1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 January, 21 2022						
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)		

1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-EVEN

INSTANCE: A program Π that takes a string as input, a string I.

QUESTION: Does Π terminate on I in an even number of computation steps.

(a) The following function f provides a polynomial-time many-one reduction from **HALTING** to **HALTING-EVEN**: for a program Π and a string I let $f(\Pi, I) = (\Pi', I')$ with I' = I and Π' given as follows:

```
\Pi'(\texttt{string }S)\{\\ \texttt{call }\Pi(S);\\ \texttt{call }\Pi(S);\\ \texttt{return;}\\ \}
```

(Remark: We assume that calls and return-statements do not count as computation steps).

Show that (Π, I) is a yes-instance of **HALTING** \iff (Π', I') is a yes-instance of **HALTING-EVEN**.

(9 points)

- (b) Please answer the following questions and explain your answers
 - Is **HALTING-EVEN** undecidable?
 - Is **HALTING-EVEN** semi-decidable?

(6 points)

2.) (a) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by an improved version of Tseitin's translation (atoms have not been labeled and \overline{z} means $\neg z$).

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$.
- (ii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)

(b) Let \mathcal{T}_f^E be the theory containing all equality axioms (from \mathcal{T}_E) and the following two additional axioms.

•
$$\forall x \forall y (f(x) \doteq f(y) \rightarrow x \doteq y)$$
 (f-injectivity)
• $\forall x f(x) \doteq f(f(x))$ (f-idempotency)

Clarify the logical status of each of the following formulas. If one is \mathcal{T}_f^E -valid or \mathcal{T}_f^E -unsatisfiable, then prove it using the semantic argument method. If one is \mathcal{T}_f^E -satisfiable but not \mathcal{T}_f^E -valid, then present a satisfying and a falsifying interpretation. Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\varphi \colon \quad f(f(f(a))) \doteq f(b) \to a \doteq b$$

$$\psi \colon \quad f(f(f(a))) \neq f(f(b)) \land a \doteq b$$

(8 points)

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables i, x, y:

while
$$i < 10$$
 do
 $x := x - 2 * i;$
 $i := i + 1;$
 $y := y + 2 * i;$
od

Give a loop invariant for the **while** loop in p and prove the validity of the total correctness triple $[i = 0 \land x = 100 \land y = 0]$ p [x + y = 120].

(10 points)

(b) Let p be the IMP program:

if
$$2*x \ge y$$
 then $x:=x+2$ else $y:=y-2$ What is the $wlp(p,x=4 \land y=2)$? (3 points)

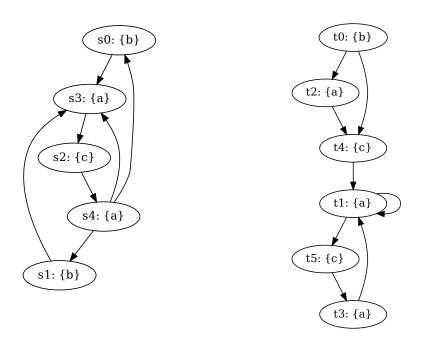
(c) Let p be an IMP program such that $[2*x \ge y]$ p $[x \ne y]$ is valid. Is $[x = 2 \land y = 1]$ p $[2*y-2*x \ne 0]$ valid? If so, give a formal proof. Otherwise, give a counterexample.

(2 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

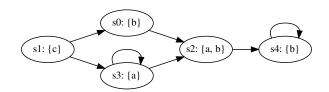
Kripke structure M_2 :



- i. Briefly explain why M_2 does not simulate M_1 .
- ii. Add a minimal set of edges to M_2 such that the extended Kripke structure M_2' simulates M_1 . Provide the additional edges and a non-empty simulation relation H that witnesses $M_1 \leq M_2'$.

(4 points)

(b) Consider the following Kripke structure M:



For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{G}(b)$				
$\mathbf{E}[(a) \ \mathbf{U} \ (b)]$				
$\mathbf{X}(c)$				
$\mathbf{X}(c)$ $\mathbf{EF}(b)$				
$\mathbf{AF}(a \wedge b)$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$\mathbf{G}(a \Rightarrow \mathbf{F}b) \Rightarrow (\mathbf{GF}a) \wedge (\mathbf{GF}b)$$

ii.
$$(\mathbf{GF}a) \wedge (\mathbf{GF}b) \Rightarrow \mathbf{G}(a \Rightarrow \mathbf{F}b)$$

(6 points)