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Block 1.) We call an undirected graph G = (V, E) a mirror-graph if the following holds:
1. V= V1 UV2 with ‘V1| = |V2|, V1 ﬂVg = @,
2. E=FE1UEyU{(vi,v})} with E; CV; x V;, vf € V; for i € {1,2},
3. there is a bijective mapping m: Vi — Vs s.t. (v;,v;) € By if and only if (m(v;), m(v;)) € B,
4. For the two vertices vy, vs from 2. it holds m(v}) = v3.

In other words, a mirror graph consists of two “mirrored” copies of a graph that are connected
by one “bridge”-edge between two corresponding vertices.

For example:

G1 is a mirror graph with m(v;) = v} for 1 <i < 4.

G+ is not a mirror graph (none of the three edges could be the “bridge”-edge).

Mirror-graph G Non-mirror-graph G

Consider the following variant of the problem 3-COLORABILITY.

MIRROR-GRAPH 3-COLORABILITY (M-3COL)
INSTANCE: A mirror-graph G = (V, E).

QUESTION: Does there exist a function p from vertices in V' to values in {0, 1, 2} such
that pu(vy) # u(vg) for any edge (vi,v9) € E?

1.a) Briefly argue why M-3COL is in NP. You may use the fact that 3-COLORABILITY
is NP-complete. (2 points)



1.b) The following function f provides a polynomial-time many-one reduction from the
problem 3-COLORABILITY to M-3COL: for an undirected graph G = (V, E),
let f(G) = (V',E’), where

VI = VU{ |veV} and
E' = EU{(vjv)) | (vi,v;) € E} U{(vs,v3)},

where v, € V is a arbitrary vertex from G.

Show the correctness of the reduction, i.e., show:
G is a yes-instance of 3-COLORABILITY < f(G) is a yes-instance of M-3COL.

(9 points)



1.c) In what follows assume the reduction from 3-COLORABILITY to M-3COL is cor-
rect, and recall that 3-COLORABILITY is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

o M-3COL is NP-hard
o An exponential-time algorithm for M-3COL shows P=NP
o There is a polynomial-time many-one reduction from SAT to M-3COL

(4 points)



Block 2.)

2.a) Let T2 be a first-order theory containing all axioms of the theory of equality Tz (in-
cluding substitution axiom schemes for p and f) and the two axioms:

vavy (p(a.y) = (p(a. f(2,9) Ap(f@.9).)) ) (p-density)
VaVy (p(z:, y) > x £ y) (p-irreflexivity)

Use the semantic argument method to prove the following:

Let T be a Tdi-interpretation structure with Z |= p(a, b), then it holds that Z |= f(a,b) #
aA fla,b) #bANa#b. (7 points)



2.b) Let ¢ be any propositional formula in negation normal form (NNF).
Prove by induction: If ¢ contains only pure literals, then ¢ is satisfiable.
Recall that a literal £ is pure in a formula ¢ in NNF| if £ occurs in ¢, but the complement

of £, £¢, does not occur in ¢, where £¢ is b if £ is —b and ¢¢ is b if £ is b. Please be precise.
Indicate which induction concept you use and which statement you prove. (8 points)



Block 3.)

3.a) Let p be the following IMP program, containing the integer-valued program variables x, y, 2:

z:=0;y:=10;2 := 6;
while z > 0 do

yi=y—2;
r:=x+2%xy—4*xz+5;
z:=z-1

od

Give a loop invariant and variant for the while loop in p and prove the validity of the
total correctness triple 2z =y +2A 2z > 0] p [y = = + 16].
Note: Make sure that your invariant expresses equalities among x, y, z as well equalities

among y, z.
(10 points)



3.b) Let p be the following IMP program, containing the integer-valued program variables x, y:
ifr#ythenz:=x+2elsey:=y—2

Which of the following Hoare triples are correct? For each triple, provide a short justi-
fication for your answer.

(i) {z >0} p{z >0}
(ii) {x <0} p {zr >0}
(iii) {z =y} p {z <y}

(5 points)



Block 4.)

4.a) Consider the Kripke structures M; and Ms. The initial state of M; is sg, the initial
state of Ms is tg.
Kripke structure Mj: Kripke structure Ms:

<y Ceo: @
- Gt
A S S

i. Show that Ms simulates M; by providing a non-empty simulation relation that
witnesses My < Ms.

ii. Show that M; does not simulate My by providing an ACTL* or LTL formula ¢
that holds in the left structure, but does not hold in the right structure, i.e.,
provide an ACTL" or LTL formula ¢ such that M; = ¢ but My £ .

Hint 1: ACTL" is the universal fragment of CTL".

(5 points)



4.b) CTL Marking Algorithm
Consider the following Kripke structure M:

Execute the CTL Marking Algorithm to determine which states satisfy the following
formulae:

i. Ela U b

ii. AXEGe

Use the answer templates below.

In particular,

i. Transform ® into an equivalent formula ®’ that uses temporal operators EX, EU
and EG.

ii. List the subformulae of &’.

iii. For increasing nesting depth, iteratively determine the states marked by subformu-
lae ¢0; Tbov ¢1a wl; ... of P,

iv. Finally, give the return value of the Marking Algorithm. That is, list the states s;
that satisfy formula ®, i.e., for which states do we have that M, s; | ®?

Hint: Recall that the algorithm starts by marking propositional atoms ¢g. It then
iteratively marks boolean combinations 1; of subformulas ¢;, and temporal operator
applications ¢;11 = o 1; where o € {EX, EU,EG}.

i) Answer template for ® = E[a U —b]

Subformulae of ®:

Annotate the states of M with the subformulae by which the Marking Algorithm marks
them:

States satisfying ®:



ii) Answer template for ® = AXEGc¢

Equivalent formula &' = ® using only EX, EU, EG:

Subformulae of ®’:

Annotate the states of M with the subformulae by which the Marking Algorithm marks
them:

States satisfying ®:

(6 points)



4.c) LTL Tautologies

An LTL formula is a tautology if it holds for every Kripke structure M and every path
7 in M. For each of the following formulas, prove that it is a tautology, or find a Kripke
structure M and path 7 in M for which the formula does not hold and justify your
answer.

i. (avd) U (and) = (GaANFb)

ii. (GaAFb)= (aVd) U (anb)

(4 points)

Grading scheme: 0-29 nicht geniigend, 30-35 geniigend, 36—41 befriedigend, 42—47 gut, 48-60 sehr gut



