1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-C

INSTANCE: A program $Π$ that takes a string as input, a string I of even length $2 \cdot n$.

QUESTION: Does $Π$ terminate on one of the two strings resulting from I being cut into two halves, i.e. does $Π$ halt on $I[1..n]$ or on $I[n+1..2\cdot n]$.

(a) The following function f provides a polynomial-time many-one reduction from **HALTING** to **HALTING-C**: for a program $Π$ and a string I, let $f(Π, I) = (Π', I')$ with $Π' = Π$ and $I' = I + I$ (i.e. the concatenation of two copies of string I)

Show that $(Π, I)$ is a yes-instance of **HALTING** $⇔ (Π', I')$ is a yes-instance of **HALTING-C**.

(6 points)

(b) Please answer the following questions and explain your answers

- Is **HALTING-C** decidable?
- Is **HALTING-C** semi-decidable?
- Is the complement of **HALTING-C** semi-decidable?

(9 points)
2.) (a) Consider the following theory $\mathcal{T}_{\text{tree}}$ of trees with the signature

$$\Sigma_{\text{tree}} = \{ \{ \text{tree}, \text{le}, \text{ri} \}, \{ \text{atom}, \doteq \} \}.$$

The axioms of $\mathcal{T}_{\text{tree}}$ include symmetry, reflexivity and transitivity of equality, functional congruence for tree, le, ri, and predicate congruence for atom. In addition we have:

$$\forall x \forall y \text{le}(\text{tree}(x, y)) \doteq x \quad \text{(left subtree)}$$

$$\forall x \forall y \text{ri}(\text{tree}(x, y)) \doteq y \quad \text{(right subtree)}$$

$$\forall x \ (\neg \text{atom}(x) \rightarrow \text{tree}(\text{le}(x), \text{ri}(x)) \doteq x) \quad \text{(construction)}$$

$$\forall x \forall y \neg \text{atom}(\text{tree}(x, y)) \quad \text{(atom)}$$

We augment theory $\mathcal{T}_{\text{tree}}$ by \mathcal{T}_E (with uninterpreted function symbol h) resulting in $\mathcal{T}^{E}_{\text{tree}}$. Clarify the logical status of each of the following formulas. If one is $\mathcal{T}^{E}_{\text{tree}}$-valid or $\mathcal{T}^{E}_{\text{tree}}$-unsatisfiable, then prove it using the semantic argument method. If one is $\mathcal{T}^{E}_{\text{tree}}$-satisfiable but not $\mathcal{T}^{E}_{\text{tree}}$-valid, then present a satisfying and a falsifying interpretation.

Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\varphi_0: \neg \text{atom}(x) \wedge \text{le}(x) \doteq y \wedge \text{ri}(x) \doteq z \wedge x \neq \text{tree}(y, z)$$

$$\varphi_1: \text{le}(a) \doteq \text{le}(b) \land \text{ri}(a) \doteq \text{ri}(b) \land \neg \text{atom}(a) \land \neg \text{atom}(b) \rightarrow h(a) \doteq h(b)$$

(8 points)

(b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin’s translation (atoms have not been labeled and \overline{a} means $\neg a$).

$$C_1: \ell_1 \lor x_1 \lor x_2 \quad C_2: \ell_1 \lor \overline{x_1} \lor \overline{x_2} \quad C_3: \ell_1 \lor \overline{x_1} \lor x_2 \quad C_4: \ell_1 \lor x_1 \lor \overline{x_2}$$

$$C_5: \ell_2 \lor x_2 \lor x_3 \quad C_6: \ell_2 \lor \overline{x_2} \lor \overline{x_3} \quad C_7: \ell_2 \lor \overline{x_2} \lor x_3 \quad C_8: \ell_2 \lor x_2 \lor \overline{x_3}$$

$$C_9: \ell_3 \lor \ell_1 \lor \ell_2 \quad C_{10}: \ell_3 \lor \ell_1 \lor \ell_2 \quad C_{11}: \ell_3 \lor \overline{\ell_1} \lor \ell_2 \quad C_{12}: \ell_3 \lor \ell_1 \lor \overline{\ell_2}$$

$$C_{13}: \ell_4 \lor x_2 \quad C_{14}: \ell_4 \lor \ell_3 \quad C_{15}: \ell_4 \lor \overline{x_2} \lor \ell_3$$

$$C_{16}: \ell_5 \lor x_1 \lor x_3 \quad C_{17}: \ell_5 \lor \overline{x_1} \quad C_{18}: \ell_5 \lor \overline{x_3}$$

$$C_{19}: \ell_6 \lor \ell_4 \lor \ell_5 \quad C_{20}: \ell_6 \lor \ell_4 \quad C_{21}: \ell_6 \lor \ell_5$$

(i) Reconstruct φ from $\hat{\delta}(\varphi)$.

(ii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)
3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, y:

\[
\begin{align*}
\text{while } x = y \text{ do} \\
x &:= 2 \times x + y; \\
y &:= y - 2 \times x \\
\text{od}
\end{align*}
\]

Which of the following program assertions are inductive loop invariants of p?

- $I_1 : \ x = 0 \land y = 0$
- $I_2 : \ x - y = 0$
- $I_3 : \ x = 0 \land y = 1$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being an inductive invariant.

(9 points)

(b) Let A be an arbitrary post-condition. Which of the following Hoare triples are valid total correctness assertions?

- $[true] \text{ skip } [A]$
- $[false] \text{ skip } [A]$

Give formal details justifying your answer. That is, if a triple is valid, provide a formal proof of it based on Hoare logic. If an assertion is not valid, give a counterexample (that is, an instance of A for which the triple does not hold).

(4 points)

(c) Consider the Hoare triple $[A]p[B]$, where p is an arbitrary IMP program and A, B are arbitrary program assertions. Assume there is a state σ that satisfies A and there is a state σ' such that $< p, \sigma > \rightarrow \sigma'$ and σ' satisfies B.

Given this information, is $[A]p[B]$ totally correct?

Answer the question with either a Yes or a No answer, and provide a short justification for your answer.

(2 points)
4. (a) Consider the Kripke structures M_1 and M_2. The initial state of M_1 is s_0, the initial state of M_2 is t_0.

Kripke structure M_1:

```
s0: {z}
s1: {y}
s2: {x}
s3: {y}
```

Kripke structure M_2:

```
t0: {z}
t1: {x}
t2: {y}
t3: {z}
t4: {x}
```

i. Check whether M_2 simulates M_1, i.e., provide a simulation relation that witnesses $M_1 \preceq M_2$, or briefly explain why M_2 does not simulate M_1.

ii. Check whether M_1 simulates M_2, i.e., provide a simulation relation that witnesses $M_2 \preceq M_1$, or briefly explain why M_1 does not simulate M_2.

(4 points)
(b) Consider the following Kripke structure M:

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models A\varphi$.)

<table>
<thead>
<tr>
<th>φ</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(z)$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$EGF(y)$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$A[(x) U \ (z)]$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$EX(y)$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$FG(y)$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

(5 points)
(c) **LTL tautologies**

An LTL formula is a *tautology* if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.

i. $G(y \Rightarrow Fx) \Rightarrow (y \ U \ G(x \land \neg y))$

ii. $(y \ U \ G(x \land \neg y)) \Rightarrow G(y \Rightarrow Fx)$

(6 points)