1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

NON-TRIVIAL-HALTING (NTH)

INSTANCE: A program Π' that takes a string as input.

QUESTION: Is it true, that there exist input strings I_1, I_2, such that Π' does not halt on I_1 and Π' halts on I_2.

(a) The following function f provides a polynomial-time many-one reduction from the **co-HALTING** problem (the *complement* of **HALTING**) to **NTH**: for a program Π and a string I, let $f(\Pi, I) = (\Pi')$ with

$$
\Pi'(\text{string } S) = \begin{cases}
\text{print } S; & \text{if } (S \neq I) \\
\text{call } \Pi(S); & \text{else}
\end{cases}
\text{ return;}
$$

Show that (Π, I) is a yes-instance of **co-HALTING** \iff (Π') is a yes-instance of **NTH**.

(9 points)

(b) Recall that **co-HALTING** is not even semi-decidable and suppose that our reduction from **co-HALTING** to **NTH** is correct. Tick the correct statements that can be concluded from these observations (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a subtraction of the same amount; you cannot go below 0 points):

- **NTH** is undecidable.
- **NTH** is semi-decidable.
- **NTH** is decidable.
- Suppose we have a decision procedure for **NTH**; then we would have a decision procedure for **co-HALTING**.
- Since **HALTING** is semi-decidable, our reduction also shows that the complement of **NTH** is semi-decidable.
- A problem or its complement is semi-decidable, thus the complement of **NTH** is semi-decidable.

(6 points)
2.) (a) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by Tseitin translation (atoms have not been labeled).

\begin{align*}
C_1 &: \ell_1 \lor \neg x \lor \neg y \\
C_2 &: \neg \ell_1 \lor x \\
C_3 &: \neg \ell_1 \lor y \\
C_4 &: \neg \ell_2 \lor \neg y \lor z \\
C_5 &: \ell_2 \lor y \\
C_6 &: \ell_2 \lor \neg z \\
C_7 &: \neg \ell_3 \lor \neg \ell_4 \lor z \\
C_8 &: \ell_3 \lor \ell_1 \\
C_9 &: \ell_3 \lor \neg z \\
C_{10} &: \neg \ell_4 \lor \neg x \lor \ell_2 \\
C_{11} &: \ell_4 \lor x \\
C_{12} &: \ell_4 \lor \neg \ell_2 \\
C_{13} &: \neg \ell_5 \lor \neg \ell_3 \lor \ell_4 \\
C_{14} &: \ell_5 \lor \ell_3 \\
C_{15} &: \ell_5 \lor \neg \ell_4
\end{align*}

(i) Reconstruct φ from $\hat{\delta}(\varphi)$.

(ii) Start from $\hat{\delta}(\varphi)$ and extend it by a single nonempty clause C in such a way that φ is valid iff $\hat{\delta}(\varphi) \land C$ is unsatisfiable.

(iii) Prove the validity of φ by resolution (no additional translation to normal form is allowed!).

(4 points)

(b) Use Ackermann’s reduction and translate

$$(B(A(B(x)))) \equiv y \lor C(x,y) \equiv C(A(x),B(x)) \rightarrow A(A(x)) \equiv A(B(x))$$

to a validity-equivalent E-formula φ^E. A, B, and C are function symbols, x and y are variables.

(3 points)

(c) Let φ^{uf} be an equality formula containing uninterpreted functions. Let $FC^E(\varphi^{uf})$ and $flat^E(\varphi^{uf})$ be obtained by Ackermann’s reduction. Prove the following.

φ^{uf} is satisfiable if and only if $FC^E(\varphi^{uf}) \land flat^E(\varphi^{uf})$ is satisfiable.

Hint: FC^E is the same for φ^{uf} and $\neg \varphi^{uf}$.

(8 points)

(15 points)
3.) (a) Let p be the following IMP program loop, containing the integer-valued program variables x, i, n:

$$
\text{while } i > n \text{ do}
\begin{align*}
x &:= x + 7; \\
i &:= i - 1
\end{align*}
\text{od}
$$

Which of the following program assertions are inductive loop invariants of p?

- I_1: $i \leq n$
- I_2: $i > n$
- I_3: $x + 7 \ast i = 0$

Give formal details justifying your answer. That is, if an assertion is an inductive loop invariant, provide a formal proof of it based on Hoare logic. If an assertion is not an inductive loop invariant, give a counterexample.

Note: You need to use the definition of an assertion being inductive invariant.

(11 points)

(b) Let p be the following IMP program loop, containing the integer-valued program variable i:

$$
\text{while } i \leq 3 \text{ do}
\begin{align*}
\text{if } i > 4 \text{ then abort} \\
\text{else } i &:= i + 1
\end{align*}
\text{od}
$$

Which of the following Hoare triple are valid total correctness assertions?

- $[false] p [i = 4]$
- $[i = 3] p [i = 4]$
- $[true] p [i = 4]$

(4 points)
4.) (a) For two LTL formulas φ_1 and φ_2, the release operator $(\varphi_1 R \varphi_2)$ requires φ_2 to remain true until and including the point where φ_1 first becomes true, but does not require that φ_1 ever becomes true.

i. Give a formal definition of the semantics of the release operator, i.e., provide a first order formula defining $M, \pi \models \varphi_1 R \varphi_2$ for a Kripke structure M and a path π of M.

ii. Express R in terms of the LTL operators U, X, F, G defined in the lecture.

(4 points)
(b) Consider the following Kripke structure M:

For each of the following formulae φ,
 i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
 ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?
 (If φ is a path formula, list the states s_j such that $M, s_j \models A\varphi$.)

<table>
<thead>
<tr>
<th>φ</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AX(x)$</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>$F(z)$</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>$E(z \ U \ x)$</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>$G(z)$</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>$EG(y)$</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

(5 points)
(c) **LTL tautologies**

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i. $G(x \ U Fy) \Rightarrow (Gx) \ U (Fy)$

ii. $(Gx) \ U (Fy) \Rightarrow G(x \ U Fy)$

(6 points)