note: Make sure that your invariant expresses equalities among x, y, z as well equalities among y, z.

(10 points)

3.b) Let p be the following IMP program, containing the integer-valued program variables x, y:

if $x \neq y$ then x := x + 2 else y := y - 2

Which of the following Hoare triples are correct? For each triple, provide a short justification for your answer.

- (i) $\{x > 0\} p \{x > 0\}$
- (ii) $\{x < 0\} p \{x \ge 0\}$
- (iii) $\{x = y\} p \{x < y\}$

(5 points)

4.a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Show that M_2 simulates M_1 by providing a non-empty simulation relation that witnesses $M_1 \leq M_2$.
- ii. Show that M_1 does **not** simulate M_2 by providing an ACTL^{*} or LTL formula φ that **holds** in the **left** structure, but does **not hold** in the **right** structure, i.e., provide an ACTL^{*} or LTL formula φ such that $M_1 \models \varphi$ but $M_2 \not\models \varphi$.

Hint 1: $ACTL^*$ is the universal fragment of CTL^* .

(5 points)

4.b) CTL Marking Algorithm

Consider the following Kripke structure M:

Execute the **CTL Marking Algorithm** to determine which states satisfy the following formulae:

i. $\mathbf{E}[a \ \mathbf{U} \neg b]$

ii. AXEGc

Use the answer templates below.

In particular,

- i. Transform Φ into an equivalent formula Φ' that uses temporal operators **EX**, **EU** and **EG**.
- ii. List the subformulae of Φ' .
- iii. For increasing nesting depth, iteratively determine the states marked by subformulae $\phi_0, \psi_0, \phi_1, \psi_1, \ldots$ of Φ' .
- iv. Finally, give the return value of the Marking Algorithm. That is, list the states s_i that satisfy formula Φ , i.e., for which states do we have that $M, s_i \models \Phi$?

Hint: Recall that the algorithm starts by marking propositional atoms ϕ_0 . It then iteratively marks boolean combinations ψ_i of subformulas ϕ_i , and temporal operator applications $\phi_{i+1} = \circ \psi_i$ where $\circ \in \{\mathbf{EX}, \mathbf{EU}, \mathbf{EG}\}$.

i) Answer template for $\Phi = \mathbf{E}[a \ \mathbf{U} \ \neg b]$

Subformulae of Φ : _____

Annotate the states of ${\cal M}$ with the subformulae by which the Marking Algorithm marks them:

ii) Answer template for $\Phi = \mathbf{AXEG}c$

Equivalent formula $\Phi' \equiv \Phi$ using only **EX**, **EU**, **EG**: _____

Subformulae of Φ' : _____

Annotate the states of ${\cal M}$ with the subformulae by which the Marking Algorithm marks them:

States satisfying Φ : _____

(6 points)

4.c) LTL Tautologies

An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.

- i. $(a \lor b) \mathbf{U} (a \land b) \Rightarrow (\mathbf{G}a \land \mathbf{F}b)$
- ii. $(\mathbf{G}a \wedge \mathbf{F}b) \Rightarrow (a \vee b) \mathbf{U} (a \wedge b)$

(4 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut