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Block 1.) We call an undirected graph G = (V,E) a mirror-graph if the following holds:
1. V = V1 ∪ V2 with |V1| = |V2|, V1 ∩ V2 = ∅,
2. E = E1 ∪ E2 ∪ {(v∗1 , v∗2)} with Ei ⊆ Vi × Vi, v∗i ∈ Vi for i ∈ {1, 2},
3. there is a bijective mapping m :V1 → V2 s.t. (vi, vj)∈E1 if and only if (m(vi),m(vj))∈E2,
4. For the two vertices v∗1 , v

∗
2 from 2. it holds m(v∗1) = v∗2 .

In other words, a mirror graph consists of two “mirrored” copies of a graph that are connected
by one “bridge”-edge between two corresponding vertices.
For example:
G1 is a mirror graph with m(vi) = v′i for 1 ≤ i ≤ 4.
G2 is not a mirror graph (none of the three edges could be the “bridge”-edge).
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Consider the following variant of the problem 3-COLORABILITY.

MIRROR-GRAPH 3-COLORABILITY (M-3COL)

INSTANCE: A mirror-graph G = (V,E).

QUESTION: Does there exist a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge (v1, v2) ∈ E?

1.a) Briefly argue why M-3COL is in NP. You may use the fact that 3-COLORABILITY
is NP-complete. (2 points)



1.b) The following function f provides a polynomial-time many-one reduction from the
problem 3-COLORABILITY to M-3COL: for an undirected graph G = (V,E),
let f(G) = (V ′, E′), where

V ′ = V ∪ {v′ | v ∈ V }; and

E′ = E ∪ {(v′i, v′j) | (vi, vj) ∈ E} ∪ {(vb, v′b)},

where vb ∈ V is a arbitrary vertex from G.

Show the correctness of the reduction, i.e., show:
G is a yes-instance of 3-COLORABILITY ⇐⇒ f(G) is a yes-instance of M-3COL.

(9 points)



1.c) In what follows assume the reduction from 3-COLORABILITY to M-3COL is cor-
rect, and recall that 3-COLORABILITY is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

◦ M-3COL is NP-hard

◦ An exponential-time algorithm for M-3COL shows P=NP

◦ There is a polynomial-time many-one reduction from SAT to M-3COL

(4 points)



Block 2.) AAA

2.a) Let T di
E be a first-order theory containing all axioms of the theory of equality TE (in-

cluding substitution axiom schemes for p and f) and the two axioms:

∀x∀y
(
p(x, y)→

(
p(x, f(x, y)) ∧ p(f(x, y), y)

))
(p-density)

∀x∀y
(
p(x, y)→ x 6= y

)
(p-irreflexivity)

Use the semantic argument method to prove the following:

Let I be a T di
E -interpretation structure with I |= p(a, b), then it holds that I |= f(a, b) 6=

a ∧ f(a, b) 6= b ∧ a 6= b. (7 points)



2.b) Let ϕ be any propositional formula in negation normal form (NNF).

Prove by induction: If ϕ contains only pure literals, then ϕ is satisfiable.

Recall that a literal ` is pure in a formula ϕ in NNF, if ` occurs in ϕ, but the complement
of `, `c, does not occur in ϕ, where `c is b if ` is ¬b and `c is ¬b if ` is b. Please be precise.
Indicate which induction concept you use and which statement you prove. (8 points)



Block 3.) AAA

3.a) Let p be the following IMP program, containing the integer-valued program variables x, y, z:

x := 0; y := 10; z := 6;
while z > 0 do
y := y − 2;
x := x+ 2 ∗ y − 4 ∗ z + 5;
z := z − 1;

od

Give a loop invariant and variant for the while loop in p and prove the validity of the
total correctness triple [2z = y + 2 ∧ z ≥ 0] p [y = x+ 16].

Note: Make sure that your invariant expresses equalities among x, y, z as well equalities
among y, z.

(10 points)



3.b) Let p be the following IMP program, containing the integer-valued program variables x, y:

if x 6= y then x := x+ 2 else y := y − 2

Which of the following Hoare triples are correct? For each triple, provide a short justi-
fication for your answer.

(i) {x > 0} p {x > 0}

(ii) {x < 0} p {x ≥ 0}

(iii) {x = y} p {x < y}

(5 points)



Block 4.) AAA

4.a) Consider the Kripke structures M1 and M2. The initial state of M1 is s0, the initial
state of M2 is t0.

Kripke structure M1: Kripke structure M2:

s0: {a}

s1: {b} s2: {c}

s3: {a} s4: {b}

t0: {a}

t2: {b} t1: {c}

t4: {a} t3: {b}

i. Show that M2 simulates M1 by providing a non-empty simulation relation that
witnesses M1 �M2.

ii. Show that M1 does not simulate M2 by providing an ACTL∗ or LTL formula ϕ
that holds in the left structure, but does not hold in the right structure, i.e.,
provide an ACTL∗ or LTL formula ϕ such that M1 |= ϕ but M2 6|= ϕ.

Hint 1: ACTL∗ is the universal fragment of CTL∗.

(5 points)



4.b) CTL Marking Algorithm

Consider the following Kripke structure M :

s0: {b, c}s1: {c}

s2: {b, c}

s4: {a, b}

s3: {a, c}

Execute the CTL Marking Algorithm to determine which states satisfy the following
formulae:

i. E[a U ¬b]
ii. AXEGc

Use the answer templates below.

In particular,

i. Transform Φ into an equivalent formula Φ′ that uses temporal operators EX, EU
and EG.

ii. List the subformulae of Φ′.

iii. For increasing nesting depth, iteratively determine the states marked by subformu-
lae φ0, ψ0, φ1, ψ1, . . . of Φ′.

iv. Finally, give the return value of the Marking Algorithm. That is, list the states si
that satisfy formula Φ, i.e., for which states do we have that M, si |= Φ?

Hint: Recall that the algorithm starts by marking propositional atoms φ0. It then
iteratively marks boolean combinations ψi of subformulas φi, and temporal operator
applications φi+1 = ◦ ψi where ◦ ∈ {EX,EU,EG}.

i) Answer template for Φ = E[a U ¬b]

Subformulae of Φ:

Annotate the states of M with the subformulae by which the Marking Algorithm marks
them:

s0: {b, c}s1: {c}

s2: {b, c}

s4: {a, b}

s3: {a, c}

States satisfying Φ:



ii) Answer template for Φ = AXEGc

Equivalent formula Φ′ ≡ Φ using only EX, EU, EG:

Subformulae of Φ′:

Annotate the states of M with the subformulae by which the Marking Algorithm marks
them:

s0: {b, c}s1: {c}

s2: {b, c}

s4: {a, b}

s3: {a, c}

States satisfying Φ:

(6 points)



4.c) LTL Tautologies

An LTL formula is a tautology if it holds for every Kripke structure M and every path
π in M . For each of the following formulas, prove that it is a tautology, or find a Kripke
structure M and path π in M for which the formula does not hold and justify your
answer.

i. (a ∨ b) U (a ∧ b)⇒ (Ga ∧ Fb)

ii. (Ga ∧ Fb)⇒ (a ∨ b) U (a ∧ b)
(4 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


