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1.) An undirected graph (V,E) is called a degree-restricted graph if for each vertex v ∈ V it holds
that the degree of v is odd (i.e. 1, 3, 5,...).

Examples: ({a, b, c, d}, {[a, b], [a, c], [a, d]}) is degree-restricted since vertex a has degree 3 and
vertices {b, c, d} have all degree 1.

({a, b, c, d}, {[a, b], [b, c], [c, d]}) is not degree-restricted since vertices b and c have an even
degree 2.

Consider the following variant of the 3-coloring problem:

3-COLORABILITY-DEGREE-RESTRICTED (3COLD)

INSTANCE: A degree-restricted graph G = (V,E).

QUESTION: Does there exist a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLD: for an undirected graph G = ({v1, . . . , vn}, E), add for each vertex vi with
even degree

• a new vertex xi

• an edge [vi, xi]

to G, and let f(G) be the resulting degree-restricted graph.

Show that G is a yes-instance of 3COL ⇐⇒ f(G) is a yes-instance of 3COLD.

(9 points)

(b) In what follows assume the reduction from 3COL to 3COLD is correct, and recall that
3COL is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

◦ Since 3COL is NP-complete, our reduction shows that 3COLD is NP-hard.

◦ Since 3COL is NP-hard, our reduction shows that 3COLD is NP-hard.

◦ Since 3COL is in NP, our reduction shows that 3COLD is NP-hard.

◦ Since 3COLD is a special case of 3COL, it follows that 3COLD is contained in
NP.

◦ Since 3COLD is a special case of 3COL, it follows that 3COLD is NP-hard.

◦ Since 3COLD is a special case of 3COL, it follows that 3COLD is NP-complete
(even without the above reduction).

(6 points)



2.) (a) Consider the following clause set δ̂(ϕ) which has been derived from an (unknown) for-
mula ϕ by an improved version of Tseitin’s translation (atoms have not been labeled).

C1 : `1 ∨ ¬x ∨ ¬y C2 : ¬`1 ∨ x C3 : ¬`1 ∨ y
C4 : ¬`2 ∨ ¬y ∨ z C5 : `2 ∨ y C6 : `2 ∨ ¬z
C7 : ¬`3 ∨ ¬`1 ∨ z C8 : `3 ∨ `1 C9 : `3 ∨ ¬z
C10 : ¬`4 ∨ ¬x ∨ `2 C11 : `4 ∨ x C12 : `4 ∨ ¬`2
C13 : ¬`5 ∨ ¬`4 ∨ `3 C14 : `5 ∨ `4 C15 : `5 ∨ ¬`3

(i) Reconstruct ϕ from δ̂(ϕ).

(ii) Prove the correctness of the propositional resolution rule.

(iii) Prove the validity of ϕ by resolution (no additional translation to normal form is
allowed!). You are allowed to add a single unit clause (i.e., a clause containing
exactly one literal). Please explain your approach!

(7 points)

(b) Clarify the logical status of each of the following formulas. If one is T E
cons -valid or

T E
cons -unsatisfiable, then prove it using the semantic argument method. If one is T E

cons -
satisfiable but not T E

cons -valid, then present a satisfying and a falsifying interpretation.
Argue formally that the formula evaluates to true resp. false under the constructed
interpretations.

ϕ0 : cons(car(x), cdr(x))
.
= cons(y, z) ∧ cons(car(x), cdr(x)) 6 .= x

→ x 6 .= cons(y, z)

ϕ1 : ¬atom(x) ∧ car(x)
.
= y ∧ cdr(x)

.
= z ∧ x 6 .= cons(y, z)

Besides the equality axioms, the following axioms of T E
cons may be helpful.

• ∀x, y car(cons(x, y))
.
= x (left projection)

• ∀x, y cdr(cons(x, y))
.
= y (right projection)

• ∀x¬atom(x)→ cons(car(x), cdr(x))
.
= x (construction)

• ∀x, y ¬atom(cons(x, y)) (atom)

(8 points)

(15 points)



3.) (a) Let p be the following IMP program loop, containing the integer-valued program vari-
ables x, i, b:

while x < b do
i := i+ 1;
x := i ∗ i;

od

Which of the following program assertions are inductive loop invariants of p?

• I1 : x− i ∗ i 6= 0

• I2 : x ≤ b
• I3 : true

Give formal details justifying your answer. That is, if an assertion is an inductive loop
invariant, provide a formal proof of it based on Hoare logic. If an assertion is not an
inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being inductive invariant.

(6 points)

(b) Let p be the following IMP program loop, containing the integer-valued program vari-
ables i, x, y:

while i < 10 do
x := x− 1;
i := i+ 1;
y := y + x+ i;

od

Give a loop invariant for the while loop in p and prove the validity of the partial cor-
rectness triple {i = 0 ∧ x = 10 ∧ y = 0} p {y = 100}.

Note: Make sure that your invariant expresses equalities among i, x, y as well equalities
among i, x.

(9 points)



4.) (a) Consider the Kripke structures M1 and M2. The initial state of M1 is s0, the initial
state of M2 is t0.

Kripke structure M1: Kripke structure M2:

s0: {c}

s1: {a} s2: {a}

s3: {b}

s4: {b}

t0: {c}

t1: {a}

t3: {b}

t2: {c}

t4: {b}

t5: {b}

i. Briefly explain why M2 does not simulate M1.

ii. Add a minimal set of edges to M2 such that the extended Kripke structure M ′
2

simulates M1. Provide the additional edges and a non-empty simulation relation
H that witnesses M1 �M ′

2.

(4 points)



(b) Consider the following Kripke structure M :

s0: {a, b, c} s1: {a}

s3: {b, c}

s2: {a, c}

s4: {a, b}

For each of the following formulae ϕ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula ϕ holds; i.e. for which states si do we
have M, si |= ϕ?
(If ϕ is a path formula, list the states si such that M, si |= Aϕ.)

ϕ CTL LTL CTL* States si

EF(c) � � �

c U b � � �

AX(c) � � �

G(a) � � �

AF(a ∧ c) � � �

(5 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and every path π in M , or find a Kripke structure M and path π in M , for
which the formula does not hold and justify your answer.

i. ¬Gp ∧ Fq ⇒ p U (q ∨ ¬p)
ii. p U (q ∨ ¬p)⇒ ¬Gp ∧ Fq

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


