1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 January, 21 2022						
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	$\overset{\rm Gruppe}{\underset{B}{(\rm version)}}$		

1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-ODD

INSTANCE: A program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I in an even number of computation steps.

(a) The following function f provides a polynomial-time many-one reduction from **HALTING** to **HALTING-ODD**: for a program Π and a string I let $f(\Pi, I) = (\Pi', I')$ with I' = I and Π' given as follows:

 $\begin{array}{ll} \Pi'(\texttt{string }S)\{ & \\ \texttt{call }\Pi(S); & \\ \texttt{call }\Pi(S); & \\ S:=S; \quad //\texttt{dummy operation } \dots & \texttt{1 computation step} \\ \texttt{return;} \end{array} \\ \end{array} \\ \end{array}$

(Remark: We assume that calls and return-statements do not count as computation steps).

Show that (Π, I) is a yes-instance of **HALTING** \iff (Π', I') is a yes-instance of **HALTING-ODD**.

(9 points)

- (b) Please answer the following questions and explain your answers
 - Is **HALTING-ODD** undecidable?
 - Is **HALTING-ODD** semi-decidable?

(6 points)

2.) (a) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled and \overline{z} means $\neg z$).

C_1 :	$\overline{\ell_1} \lor x_1 \lor x_2$	$C_2: \ \overline{\ell_1} \lor \overline{\ell_2}$	$\overline{x_1} \lor \overline{x_2} \qquad C_3:$	$\ell_1 \vee \overline{x_1} \vee x_2$	C_4 :	$\ell_1 \vee x_1 \vee \overline{x_2}$
C_5 :	$\overline{\ell_2} \lor x_2 \lor x_3$	$C_6: \ \overline{\ell_2} \lor \overline{\epsilon}$	$\overline{x_2} \lor \overline{x_3} \qquad C_7:$	$\ell_2 \vee \overline{x_2} \vee x_3$	C_8 :	$\ell_2 \lor x_2 \lor \overline{x_3}$
C_9 :	$\overline{\ell_3} \vee \ell_1$	$C_{10}: \ \overline{\ell_3} \lor \ell_3$	$\ell_2 \qquad C_{11}$:	$\ell_3 \vee \overline{\ell_1} \vee \overline{\ell_2}$		
C_{12} :	$\overline{\ell_4} \lor x_1$	$C_{13}: \ \overline{\ell_4} \lor :$	$x_3 C_{14}:$	$\ell_4 \vee \overline{x_1} \vee \overline{x_3}$		
C_{15} :	$\overline{\ell_5} \lor \ell_4 \lor x_2$	$C_{16}: \ell_5 \lor \ell_6$	$\overline{\ell_4}$ C_{17} :	$\ell_5 \vee \overline{x_2}$		
C_{18} :	$\overline{\ell_6} \lor \overline{\ell_3} \lor \ell_5$	$C_{19}: \ell_6 \lor \ell_6$	$\ell_3 C_{20}:$	$\ell_6 \vee \overline{\ell_5}$		

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$.
- (ii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)

- (b) Let \mathcal{T}_{f}^{E} be the theory containing all equality axioms (from \mathcal{T}_{E}) and the following two additional axioms.
 - $\forall x \forall y (f(x) \doteq f(y) \rightarrow x \doteq y)$ (f-injectivity)
 - $\forall x f(x) \doteq f(f(x))$ (f-idempotency)

Clarify the logical status of each of the following formulas. If one is \mathcal{T}_f^E -valid or \mathcal{T}_f^E -unsatisfiable, then prove it using the semantic argument method. If one is \mathcal{T}_f^E -satisfiable but not \mathcal{T}_f^E -valid, then present a satisfying and a falsifying interpretation. Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\varphi \colon \quad f(f(f(a))) \doteq f(b) \to a \doteq b \\ \psi \colon \quad f(f(f(a))) \neq f(b) \land a \doteq b$$

(8 points)

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables i, x, y:

while
$$i < 10$$
 do
 $y := y + 2 * i;$
 $i := i + 1;$
 $x := x - 2 * i;$
od

Give a loop invariant for the **while** loop in p and prove the validity of the total correctness triple $[i = 0 \land x = 100 \land y = 0] p [x + y = 80]$.

(10 points)

(b) Let p be the IMP program:

if
$$2 * x \le y$$
 then $x := x + 2$ else $y := y - 2$

What is the $wlp(p, x = 2 \land y = 4)$?

(3 points)

(c) Let p be an IMP program such that $[2 * x \le y] p [x \ne y]$ is valid. Is $[x = -3 \land y = -1] p [3 * y - 3 * x \ne 0]$ valid? If so, give a formal proof. Otherwise, give a counterexample.

(2 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Briefly explain why M_2 does not simulate M_1 .
- ii. Add a minimal set of edges to ${\cal M}_2$ such that the extended Kripke structure M'_2 simulates M_1 . Provide the additional edges and a non-empty simulation relation H that witnesses $M_1 \preceq M'_2$.

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{AF}(y \wedge z)$				
$\mathbf{X}(x)$				
$\mathbf{G}(z)$				
$\mathbf{EF}(z)$				
$\mathbf{E}[(y) \ \mathbf{U} \ (z)]$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

- i. $(\mathbf{GF}x) \land (\mathbf{GF}y) \Rightarrow \mathbf{G}(x \Rightarrow \mathbf{F}y)$
- ii. $\mathbf{G}(x \Rightarrow \mathbf{F}y) \Rightarrow (\mathbf{GF}x) \land (\mathbf{GF}y)$

(6 points)