2	3	4	Σ	Grade
	2	2 3	2 3 4	$2 \qquad 3 \qquad 4 \qquad \Sigma$

	6.0/4.0 VU For	male Methoden der Inf	`ormatik
	185.291	March 25, 2022	Variant B
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-C

INSTANCE: A program Π that takes a string as input, a string I of even length 2*n.

QUESTION: Does Π terminate on one of the two strings resulting from I being cut into two halfs, i.e. does Π halt on I[1..n] or on I[n + 1..2 * n].

(a) The following function f provides a polynomial-time many-one reduction from **HALT-ING** to **HALTING-C**: for a program Π and a string I, let $f(\Pi, I) = (\Pi', I')$ with $\Pi' = \Pi$ and I' = I + I (i.e. the concatenation of two copies of string I)

Show that (Π, I) is a yes-instance of **HALTING** \iff (Π', I') is a yes-instance of **HALTING-C**.

(6 points)

- (b) Please answer the following questions and explain your answers
 - Is **HALTING-C** decidable?
 - Is HALTING-C semi-decidable?
 - Is the complement of **HALTING-C** semi-decidable?

(9 points)

2.) (a) Consider the following theory \mathcal{T}_{tree} of trees with the signature

$$\Sigma_{tree} = \{ \{ tree, le, ri \}, \{ atom, \doteq \} \}.$$

The axioms of \mathcal{T}_{tree} include symmetry, reflexivity and transitivity of equality, functional congruence for *tree*, *le*, *ri*, and predicate congruence for *atom*. In addition we have:

$\forall x \forall y le(tree(x, y)) \doteq x$	(left subtree)
$\forall x \forall y ri(tree(x, y)) \doteq y$	(right subtree)
$\forall x \ \left(\neg atom(x) \rightarrow tree(le(x), ri(x)) \doteq x\right)$	(construction)
$\forall x \forall y \neg atom(tree(x, y))$	(atom)

We augment theory \mathcal{T}_{tree} by \mathcal{T}_E (with uninterpreted function symbol h) resulting in \mathcal{T}_{tree}^E . Clarify the logical status of each of the following formulas. If one is \mathcal{T}_{tree}^E -valid or \mathcal{T}_{tree}^E -unsatisfiable, then prove it using the semantic argument method. If one is \mathcal{T}_{tree}^E -satisfiable but not \mathcal{T}_{tree}^E -valid, then present a satisfying and a falsifying interpretation. Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\varphi_0: \neg atom(x) \land le(x) \doteq y \land ri(x) \doteq z \land x \neq tree(y, z)$$

$$\varphi_1: le(a) \doteq le(b) \land ri(a) \doteq ri(b) \land \neg atom(a) \land \neg atom(b) \to h(a) \doteq h(b)$$

(8 points)

(b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled and \overline{z} means $\neg z$).

C_1 :	$\overline{\ell_1} \lor x_1 \lor x_2$	C_2 :	$\overline{\ell_1} \vee \overline{x_1} \vee \overline{x_2}$	C_3 :	$\ell_1 \vee \overline{x_1} \vee x_2$	C_4 :	$\ell_1 \vee x_1 \vee \overline{x_2}$
C_5 :	$\overline{\ell_2} \lor x_2 \lor x_3$	C_6 :	$\overline{\ell_2} \vee \overline{x_2} \vee \overline{x_3}$	C_7 :	$\ell_2 \vee \overline{x_2} \vee x_3$	C_8 :	$\ell_2 \lor x_2 \lor \overline{x_3}$
C_9 :	$\overline{\ell_3} \vee \ell_1 \vee \ell_2$	C_{10} :	$\overline{\ell_3} \vee \overline{\ell_1} \vee \overline{\ell_2}$	C_{11} :	$\ell_3 \vee \overline{\ell_1} \vee \ell_2$	C_{12} :	$\ell_3 \vee \ell_1 \vee \overline{\ell_2}$
$C_{13}:$	$\overline{\ell_4} \lor x_2$	C_{14} :	$\overline{\ell_4} \vee \ell_3$	C_{15} :	$\ell_4 \vee \overline{x_2} \vee \overline{\ell_3}$		
$C_{16}:$	$\overline{\ell_5} \lor x_1 \lor x_3$	C_{17} :	$\ell_5 \vee \overline{x_1}$	C_{18} :	$\ell_5 \vee \overline{x_3}$		
$C_{19}:$	$\overline{\ell_6} \vee \overline{\ell_4} \vee \ell_5$	C_{20} :	$\ell_6 \vee \ell_4$	C_{21} :	$\ell_6 \vee \overline{\ell_5}$		

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$.
- (ii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, y:

while
$$x = y$$
 do
 $x := 2 * x + y;$
 $y := y - 2 * x$
od

Which of the following program assertions are inductive loop invariants of p?

- $I_1: \quad x = 0 \land y = 0$
- $I_2: \quad x-y=0$
- $I_3: \quad x=0 \wedge y=1$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being an inductive invariant.

(9 points)

- (b) Let A be an arbitrary post-condition. Which of the following Hoare triples are valid total correctness assertions?
 - [true] skip [A]
 - [false] skip [A]

Give formal details justifying your answer. That is, if a triple is valid, provide a formal proof of it based on Hoare logic. If an assertion is not valid, give a counterexample (that is, an instance of A for which the triple does not hold).

(4 points)

(c) Consider the Hoare triple [A]p[B], where p is an arbitrary IMP program and A, B are arbitrary program assertions. Assume there is a state σ that satisfies A and there is a state σ' such that $\langle p, \sigma \rangle \rightarrow \sigma'$ and σ' satisfies B.

Given this information, is [A]p[B] totally correct?

Answer the question with either a Yes or a No answer, and provide a short justification for your answer.

(2 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1 .
- ii. Check whether M_1 simulates M_2 , i.e., provide a simulation relation that witnesses $M_2 \preceq M_1$, or briefly explain why M_1 does not simulate M_2 .

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{G}(z)$				
$\mathbf{EGF}(y)$				
$\mathbf{A}[(x) \ \mathbf{U} \ (z)]$				
$\mathbf{EX}(y)$				
$\mathbf{FG}(y)$				

(5 points)

(c) LTL tautologies

An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.

i. $\mathbf{G}(y \Rightarrow \mathbf{F}x) \Rightarrow (y \ \mathbf{U} \ \mathbf{G}(x \land \neg y))$ ii. $(y \ \mathbf{U} \ \mathbf{G}(x \land \neg y)) \Rightarrow \mathbf{G}(y \Rightarrow \mathbf{F}x)$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut