1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) Apr 16, 2021					
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)		

1.) Consider the following variant of the dominating set problem DOM:

DOMINATING SET VARIATION (DOM)

INSTANCE: A directed graph G = (V, E) and an integer k.

QUESTION: Does there exist a set $S \subseteq V$ of cardinality $|S| \leq k$ such that for each $v \in V$ either $v \in S$ or there is an $u \in S$ with $(u, v) \in E$.

(a) The following function f provides a polynomial-time many-one reduction from **3SAT** to **DOM**: for a 3-CNF formula $\varphi = \bigwedge_{j=1}^{m} (l_{j1} \vee l_{j2} \vee l_{j3})$ over atoms $A = \{a_1, \ldots, a_n\}$ let $f(\varphi) = (G, k)$, where G = (V, E) with

$$V = \{v_1, v'_1, \dots, v_n, v'_n, c_1, \dots, c_m\};$$

$$E = \{(v_i, v'_i), (v'_i, v_i) \mid 1 \le i \le n\} \cup$$

$$\{(v_i, c_j) \mid a_i \in \{l_{j1}, l_{j2}, l_{j3}\}, 1 \le i \le n, 1 \le j \le m\} \cup$$

$$\{(v'_i, c_j) \mid \neg a_i \in \{l_{j1}, l_{j2}, l_{j3}\}, 1 \le i \le n, 1 \le j \le m\}; \text{ and }$$

$$k = n$$

It holds that φ is a yes-instance of **3SAT** $\iff f(\varphi)$ is a yes-instance of **DOM**.

Show the \implies direction of the statement.

(9 points)

- (b) In what follows assume the reduction from **3SAT** to **DOM** is correct, and further assume we have shown that **DOM** is in NP. Also recall that **3SAT** is NP-complete. Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):
 - $\circ~\mathbf{DOM}$ is NP-complete
 - $\circ~\mathbf{DOM}$ is NP-hard
 - $\circ\,$ there exists a polynomial-time many-one reduction from ${\bf DOM}$ to ${\bf SAT}$
 - $\circ~\mathbf{DOM}$ is decidable
 - $\circ\,$ a polynomial-time many-one reduction from ${\bf DOM}$ to ${\bf SAT}$ shows P=NP
 - \circ **DOM** is in P

(6 points)

2.) (a) Consider the implementation of the function pow4 in C, which is supposed to compute x^4 for a signed 32 bit integer x.

```
1 uint32_t pow4(int32_t x){
2 uint32_t y;
3
4 y = x * x * x * x;
5 return y;
6 }
```

Suppose the function is called with a parameter of correct type. Does this function return the mathematically correct value x^4 ? If your answer is yes, then *prove the correctness* of the function. Otherwise describe *exactly and in detail* what is going on. Would you answer differently, if y is of type unit64_t? Explain.

(4 points)

(b) Consider the following clause set $\hat{\delta}(\varphi)$ which has been derived from an (unknown) formula φ by Tseitin's translation (atoms have not been labeled).

C_1 :	$\ell_1 \vee \neg x \vee \neg y$	C_2 :	$\neg \ell_1 \lor x$	C_3 :	$\neg \ell_1 \lor y$
C_4 :	$\neg \ell_2 \vee \neg y \vee z$	C_5 :	$\ell_2 \vee y$	C_6 :	$\ell_2 \vee \neg z$
C_7 :	$\neg \ell_3 \vee \neg \ell_1 \vee z$	C_8 :	$\ell_3 \vee \ell_1$	C_9 :	$\ell_3 \vee \neg z$
C_{10} :	$\neg \ell_4 \vee \neg x \vee \ell_2$	$C_{11}:$	$\ell_4 \lor x$	$C_{12}:$	$\ell_4 \vee \neg \ell_2$
C_{13} :	$\neg \ell_5 \vee \neg \ell_3 \vee \ell_4$	C_{14} :	$\ell_5 \lor \ell_3$	$C_{15}:$	$\ell_5 \vee \neg \ell_4$

- (i) Reconstruct φ from $\hat{\delta}(\varphi)$ using the smallest number of connectives.
- (ii) Start from δ̂(φ) and extend it by a single nonempty clause C in such a way that φ is valid iff δ̂(φ) ∧ C is unsatisfiable.
- (iii) Use resolution to prove the validity of φ (no additional translation is allowed!).

(5 points)

(c) Let R be $\forall x \, p(x, x)$, and let φ be $\exists x \exists y \forall z [p(x, y) \land p(y, z)]$, where p is a binary predicate symbol. Check whether $R \models \varphi$ holds. If yes, then give a proof; otherwise give a counter-example and prove that the entailment does not hold. (6 points)

3.) (a) Let p be the following IMP program:

```
\begin{array}{l} x:=0; y:=0; z:=1;\\ {\rm while}\ z<n\ {\rm do}\\ x:=x+2;\\ y:=y+6*x;\\ z:=z+1\\ {\rm od} \end{array}
```

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{n > 1\}$ p $\{y = 3 * x * n\}$.

Hint: Make sure that your invariant expresses equalities among y, z, x, as well as equalities among z, x.

(9 points)

(b) Let p be an IMP program such that $\{true\} p \{x = -2 \land y = 2\}$ is valid. Is $\{x = -2\} p \{x \le 0\}$ valid? If so, give a formal proof. Otherwise, give a counterexample.

(3 points)

(c) Let p be the IMP program

while
$$x > 0$$
 do $x := x - 2$

Give a pre-condition A such that [A] p [x = 0] is valid. Your precondition A should not be x = 0 and it should not be equivalent to true nor to false.

(3 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{AG}(b)$				
$\mathbf{G}(c)$				
$\mathbf{X}(a \wedge c)$				
$\mathbf{E}[(a \wedge c) \ \mathbf{U} \ c]$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$(\mathbf{G}(\neg a \land \neg b) \land \mathbf{F}(a \land \mathbf{X}b)) \Rightarrow \mathbf{F}(a \mathbf{U} \neg a)$$

ii. $(\mathbf{G}((a \Rightarrow \mathbf{X}b) \land (b \Rightarrow \mathbf{X}a))) \Rightarrow (a \mathbf{U} b)$

(6 points)

Grading scheme: 0-29 nicht genügend, 30-35 genügend, 36-41 befriedigend, 42-47 gut, 48-60 sehr gut