1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) Dec 10, 2021				
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)	

1.) An undirected graph (V, E) is called a *degree-restricted graph* if for each vertex $v \in V$ it holds that the degree of v is 1 or even (i.e. 1, 2, 4, 6, ...).

Examples: $(\{a, b, c, d\}, \{[a, b], [b, c], [c, d]\})$ is degree-restricted since vertices a and d have degree 1, and b and c have an even degree 2. $(\{a, b, c, d\}, \{[a, b], [a, c], [a, d]\})$ is not degree-restricted since vertex a has degree 3.

Consider the following variant of the 3-coloring problem:

3-COLORABILITY-DEGREE-RESTRICTED (3COLD)

INSTANCE: A degree-restricted graph G = (V, E).

QUESTION: Does there exist a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

- (a) The following function f provides a polynomial-time many-one reduction from **3COL** to **3COLD**: for an undirected graph $G = (\{v_1, \ldots, v_n\}, E)$, add for each vertex v_i with odd degree > 2
 - a new vertex x_i
 - an edge $[v_i, x_i]$

to G, and let f(G) be the resulting degree-restricted graph.

Show that G is a yes-instance of **3COL** $\iff f(G)$ is a yes-instance of **3COLD**.

(9 points)

(b) In what follows assume the reduction from **3COL** to **3COLD** is correct, and recall that **3COL** is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):

- Since **3COL** is NP-complete, our reduction shows that **3COLD** is NP-hard.
- Since **3COL** is NP-hard, our reduction shows that **3COLD** is NP-hard.
- Since **3COL** is in NP, our reduction shows that **3COLD** is NP-hard.
- $\circ~$ Since $\mathbf{3COLD}$ is a special case of $\mathbf{3COL},$ it follows that $\mathbf{3COLD}$ is contained in NP.
- Since **3COLD** is a special case of **3COL**, it follows that **3COLD** is NP-hard.
- Since **3COLD** is a special case of **3COL**, it follows that **3COLD** is NP-complete (even without the above reduction).

(6 points)

2.) (a) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by Tseitin's translation (atoms have not been labeled).

C_1 :	$\ell_1 \vee \neg x \vee \neg y$	C_2 :	$\neg \ell_1 \lor x$	C_3 :	$\neg \ell_1 \vee y$
C_4 :	$\neg \ell_2 \vee \neg y \vee z$	C_5 :	$\ell_2 \vee y$	C_6 :	$\ell_2 \vee \neg z$
C_7 :	$\neg \ell_3 \vee \neg \ell_1 \vee z$	C_8 :	$\ell_3 \vee \ell_1$	C_9 :	$\ell_3 \vee \neg z$
$C_{10}:$	$\neg \ell_4 \vee \neg x \vee \ell_2$	$C_{11}:$	$\ell_4 \lor x$	C_{12} :	$\ell_4 \vee \neg \ell_2$
C_{13} :	$\neg \ell_5 \vee \neg \ell_3 \vee \ell_4$	C_{14} :	$\ell_5 \vee \ell_3$	C_{15} :	$\ell_5 \vee \neg \ell_4$

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$.
- (ii) Prove the correctness of the propositional resolution rule.
- (iii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!). You are allowed to add a single unit clause (i.e., a clause containing exactly one literal). Please explain your approach!

(7 points)

(b) Clarify the logical status of each of the following formulas. If one is \mathcal{T}_{cons}^{E} -valid or \mathcal{T}_{cons}^{E} -unsatisfiable, then prove it using the semantic argument method. If one is \mathcal{T}_{cons}^{E} -satisfiable but not \mathcal{T}_{cons}^{E} -valid, then present a satisfying and a falsifying interpretation. Argue formally that the formula evaluates to true resp. false under the constructed interpretations.

$$\begin{split} \varphi_0 &: \neg atom(x) \land car(x) \doteq y \land cdr(x) \doteq z \land x \neq cons(y, z) \\ \varphi_1 &: cons(car(x), cdr(x)) \doteq cons(y, z) \land cons(car(x), cdr(x)) \neq x \\ &\to x \neq cons(y, z) \end{split}$$

Besides the equality axioms, the following axioms of \mathcal{T}_{cons}^E may be helpful.

	(8 points)
• $\forall x, y \neg atom(cons(x, y))$	(atom)
• $\forall x \neg atom(x) \rightarrow cons(car(x), cdr(x)) \doteq x$	(construction)
• $\forall x, y \ cdr(cons(x, y)) \doteq y$	(right projection)
• $\forall x, y \ car(cons(x, y)) \doteq x$	(left projection)

(15 points)

3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, i, b:

```
while x < b do

x := i * i;

i := i + 1;

od
```

Which of the following program assertions are inductive loop invariants of p?

- $I_1: \quad x i * i = 0$
- I_2 : true
- $I_3: x \le b$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic. If an assertion is not an inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being inductive invariant.

(6 points)

(b) Let p be the following IMP program loop, containing the integer-valued program variables i, x, y:

while
$$i < 10$$
 do
 $i := i + 1;$
 $x := x - 2;$
 $y := y + x + 2 * i;$
od

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{i = 0 \land x = 10 \land y = 0\} p \{y = 100\}.$

Note: Make sure that your invariant expresses equalities among i, x, y as well equalities among i, x.

(9 points)

4.) (a) Consider the Kripke structures M_1 and M_2 . The initial state of M_1 is s_0 , the initial state of M_2 is t_0 .

Kripke structure M_1 :

Kripke structure M_2 :

- i. Briefly explain why M_2 does not simulate M_1 .
- ii. Add a minimal set of edges to M_2 such that the extended Kripke structure M'_2 simulates M_1 . Provide the additional edges and a non-empty simulation relation H that witnesses $M_1 \leq M'_2$.

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{AF}(x \wedge z)$				
$\mathbf{G}(z)$				
$x \mathbf{U} y$				
$\mathbf{EF}(x)$				
$\mathbf{AX}(x)$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$a \mathbf{U} (b \lor \neg a) \Rightarrow \neg \mathbf{G}a \land \mathbf{F}b$$

ii. $\neg \mathbf{G}a \land \mathbf{F}b \Rightarrow a \mathbf{U} (b \lor \neg a)$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut