1.) Consider the following variant of the dominating set problem \textbf{DOM}:

DOMINATING SET VARIATION (DOM)

INSTANCE: A directed graph \(G = (V, E) \) and an integer \(k \).

QUESTION: Does there exist a set \(S \subseteq V \) of cardinality \(|S| \leq k\) such that for each \(v \in V \) either \(v \in S \) or there is an \(u \in S \) with \((u,v) \in E\).

(a) The following function \(f \) provides a polynomial-time many-one reduction from \textbf{3SAT} to \textbf{DOM}: for a 3-CNF formula \(\varphi = \bigwedge_{j=1}^{m} (l_{j1} \lor l_{j2} \lor l_{j3}) \) over atoms \(A = \{a_1, \ldots, a_n\} \) let \(f(\varphi) = (G, k) \), where \(G = (V, E) \) with

\[
V = \{v_1, v'_1, \ldots, v_n, v'_n, c_1, \ldots, c_m\};
\]

\[
E = \{(v_i, v'_i), (v'_i, v_i) \mid 1 \leq i \leq n\} \cup
\{(v_i, c_j) \mid a_i \in \{l_{j1}, l_{j2}, l_{j3}\}, 1 \leq i \leq n, 1 \leq j \leq m\} \cup
\{(v'_i, c_j) \mid \neg a_i \in \{l_{j1}, l_{j2}, l_{j3}\}, 1 \leq i \leq n, 1 \leq j \leq m\}; \text{ and}
\]

\(k = n \)

It holds that \(\varphi \) is a yes-instance of \textbf{3SAT} \iff \(f(\varphi) \) is a yes-instance of \textbf{DOM}.

Show the \(\implies \) direction of the statement.

(b) In what follows assume the reduction from \textbf{3SAT} to \textbf{DOM} is correct, and further assume we have shown that \textbf{DOM} is in NP. Also recall that \textbf{3SAT} is NP-complete.

Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a subtraction of the same amount; you cannot go below 0 points):

- DOM is NP-complete
- DOM is NP-hard
- there exists a polynomial-time many-one reduction from DOM to SAT
- DOM is decidable
- a polynomial-time many-one reduction from DOM to SAT shows P=NP
- DOM is in P

(6 points)
(a) Consider the implementation of the function `pow4` in C, which is supposed to compute \(x^4 \) for a signed 32 bit integer \(x \).

```c
uint32_t pow4(int32_t x){
    uint32_t y;
    y = x * x * x * x;
    return y;
}
```

Suppose the function is called with a parameter of correct type. Does this function return the mathematically correct value \(x^4 \)? If your answer is yes, then prove the correctness of the function. Otherwise describe exactly and in detail what is going on.

Would you answer differently, if \(y \) is of type `uint64_t`? Explain.

(4 points)

(b) Consider the following clause set \(\hat{\delta}(\phi) \) which has been derived from an (unknown) formula \(\phi \) by Tseitin’s translation (atoms have not been labeled).

\[C_1: \ell_1 \lor \neg x \lor \neg y \]
\[C_4: \neg \ell_2 \lor \neg y \lor z \]
\[C_7: \neg \ell_3 \lor \neg \ell_1 \lor z \]
\[C_{10}: \neg \ell_4 \lor \neg x \lor \ell_2 \]
\[C_{13}: \neg \ell_5 \lor \neg \ell_3 \lor \ell_4 \]
\[C_2: \neg \ell_1 \lor x \]
\[C_5: \ell_2 \lor y \]
\[C_8: \ell_3 \lor \ell_1 \]
\[C_{11}: \ell_4 \lor x \]
\[C_{12}: \ell_4 \lor \neg \ell_2 \]
\[C_{14}: \ell_5 \lor \ell_3 \]
\[C_{15}: \ell_5 \lor \neg \ell_4 \]

(i) Reconstruct \(\phi \) from \(\hat{\delta}(\phi) \) using the smallest number of connectives.
(ii) Start from \(\hat{\delta}(\phi) \) and extend it by a single nonempty clause \(C \) in such a way that \(\phi \) is valid iff \(\hat{\delta}(\phi) \land C \) is unsatisfiable.
(iii) Use resolution to prove the validity of \(\phi \) (no additional translation is allowed!).

(5 points)

(c) Let \(R \) be \(\forall x \ p(x, x) \), and let \(\varphi \) be \(\exists x \exists y \forall z [p(x, y) \land p(y, z)] \), where \(p \) is a binary predicate symbol. Check whether \(R \models \varphi \) holds. If yes, then give a proof; otherwise give a counter-example and prove that the entailment does not hold.

(6 points)
3.) (a) Let p be the following IMP program:

\[
\begin{align*}
 &x := 0; y := 0; z := 1; \\
 &\textbf{while} \ z < n \ \textbf{do} \\
 &\quad x := x + 2; \\
 &\quad y := y + 6 \cdot x; \\
 &\quad z := z + 1 \\
 &\textbf{od}
\end{align*}
\]

Give a loop invariant for the while loop in p and prove the validity of the partial correctness triple $\{ n > 1 \} \ p \ { y = 3 \cdot x \cdot n \}$.

Hint: Make sure that your invariant expresses equalities among y, z, x, as well as equalities among z, x.

(9 points)

(b) Let p be an IMP program such that $\{ \text{true} \} \ p \ { x = -2 \land y = 2 \}$ is valid. Is $\{ x = -2 \} \ p \ { x \leq 0 \}$ valid? If so, give a formal proof. Otherwise, give a counterexample.

(3 points)

(c) Let p be the IMP program

\[
\textbf{while} \ x > 0 \ \textbf{do} \ x := x - 2
\]

Give a pre-condition A such that $[A] \ p \ [x = 0]$ is valid. Your precondition A should not be $x = 0$ and it should not be equivalent to true nor to false.

(3 points)
4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0, the initial state of M_2 is t_0:

Kripke structure M_1:

![Diagram of Kripke structure M_1]

Kripke structure M_2:

![Diagram of Kripke structure M_2]
(b) Consider the following Kripke structure M:

![Kripke structure diagram]

For each of the following formulae φ,

i. indicate whether the formula is in CTL, LTL, and/or CTL*, and

ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models A\varphi$.)

<table>
<thead>
<tr>
<th>φ</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{AG}(b)$</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td></td>
</tr>
<tr>
<td>$\text{G}(c)$</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td></td>
</tr>
<tr>
<td>$\text{X}(a \land c)$</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td></td>
</tr>
<tr>
<td>$\text{E}[(a \land c) \text{ U } c]$</td>
<td>⊘</td>
<td>⊘</td>
<td>⊘</td>
<td></td>
</tr>
</tbody>
</table>

(5 points)
(c) **LTL tautologies**

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i. $(G(\neg a \land \neg b) \land F(a \land Xb)) \Rightarrow F(a \ U \neg a)$

ii. $(G((a \Rightarrow Xb) \land (b \Rightarrow Xa))) \Rightarrow (a \ U \ b)$

(6 points)