
1 2 3 4 Σ Grade

6.0/4.0 VU Formale Methoden der Informatik
185.291 June 25, 2021

Kennz. (study id) Matrikelnummer (student id) Nachname (surname) Vorname (first name)

1.) Given an undirected graph G = (V,E), we call a set S ⊆ V self-defending in G if
for each v ∈ S and u ∈ V with (v, u) ∈ E, there exists a w ∈ S with (u,w) ∈ E.

Consider the following decision problem:

SELF-DEFENSE(SD)

INSTANCE: A directed graph G = (V,E) and two vertices c, d ∈ V .

QUESTION: Does there exist a set self-defending set S ⊆ V in G with d ∈ S
and c /∈ S.

(a) The following function f provides a polynomial-time many-one reduction from
SD to SAT: for an instance I = ((V,E), c, d) of SD let f(I) = ϕ over atoms
xv (v ∈ V ):

ϕ = ¬xc ∧ xd ∧
∧
v∈V

(
¬xv ∨

∧
(v,u)∈E

∨
(u,w)∈E

xw
)

It holds that I is a yes-instance of SD ⇐⇒ f(I) is a yes-instance of SAT.

Show the =⇒ direction of the statement.

(9 points)

(b) In what follows assume the reduction from SD to SAT is correct, and recall
that SAT is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number
of points is given; ticking an incorrect statement results in a substraction of the
same amount; you cannot go below 0 points):

◦ SD is NP-complete

◦ SD is NP-hard

◦ SD is in NP

◦ SD is in NP and but not in P

◦ for any NP-complete problem, there exists a polynomial-time many-one
reduction from SD to that problem

◦ for any NP-complete problem, there exists a polynomial-time many-one
reduction from that problem to SD

(6 points)



2.) We consider the binary function δ which was introduced by Rózsa Péter in 1935.
Function applications are written in the form δx(y) where x, y are the arguments
from N0 (the set of natural numbers including 0). The function definition is:

δx(y) =


2y + 1 if x = 0; (1)

δx−1(1) if x 6= 0 and y = 0; (2)

δx−1
(
δx(y − 1)

)
if x 6= 0 and y 6= 0. (3)

(a) Use well-founded induction to show

∀x ∀y
(
(x ∈ N0 ∧ y ∈ N0) → δx(y) > x+ y

)
.

(12 points)

(b) Suppose δC is an implementation of δ in the C programming language with x
and y of type unsigned integers of size 64 bit (i.e., of type uint64 t). Is

δx′(y′) = δC(x
′, y′)

true for all integers x′, y′ satisfying 0 ≤ x′, y′ ≤ UINT64 MAX, where UINT64 MAX

is the largest value for a variable of type uint64 t?

If so, then prove this fact. Otherwise provide a counterexample with an exact
explanation of what is computed and what is happening. (3 points)



3.) (a) Let p be the following IMP program:

x := 0; y := 0;
while x < n do
x := x+ 1;
y := y − 10 ∗ x+ 5;

od

Give a loop invariant and variant for the while loop in p and prove the validity
of the total correctness triple [n = 10] p [y + 500 = 0].

(10 points)

(b) Let p be the following IMP program:

if y − x < 0 do
a := x;
x := y;
y := a;

od
y := y − x;
z := z + x ∗ y

Given the program p above, is it true, that the triple {A} p {B} is valid if and
only if V C(p,B) ∧ (A =⇒ wlp(p,B))? Briefly justify your answer.

(2 points)

(c) Let p be the following IMP program containing an integer-valued program
variable x:

i := 0
while x ≤ 0 do
i := i+ 1

od

Consider the invalid Hoare triple {true} p {false}. Which of the following
counterexamples is correct? Tick all the boxes of program states denoting
valid counterexamples to the above triple. [Each correct box counts one point,
that is you can lose points for incorrectly ticking or leaving the box empty with
a minimum of 0 points. You will not lose points for other exercises.]

� σ(x) = 0 � σ(x) = 1 � σ(x) = −1

(3 points)



4.) (a) Simulation

Provide a non-empty simulation relation H that witnesses M1 ≤ M2, where
M1 and M2 are shown below. The initial state of M1 is s0, the initial state of
M2 is t0:

Kripke structure M1: Kripke structure M2:

s0: {a}

s1: {b}

s2: {b}

s4: {c}

s3: {a}

t0: {a}

t2: {b}

t1: {b}

t3: {c}

t4: {c}

t5: {b}

(4 points)



(b) CTL Marking Algorithm

Consider the following Kripke structure M :

s0: {x, y, z} s3: {x, y, z} s1: {y, z}

s2: {y}s4: {y, z}

Execute the CTL Marking Algorithm to determine which states si satisfy
the formulae Φ

i. EXEXx, and

ii. AF(¬z).

In particular,

i. Transform Φ into an equivalent formula Φ′ in the existential fragment of
CTL.

ii. List the subformulae of Φ′.

iii. For increasing nesting depth i, iteratively give the states si marked by
subformulae φ0, ψ0, φ1, ψ1, . . . of Φ′.

iv. Finally, give the return value of the Marking Algorithm. That is, list the
states si that satisfy formula Φ, i.e., for which states do we have that
M, si |= Φ?

Hint: Recall that the algorithm starts by marking propositional atoms φ0. It
then iteratively marks boolean combinations ψi of subformulas φi, and temporal
operator applications φi+1 = ◦ ψi where ◦ ∈ {EF,EU,EG,EX}.
i) Answer template for Φ = EXEXx

Subformulae of Φ:

Annotate the states of M with the subformulae by which the Marking Algo-
rithm marks them:

s0: {x, y, z} s3: {x, y, z} s1: {y, z}

s2: {y}s4: {y, z}

States satisfying Φ:



ii) Answer template for Φ = AF(¬z)

Equivalent existential formula Φ′ ≡ Φ:

Subformulae of Φ′:

Annotate the states of M with the subformulae by which the Marking Algo-
rithm marks them:

s0: {x, y, z} s3: {x, y, z} s1: {y, z}

s2: {y}s4: {y, z}

States satisfying Φ:

(7 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke
structure M and every path π in M , or find a Kripke structure M and path π
in M , for which the formula does not hold and justify your answer.

i. F(a ∧ b)⇒ (Fa) ∧ (Fb)

ii. G(a ∨ b)⇒ (Ga) ∨ (Gb)

(4 points)


