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1.) An undirected graph (V| E) is called a degree-restricted graph if for each vertex v € V' it holds
that the degree of v is either 1 or greater than 3.

Examples:
e ({a,b,c,d,e},{[a,b],a,d],a,d],|a,e]}) is degree-restricted since vertex a has degree 4
and vertices {b, c,d, e} have all degree 1.
e ({a,b,c,d},{[a,b],[b,c],[c,d]}) is not degree-restricted since vertices b, ¢ have degree 2.
e The complete graph Ky, i.e. a clique with 4 vertices, is also not degree-restricted since

all vertices have degree 3.

Consider the following variant of the 3-coloring problem:

3-COLORABILITY-DEGREE-RESTRICTED (3COLD)
INSTANCE: A degree-restricted graph G = (V, E).

QUESTION: Does there exist a function p from vertices in V' to values in {0, 1,2} such
that u(vi) # p(ve) for any edge [v1, v2] € E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLD: for an undirected graph G = ({v1,...,v,}, E), add for each vertex v;

e four new vertices z}, 27, z3, z}, and

e edges [v;, 2}], [vi, 22], [vs, 23, [vi, 2}
to G, and let f(G) be the resulting graph. Note that f(G) is indeed degree-restricted,
since the new vertices x all have degree 1 and vertices v; have at least degree 4.

Show that G is a yes-instance of 3COL <= f(G) is a yes-instance of 3COLD.

(9 points)

(b) Let us assume the reduction from 3COL to 3COLD is correct. Argue briefly why we
can then conclude that 3COLD is NP-complete.

(6 points)



2.) We consider the function P which was introduced by Rézsa Péter in 1935.

Input: z, y, two non-negative integers
Output: The computed integer value for x, y
if x == 0 then

‘ return 2y 4 1;
end
else if y == 0 then

| return P(z —1,1);
end
else return P(z — 1,P(x,y — 1));

Algorithm 1: The function P

(a) Let Ny denote the set of natural numbers including 0. Use well-founded induction to
show
VaVy ((x € Ng Ay € Ng) — P(z,y) > 2z + 2y).

(12 points)

(b) Cousider the clauses C1,...,Cg in dimacs format (in this order from top to bottom,
shown in the box) which are given as input to a SAT solver.

e Apply CDCL using the convention that if a variable is
assigned as a decision, then it is assigned ’true’. Select

variables as decisions in increasing order of their respec- "140
o . . . . . -450
tive integer IDs in the dimacs format, starting with vari- 5460
le 1.
able -3 -6 70
e When the first conflict occurs, draw the complete impli- | =7 9 0
cation graph, mark the first UIP, give the derivation of | =5 =6 -7 -9 0

the learned asserting clause that corresponds to the first
UIP, and stop CDCL. You do not have to solve the for-
mulal
(3 points)



3.) (a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables 7, x, y:
z = 10;y := 10;
while 7 > 0 do
T i=x—4x1;

yi=y+ 41
i =1 —1;
od

Give a loop invariant and variant for the while loop in p and prove the validity of the
total correctness triple [¢ > 0] p [z + y = 20].
(10 points)

(b) Let p be the following IMP program loop, containing the integer-valued program vari-

ables 7 and x:
while i # 3 do

T =3 *x;
1:=1—1;
od

Provide a non-trivial pre-condition A, such that:

(i) the total correctness triple [A] p [z > 27] is valid;

(ii) the partial correctness triple {A} p {z > 27} is valid, but the total correctness
triple [A] p [x > 27] is not valid.

Trivial means equivalent to true or false, so your precondition A should not be equiv-
alent to true or false. Justify your answer!
(5 points)



4.

(a) Consider the Kripke structures M; and Ms. The initial state of M; is sg, the initial

state of My is tg.
Kripke structure M;: Kripke structure Ms:

<> <>
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i. Check whether Ms simulates M7, i.e., provide a simulation relation that witnesses
M, = My, or explain why M, does not simulate M;.

ii. Check whether M; simulates Ms, i.e., provide a simulation relation that witnesses
My = My, or explain why M; does not simulate Ms.

(4 points)



(b) Consider the following Kripke structure M:

For each of the following formulae ¢,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
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ii. list the states s; on which the formula ¢ holds; i.e. for which states s; do we
have M, s; = ¢?

(If ¢ is a path formula, list the states s; such that M, s; = Ap.)

® CTL LTL CTL* Statess;
G(bAc) O O O
EFGa ] ] (]
E(GeAGFY) | O O O
F(a A Xc) O O O
E[(-a) U ¢ O O O

(¢c) LTL tautologies

(5 points)

An LTL formula is a tautology if it holds for every Kripke structure M and every path
7w in M. For each of the following formulas, prove that it is a tautology, or find a Kripke
structure M and path w in M for which the formula does not hold and justify your

answer.

i. 7(a U b) = (G-bV F-a)
ii. (G=bVF-a)= —(a UDd)

(6 points)



