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1.) An undirected graph (V,E) is called a degree-restricted graph if for each vertex v ∈ V it holds
that the degree of v is either 1 or greater than 3.

Examples:

• ({a, b, c, d, e}, {[a, b], [a, c], [a, d], [a, e]}) is degree-restricted since vertex a has degree 4
and vertices {b, c, d, e} have all degree 1.

• ({a, b, c, d}, {[a, b], [b, c], [c, d]}) is not degree-restricted since vertices b, c have degree 2.

• The complete graph K4, i.e. a clique with 4 vertices, is also not degree-restricted since
all vertices have degree 3.

Consider the following variant of the 3-coloring problem:

3-COLORABILITY-DEGREE-RESTRICTED (3COLD)

INSTANCE: A degree-restricted graph G = (V,E).

QUESTION: Does there exist a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLD: for an undirected graph G = ({v1, . . . , vn}, E), add for each vertex vi

• four new vertices x1i , x2i , x3i , x4i , and

• edges [vi, x
1
i ], [vi, x

2
i ], [vi, x

3
i ], [vi, x

4
i ]

to G, and let f(G) be the resulting graph. Note that f(G) is indeed degree-restricted,
since the new vertices xji all have degree 1 and vertices vi have at least degree 4.

Show that G is a yes-instance of 3COL ⇐⇒ f(G) is a yes-instance of 3COLD.

(9 points)

(b) Let us assume the reduction from 3COL to 3COLD is correct. Argue briefly why we
can then conclude that 3COLD is NP-complete.

(6 points)



2.) We consider the function P which was introduced by Rózsa Péter in 1935.

Input: x, y, two non-negative integers
Output: The computed integer value for x, y
if x == 0 then

return 2y + 1;
end
else if y == 0 then

return P(x− 1, 1);
end
else return P(x− 1,P(x, y − 1));

Algorithm 1: The function P

(a) Let N0 denote the set of natural numbers including 0. Use well-founded induction to
show

∀x ∀y
(
(x ∈ N0 ∧ y ∈ N0) → P(x, y) > 2x+ 2y

)
.

(12 points)

(b) Consider the clauses C1, . . . , C6 in dimacs format (in this order from top to bottom,
shown in the box) which are given as input to a SAT solver.

• Apply CDCL using the convention that if a variable is
assigned as a decision, then it is assigned ’true’. Select
variables as decisions in increasing order of their respec-
tive integer IDs in the dimacs format, starting with vari-
able 1.

• When the first conflict occurs, draw the complete impli-
cation graph, mark the first UIP, give the derivation of
the learned asserting clause that corresponds to the first
UIP, and stop CDCL. You do not have to solve the for-
mula!

-1 4 0

-4 5 0

-2 -4 6 0

-3 -6 7 0

-7 9 0

-5 -6 -7 -9 0

(3 points)



3.) (a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables i, x, y:

x := 10; y := 10;
while i ≥ 0 do
x := x− 4 ∗ i;
y := y + 4 ∗ i;
i := i− 1;

od

Give a loop invariant and variant for the while loop in p and prove the validity of the
total correctness triple [i > 0] p [x+ y = 20].

(10 points)

(b) Let p be the following IMP program loop, containing the integer-valued program vari-
ables i and x:

while i 6= 3 do
x := 3 ∗ x;
i := i− 1;

od

Provide a non-trivial pre-condition A, such that:

(i) the total correctness triple [A] p [x ≥ 27] is valid;

(ii) the partial correctness triple {A} p {x ≥ 27} is valid, but the total correctness
triple [A] p [x ≥ 27] is not valid.

Trivial means equivalent to true or false, so your precondition A should not be equiv-
alent to true or false. Justify your answer!

(5 points)



4.) (a) Consider the Kripke structures M1 and M2. The initial state of M1 is s0, the initial
state of M2 is t0.

Kripke structure M1: Kripke structure M2:

s0: {c}

s4: {b}

s1: {b}

s3: {a}

s2: {a}

t0: {c}

t4: {b}

t1: {a}

t2: {c}

t3: {b}

i. Check whether M2 simulates M1, i.e., provide a simulation relation that witnesses
M1 �M2, or explain why M2 does not simulate M1.

ii. Check whether M1 simulates M2, i.e., provide a simulation relation that witnesses
M2 �M1, or explain why M1 does not simulate M2.

(4 points)



(b) Consider the following Kripke structure M :

s0: {a, b, c} s4: {c}

s1: {a, b, c}

s3: {b}

s2: {b, c}

For each of the following formulae ϕ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula ϕ holds; i.e. for which states si do we
have M, si |= ϕ?
(If ϕ is a path formula, list the states si such that M, si |= Aϕ.)

ϕ CTL LTL CTL* States si

G(b ∧ c) � � �

EFGa � � �

E(Gc ∧GFb) � � �

F(a ∧Xc) � � �

E[(¬a) U c] � � �

(5 points)

(c) LTL tautologies

An LTL formula is a tautology if it holds for every Kripke structure M and every path
π in M . For each of the following formulas, prove that it is a tautology, or find a Kripke
structure M and path π in M for which the formula does not hold and justify your
answer.

i. ¬(a U b)⇒ (G¬b ∨ F¬a)

ii. (G¬b ∨ F¬a)⇒ ¬(a U b)

(6 points)


