1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) Apr 16, 2021

Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

1.) Consider the following variant of the dominating set problem **DOM**:

DOMINATING SET VARIATION (DOM)

INSTANCE: A directed graph G = (V, E) and a subset $X \subseteq V$ of forbidden vertices.

QUESTION: Does there exist a set $S \subseteq V$ such that $S \cap X = \emptyset$ and for each $v \in V$ either $v \in S$ or there is an $u \in S$ with $(u, v) \in E$.

(a) The following function f provides a polynomial-time many-one reduction from **3SAT** to **DOM**: for a 3-CNF formula $\varphi = \bigwedge_{j=1}^{m} (l_{j1} \vee l_{j2} \vee l_{j3})$ over atoms $A = \{a_1, \ldots, a_n\}$ let $f(\varphi) = (G, X)$, where G = (V, E) with

$$\begin{array}{lcl} V & = & \{v_1,v_1',\ldots,v_n,v_n',c_1,\ldots,c_m\};\\ E & = & \{(v_i,v_i'),(v_i',v_i)\mid 1\leq i\leq n\}\cup\\ & & \{(v_i,c_j)\mid a_i\in\{l_{j1},l_{j2},l_{j3}\},1\leq i\leq n,1\leq j\leq m\}\cup\\ & & \{(v_i',c_j)\mid \neg a_i\in\{l_{j1},l_{j2},l_{j3}\},1\leq i\leq n,1\leq j\leq m\}; \text{ and }\\ X & = & \{c_1,\ldots,c_m\}. \end{array}$$

It holds that φ is a yes-instance of **3SAT** \iff $f(\varphi)$ is a yes-instance of **DOM**.

Show the \Longrightarrow direction of the statement.

(9 points)

- (b) In what follows assume the reduction from **3SAT** to **DOM** is correct, and further assume we have shown that **DOM** is in NP. Also recall that **3SAT** is NP-complete. Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):
 - $\circ\,$ \mathbf{DOM} is NP-complete
 - $\circ\,\, {\bf DOM}$ is NP-hard
 - \circ there exists a polynomial-time many-one reduction from **DOM** to **SAT**
 - **DOM** is decidable
 - o a polynomial-time many-one reduction from **DOM** to **SAT** shows P=NP
 - **DOM** is in P

(6 points)

2.) (a) Consider the implementation of the function add4 in C, which is supposed to compute 4x for an unsigned 32 bit integer x.

Suppose the function is called with a parameter of correct type. Does this function return the mathematically correct value 4x? If your answer is yes, then *prove the correctness* of the function. Otherwise describe *exactly and in detail* what is going on. Would you answer differently, if y is of type unit64_t? Explain.

(4 points)

(b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by Tseitin's translation (atoms have not been labeled).

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$ using the smallest number of connectives.
- (ii) Start from $\hat{\delta}(\varphi)$ and extend it by a single nonempty clause C in such a way that φ is valid iff $\hat{\delta}(\varphi) \wedge C$ is unsatisfiable.
- (iii) Use resolution to prove the validity of φ (no additional translation is allowed!).

(5 points)

(c) Let R be $\forall x p(x, x)$, and let φ be $\exists x \exists y \forall z [p(x, y) \land p(y, z)]$, where p is a binary predicate symbol. Check whether $\varphi \models R$ holds. If yes, then give a proof; otherwise give a counter-example and prove that the entailment does not hold. (6 points)

3.) (a) Let p be the following IMP program:

$$x := 0; y := 0; z := 1;$$

while $z < n$ do
 $x := x + 3;$
 $y := y + 4 * x;$
 $z := z + 1$

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{n > 1\}$ p $\{y = 2 * x * n\}$.

Hint: Make sure that your invariant expresses equalities among y, z, x, as well as equalities among z, x.

(9 points)

- (b) Let p be an IMP program such that $\{true\}$ p $\{x = -2 \land y = 2\}$ is valid. Is $\{y = 2\}$ p $\{y \ge 0\}$ valid? If so, give a formal proof. Otherwise, give a counterexample. (3 points)
- (c) Let p be the IMP program

while
$$x > 0$$
 do $x := x - 2$

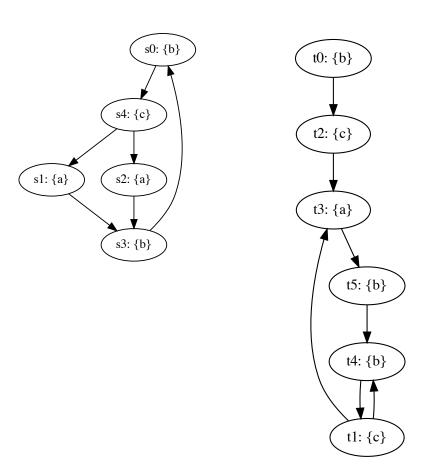
Give a pre-condition A such that [A] p [x = -1] is valid. Your precondition A should not be x = -1 and it should not be equivalent to true nor to false.

(3 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

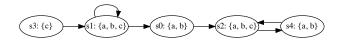
Kripke structure M_1 :

Kripke structure M_2 :



(4 points)

(b) Consider the following Kripke structure M:



For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{X}(c)$				
$\mathbf{AG}(a \wedge b)$				
$\mathbf{G}(a)$ $\mathbf{E}[c \ \mathbf{U} \ c]$				
$\mathbf{E}[c \ \mathbf{U} \ c]$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

- i. $((\mathbf{G}b) \ \mathbf{U} \ (\mathbf{X}a)) \Rightarrow \mathbf{F}(a \wedge \mathbf{G}b)$
- ii. $(\mathbf{F}(a \wedge \mathbf{G}b)) \Rightarrow ((\mathbf{G}b) \ \mathbf{U} \ (\mathbf{X}a))$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut