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1.) Given an undirected graph G =
for each v € S and u € V with (u,

Consider the following decision problem:

(V,E), we call a set S CV self-defending in G if
v) € E, there exists a w € S with (w,u) € E.

SELF-DEFENSE(SD)
INSTANCE: A directed graph G =

QUESTION: Does there exist a set self-defending set S C V in G with a € S
and b ¢ S.

(V, E) and two vertices a,b € V.

(a) The following function f provides a polynomial-time many-one reduction from
SD to SAT: for an instance I = ((V, E),a,b) of SD let f(I) = ¢ over atoms
xy (veV):

It holds that I is a yes-instance of SD <= f(I) is a yes-instance of SAT.

@ = Xg A —wb/\/\ Ly V /\ \/ xw

veV (u,v)€E (w,u)eEE

Show the = direction of the statement.

(9 points)

(b) In what follows assume the reduction from SD to SAT is correct, and recall
that SAT is NP-complete.
Tick the correct statements (for ticking a correct statement a certain number
of points is given; ticking an incorrect statement results in a substraction of the
same amount; you cannot go below 0 points):

(e]

o

o

SD is NP-complete

SD is NP-hard

SD is in NP

SD is in NP, but not in P

for any NP-complete problem, there exists a polynomial-time many-one

reduction from SD to that problem

for any NP-complete problem, there exists a polynomial-time many-one

reduction from that problem to SD

(6 points)




2.) We consider the function P which was introduced by Rézsa Péter in 1935.

Algorithm 1: The function P

Input: z, y, two non-negative integers
Output: The computed integer value for x, y
1 if £ == 0 then
2 L return 2y + 1;

3 else if y == 0 then
4 L return P(x — 1,1);

5 else return P(z — 1,P(z,y — 1));

(a)

Let Ny denote the set of natural numbers including 0. Use well-founded induc-
tion to show

VaVy (( € Ng Ay € Ng) = P(z,y) >z +y).
(12 points)

Suppose P¢ is an implementation of P in the C programming language with x
and y of type unsigned integers of size 32 bit (i.e., of type uint32_t). Is

P(2',y") = Pe(2', /)

true for all integers 2/, v/ satisfying 0 < 2/, 3’ < UINT32_MAX, where UINT32_MAX
is the largest value for a variable of type uint32_t?

If so, then prove this fact. Otherwise provide a counterexample with an exact
explanation of what is computed and what is happening. (3 points)



3.)

(a) Let p be the following IMP program:

z:=0;y :=0;

while y < n do
rzi=x—06xy—3;
y=y+1

od

Give a loop invariant and variant for the while loop in p and prove the validity
of the total correctness triple [n = 10] p [z + 300 = 0].

(10 points)

Let p be the following IMP program:

if r <y do

a:=1y;

Yy =€

T = a;
od
Ti=Yy— I
zi=z+x*y

Given the program p above, is it true, that the triple {A} p {B} is valid if and
only if VC(p, B) AN (A = wlip(p, B))? Briefly justify your answer.

(2 points)

Let p be the following IMP program containing an integer-valued program
variable x:

1:=0

while z > 0 do

ti=14+1

od
Consider the invalid Hoare triple {true} p {false}. Which of the following
counterexamples is correct? Tick all the boxes of program states denoting
valid counterexamples to the above triple. [Each correct box counts one point,

that is you can lose points for incorrectly ticking or leaving the box empty with
a minimum of 0 points. You will not lose points for other exercises.]

Oo(x)=0 Oo(x)=1 Oo(z)=-1

(3 points)



4.) (a) Simulation

Provide a non-empty simulation relation H that witnesses M; < My, where
M7 and My are shown below. The initial state of M; is sg, the initial state of
My is tg:

Kripke structure M;: Kripke structure Ms:

A%

(4 points)



(b) CTL Marking Algorithm
Consider the following Kripke structure M:

Execute the CTL Marking Algorithm to determine which states s; satisfy
the formulae ®

i. EXEXa, and

ii. AF(—c).

In particular,
i. Transform ® into an equivalent formula ® in the existential fragment of
CTL.
ii. List the subformulae of ®'.
iii. For increasing nesting depth i, iteratively give the states s; marked by
subformulae ¢q, 1o, ¢1,%1,... of &,
iv. Finally, give the return value of the Marking Algorithm. That is, list the
states s; that satisfy formula @, i.e., for which states do we have that
M , S84 ': ®?
Hint: Recall that the algorithm starts by marking propositional atoms ¢g. It
then iteratively marks boolean combinations 1; of subformulas ¢;, and temporal
operator applications ¢; 1 = o 1; where o € {EF, EU, EG,EX}.
i) Answer template for & = EXEXa

Subformulae of ®:

Annotate the states of M with the subformulae by which the Marking Algo-
rithm marks them:

States satisfying ®:




ii) Answer template for ® = AF(—c)

Equivalent existential formula ® = ®:

Subformulae of ®':

Annotate the states of M with the subformulae by which the Marking Algo-
rithm marks them:

States satisfying ®:

(7 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke
structure M and every path 7 in M, or find a Kripke structure M and path 7
in M, for which the formula does not hold and justify your answer.
i. (Fa)A (Fb) = F(aAb)
ii. (Ga)V (Gb) = G(aVd)
(4 points)



