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1.) An undirected graph (V| E) is called a degree-restricted graph if for each vertex v € V' it holds
that the degree of v is 1 or even (i.e. 1, 2, 4, 6, ...).

Examples: ({a,b,c¢,d},{[a,b],[b,c],[c,d]}) is degree-restricted since vertices a and d have
degree 1, and b and ¢ have an even degree 2. ({a,b,c,d},{[a,b],[a, ], |a,d]}) is not degree-
restricted since vertex a has degree 3.

Consider the following variant of the 3-coloring problem:

3-COLORABILITY-DEGREE-RESTRICTED (3COLD)
INSTANCE: A degree-restricted graph G = (V, E).

QUESTION: Does there exist a function p from vertices in V' to values in {0, 1,2} such
that p(v1) # p(ve) for any edge [vi,v9] € E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLD: for an undirected graph G = ({v1,...,v,}, E), add for each vertex v; with
odd degree > 2

® a new vertex x;
e an edge [v;, ;]
to G, and let f(G) be the resulting degree-restricted graph.
Show that G is a yes-instance of 3COL <= f(G) is a yes-instance of 3COLD.

(9 points)

(b) In what follows assume the reduction from 3COL to 3COLD is correct, and recall that
3COL is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

o Since 3COL is NP-complete, our reduction shows that 3COLD is NP-hard.

o Since 3COL is NP-hard, our reduction shows that 3COLD is NP-hard.

o Since 3COL is in NP, our reduction shows that 3COLD is NP-hard.

o Since 3COLD is a special case of 3COL, it follows that 3COLD is contained in
NP.

o Since 3COLD is a special case of 3COL, it follows that 3COLD is NP-hard.
o Since 3COLD is a special case of 3COL, it follows that 3COLD is NP-complete
(even without the above reduction).

(6 points)



(a) Consider the following clause set 6(¢) which has been derived from an (unknown) for-
mula ¢ by Tseitin’s translation (atoms have not been labeled).

Cy: 0 V—xV-—y Cy: 1 Vx C3: 1 Vy
C4I —|€2\/ﬂy\/z C52 &\/y C6Z 82\/_‘2
Cr: U3Vl Vz Cg: 3V Cy: 3V -z
Cio: Wy V —x Vil Ci1: UV Cia: €4V —lg

0132 —\65 V —\£3 vV 54 0141 €5 \ 43 0151 65 vV _‘54

(i) Reconstruct ¢ from (¢p).
(ii) Prove the correctness of the propositional resolution rule.

(iii) Prove the validity of ¢ by resolution (no additional translation to normal form is
allowed!). You are allowed to add a single unit clause (i.e., a clause containing
exactly one literal). Please explain your approach!

(7 points)

(b) Clarify the logical status of each of the following formulas. If one is TZ,  -valid or
TE -unsatisfiable, then prove it using the semantic argument method. If one is 7.2, -
satisfiable but not T.Z, .-valid, then present a satisfying and a falsifying interpretation.
Argue formally that the formula evaluates to true resp. false under the constructed

interpretations.

o : natom(x) A car(x) =y A cdr(xz) =z A x # cons(y, z)
©1: cons(car(x), cdr(x)) = cons(y, z) A cons(car(x), cdr(z)) # x
— x # cons(y, 2)

Besides the equality axioms, the following axioms of 7.2, may be helpful.

o Vx,ycar(cons(z,y)) =z (left projection)
o VYV, ycdr(cons(z,y)) =y (right projection)
o YV —atom(x) — cons(car(x), cdr(x)) =z (construction)

)

o Yz, y-atom(cons(z,y)) (atom

(8 points)

(15 points)



3.)

(a)

Let p be the following IMP program loop, containing the integer-valued program vari-
ables x, 1, b:
while z < b do

Ti=1%1;
1 =1+ 1
od
Which of the following program assertions are inductive loop invariants of p?
o [1: xz—ixi=0
o Ir: true
[ 13 : x S b

Give formal details justifying your answer. That is, if an assertion is an inductive loop
invariant, provide a formal proof of it based on Hoare logic. If an assertion is not an
inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being inductive invariant.
(6 points)

Let p be the following IMP program loop, containing the integer-valued program vari-
ables i, z,y:
while 7 < 10 do

1:=1+1;

T i=x—2;

y:=y+x+2x1
od

Give a loop invariant for the while loop in p and prove the validity of the partial cor-
rectness triple {i =0A 2 =10Ay =0} p {y = 100}.

Note: Make sure that your invariant expresses equalities among i, x, y as well equalities
among %, .

(9 points)



4.) (a) Consider the Kripke structures M; and Ms. The initial state of M; is s, the initial
state of My is tg.
Kripke structure Mj: Kripke structure Ms:

<IED Co
ST <
CGrad G <D
<> D

i. Briefly explain why Ms does not simulate M.

ii. Add a minimal set of edges to Ms such that the extended Kripke structure M}
simulates M;. Provide the additional edges and a non-empty simulation relation
H that witnesses M; < MJ.

(4 points)



(b) Consider the following Kripke structure M:

For each of the following formulae ¢,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
ii. list the states s; on which the formula ¢ holds; i.e. for which states s; do we
have M, s; = ¢?
(If ¢ is a path formula, list the states s; such that M,s; &= Ay.)

%) CTL LTL CTL* States s;
AF(znz) | O O O
G(2) O O O
z Uy (Il O O
EF(z) O O O
AX(z) O O O

(5 points)



(¢) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and every path w in M, or find a Kripke structure M and path 7 in M, for
which the formula does not hold and justify your answer.
i. a U (bV-a)=-GaAFb
ii. “GaAFb=a U (bV —a)
(6 points)

Grading scheme: 0—29 nicht geniigend, 30-35 geniigend, 36—41 befriedigend, 42—47 gut, 48-60 sehr gut



