1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 March 25, 2022 Variant A								
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)					

1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-C

INSTANCE: A program Π that takes a string as input, a string I of even length 2*n.

QUESTION: Does Π terminate on both strings resulting from I being cut into two halfs, i.e. does Π halt on I[1..n] and I[n+1..2*n].

(a) The following function f provides a polynomial-time many-one reduction from **HALT-ING** to **HALTING-C**: for a program Π and a string I, let $f(\Pi, I) = (\Pi', I')$ with $\Pi' = \Pi$ and I' = I + I (i.e. the concatenation of two copies of string I)

Show that (Π, I) is a yes-instance of **HALTING** \iff (Π', I') is a yes-instance of **HALTING-C**.

(6 points)

- (b) Please answer the following questions and explain your answers
 - Is **HALTING-C** decidable?
 - Is **HALTING-C** semi-decidable?
 - Is the complement of **HALTING-C** semi-decidable?

(9 points)

2.) (a) Consider the following theory \mathcal{T}_{tree} of trees with the signature

$$\Sigma_{tree} = \{ \{ tree, le, ri \}, \{ atom, \doteq \} \}.$$

The axioms of \mathcal{T}_{tree} include symmetry, reflexivity and transitivity of equality, functional congruence for tree, le, ri, and predicate congruence for atom. In addition we have:

```
\forall x \, \forall y \, le(tree(x,y)) \doteq x \qquad \qquad \text{(left subtree)}
\forall x \, \forall y \, ri(tree(x,y)) \doteq y \qquad \qquad \text{(right subtree)}
\forall x \, \left( \neg atom(x) \rightarrow tree(le(x), ri(x)) \doteq x \right) \qquad \qquad \text{(construction)}
\forall x \, \forall y \, \neg atom(tree(x,y)) \qquad \qquad \text{(atom)}
```

We augment theory \mathcal{T}_{tree} by \mathcal{T}_E (with uninterpreted function symbol h) resulting in \mathcal{T}^E_{tree} . Clarify the logical status of each of the following formulas. If one is \mathcal{T}^E_{tree} -valid or \mathcal{T}^E_{tree} -unsatisfiable, then prove it using the semantic argument method. If one is \mathcal{T}^E_{tree} -satisfiable but not \mathcal{T}^E_{tree} -valid, then present a satisfying and a falsifying interpretation. Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\varphi_0 \colon le(a) \doteq le(b) \land ri(a) \doteq ri(b) \land \neg atom(a) \land \neg atom(b) \rightarrow h(a) \doteq h(b)$$

$$\varphi_1 \colon \neg atom(x) \land le(x) \doteq y \land ri(x) \doteq z \land x \neq tree(y, z)$$

(8 points)

(b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled and \overline{z} means $\neg z$).

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$.
- (ii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, y:

while
$$x \neq y$$
 do
 $x := x - 2 * y;$
 $y := 2 * y - x$
od

Which of the following program assertions are inductive loop invariants of p?

• $I_1: \quad x = 0 \land y = 0$ • $I_2: \quad x + y = 0$ • $I_3: \quad x = 0 \land y = 1$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic or using weakest liberal preconditions. If an assertion is not an inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being an inductive invariant.

(9 points)

- (b) Let A be an arbitrary post-condition. Which of the following Hoare triples are valid partial correctness assertions?
 - $\{true\}$ skip $\{A\}$
 - $\{false\}$ skip $\{A\}$

Give formal details justifying your answer. That is, if a triple is valid, provide a formal proof of it based on Hoare logic. If an assertion is not valid, give a counterexample (that is, an instance of A for which the triple does not hold).

(4 points)

(c) Consider the Hoare triple $\{A\}p\{B\}$, where p is an arbitrary IMP program and A, B are arbitrary program assertions. Assume there is a state σ that satisfies A and there is a state σ' such that $\langle p, \sigma \rangle \rightarrow \sigma'$ and σ' satisfies B.

Given this information, is $\{A\}p\{B\}$ partially correct?

Answer the question with either a Yes or a No answer, and provide a short justification for your answer.

(2 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Check whether M_2 simulates M_1 , i.e., provide a simulation relation that witnesses $M_1 \leq M_2$, or briefly explain why M_2 does not simulate M_1 .
- ii. Check whether M_1 simulates M_2 , i.e., provide a simulation relation that witnesses $M_2 \leq M_1$, or briefly explain why M_1 does not simulate M_2 .

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{A}[(b) \ \mathbf{U} \ (a)]$				
$\mathbf{G}(a)$				
$egin{aligned} \mathbf{G}(a) \ \mathbf{F}\mathbf{G}(c) \ \mathbf{E}\mathbf{G}\mathbf{F}(c) \end{aligned}$				
$\mathbf{EGF}(c)$				
$\mathbf{EX}(c)$				

(5 points)

(c) LTL tautologies

An LTL formula is a tautology if it holds for every Kripke structure M and every path π in M. For each of the following formulas, prove that it is a tautology, or find a Kripke structure M and path π in M for which the formula does not hold and justify your answer.

i.
$$(b \ \mathbf{U} \ \mathbf{G}(a \wedge \neg b)) \Rightarrow \mathbf{G}(b \Rightarrow \mathbf{F}a)$$

ii. $\mathbf{G}(b \Rightarrow \mathbf{F}a) \Rightarrow (b \ \mathbf{U} \ \mathbf{G}(a \wedge \neg b))$

(6 points)