1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 June 25, 2021					
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)		

1.) Given an undirected graph G = (V, E), we call a set $S \subseteq V$ self-defending in G if for each $v \in S$ and $u \in V$ with $(v, u) \in E$, there exists a $w \in S$ with $(u, w) \in E$.

Consider the following decision problem:

SELF-DEFENSE(SD)

INSTANCE: A directed graph G = (V, E) and two vertices $c, d \in V$. QUESTION: Does there exist a set self-defending set $S \subseteq V$ in G with $d \in S$ and $c \notin S$.

(a) The following function f provides a polynomial-time many-one reduction from **SD** to **SAT**: for an instance I = ((V, E), c, d) of **SD** let $f(I) = \varphi$ over atoms $x_v \ (v \in V)$:

$$\varphi = \neg x_c \wedge x_d \wedge \bigwedge_{v \in V} \left(\neg x_v \lor \bigwedge_{(v,u) \in E} \bigvee_{(u,w) \in E} x_w \right)$$

It holds that I is a yes-instance of $SD \iff f(I)$ is a yes-instance of SAT.

Show the \implies direction of the statement.

(9 points)

(b) In what follows assume the reduction from **SD** to **SAT** is correct, and recall that **SAT** is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):

- **SD** is NP-complete
- \circ **SD** is NP-hard
- $\circ~{\bf SD}$ is in NP
- \circ **SD** is in NP and but not in P
- \circ for any NP-complete problem, there exists a polynomial-time many-one reduction from ${\bf SD}$ to that problem
- $\circ\,$ for any NP-complete problem, there exists a polynomial-time many-one reduction from that problem to ${\bf SD}$

(6 points)

2.) We consider the binary function δ which was introduced by Rózsa Péter in 1935. Function applications are written in the form $\delta_x(y)$ where x, y are the arguments from \mathbb{N}_0 (the set of natural numbers *including* 0). The function definition is:

$$\int 2y + 1 \qquad \text{if } x = 0; \tag{1}$$

$$\delta_x(y) = \begin{cases} \delta_{x-1}(1) & \text{if } x \neq 0 \text{ and } y = 0; \\ \delta_{x-1}(1) & \text{if } x \neq 0 \text{ and } y = 0; \end{cases}$$
(2)

$$\int \delta_{x-1} \left(\delta_x(y-1) \right) \quad \text{if } x \neq 0 \text{ and } y \neq 0.$$
(3)

(a) Use well-founded induction to show

$$\forall x \,\forall y \, \big((x \in \mathbb{N}_0 \land y \in \mathbb{N}_0) \to \delta_x(y) > x + y \big).$$

(12 points)

(b) Suppose δ_{C} is an implementation of δ in the C programming language with x and y of type unsigned integers of size 64 bit (i.e., of type uint64_t). Is

$$\delta_{x'}(y') = \delta_{\mathsf{C}}(x', y')$$

true for all integers x', y' satisfying $0 \le x', y' \le \texttt{UINT64_MAX}$, where $\texttt{UINT64_MAX}$ is the largest value for a variable of type $\texttt{uint64_t}$?

If so, then prove this fact. Otherwise provide a counterexample with an exact explanation of what is computed and what is happening. (3 points)

3.) (a) Let p be the following IMP program:

$$\begin{array}{l} x := 0; y := 0; \\ \textbf{while } x < n \ \textbf{do} \\ x := x + 1; \\ y := y - 10 * x + 5; \\ \textbf{od} \end{array}$$

Give a loop invariant and variant for the **while** loop in p and prove the validity of the total correctness triple [n = 10] p [y + 500 = 0].

(10 points)

(b) Let p be the following IMP program:

if y - x < 0 do a := x; x := y; y := a;od y := y - x;z := z + x * y

Given the program p above, is it true, that the triple $\{A\} p \{B\}$ is valid if and only if $VC(p, B) \land (A \implies wlp(p, B))$? Briefly justify your answer.

(2 points)

(c) Let p be the following IMP program containing an integer-valued program variable x:

```
i := 0
while x \le 0 do
i := i + 1
od
```

Consider the invalid Hoare triple $\{true\} p \{false\}$. Which of the following counterexamples is correct? Tick all the boxes of program states denoting valid counterexamples to the above triple. [Each correct box counts one point, that is you can lose points for incorrectly ticking or leaving the box empty with a minimum of 0 points. You will not lose points for other exercises.]

$$\Box \sigma(x) = 0 \quad \Box \sigma(x) = 1 \quad \Box \sigma(x) = -1$$

(3 points)

4.) (a) Simulation

Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(b) **CTL Marking Algorithm**

Consider the following Kripke structure M:

Execute the **CTL Marking Algorithm** to determine which states s_i satisfy the formulae Φ

- i. $\mathbf{EXEX}x$, and
- ii. $\mathbf{AF}(\neg z)$.

In particular,

- i. Transform Φ into an equivalent formula Φ' in the *existential fragment* of CTL.
- ii. List the subformulae of Φ' .
- iii. For increasing nesting depth *i*, iteratively give the states s_i marked by subformulae $\phi_0, \psi_0, \phi_1, \psi_1, \ldots$ of Φ' .
- iv. Finally, give the return value of the Marking Algorithm. That is, list the states s_i that satisfy formula Φ , i.e., for which states do we have that $M, s_i \models \Phi$?

Hint: Recall that the algorithm starts by marking propositional atoms ϕ_0 . It then iteratively marks boolean combinations ψ_i of subformulas ϕ_i , and temporal operator applications $\phi_{i+1} = \circ \psi_i$ where $\circ \in \{\mathbf{EF}, \mathbf{EU}, \mathbf{EG}, \mathbf{EX}\}$.

i) Answer template for $\Phi = \mathbf{EXEX}x$

Subformulae of Φ : _

Annotate the states of M with the subformulae by which the Marking Algorithm marks them:

ii) Answer template for $\Phi = \mathbf{AF}(\neg z)$

Equivalent existential formula $\Phi' \equiv \Phi$: ______

Subformulae of Φ' : _____

Annotate the states of ${\cal M}$ with the subformulae by which the Marking Algorithm marks them:

States satisfying Φ : _____

(7 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

- i. $\mathbf{F}(a \wedge b) \Rightarrow (\mathbf{F}a) \wedge (\mathbf{F}b)$
- ii. $\mathbf{G}(a \lor b) \Rightarrow (\mathbf{G}a) \lor (\mathbf{G}b)$

(4 points)