1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 February 26, 2021							
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)				

1.) Recall the **HALTING** problem which takes a program and a string as input, and consider the following variant thereof:

HALTING-X

INSTANCE: Two program Π_1, Π_2 that take a string as input.

QUESTION: Does there exist at least one input string I such that both Π_1 and Π_2 halt on I.

(a) The following function f provides a polynomial-time many-one reduction from **HALT-ING** to **HALTING-X**: for a program Π and a string I let $f(\Pi, I) = (\Pi_1, \Pi_2)$ with

$$\Pi_1(\text{string }S) = \text{call }\Pi(S); \text{ return;}$$

$$\Pi_2(\text{string }S) = \text{if } (S \neq I) \{\text{while}(\text{true})\{\}\}; \text{ return;}$$

Show that (Π, I) is a yes-instance of **HALTING** \iff (Π_1, Π_2) is a yes-instance of **HALTING-X**.

(9 points)

- (b) Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):
 - Since **HALTING** is decidable, our reduction from (a) shows that **HALTING-X** is decidable.
 - $\circ~$ Since $\bf{HALTING}$ is undecidable, our reduction from (a) shows that $\bf{HALTING-X}$ is undecidable.
 - $\circ~$ Since **HALTING** is semi-decidable, our reduction from (a) shows that **HALTING-X** is semi-decidable.
 - Since **HALTING** is not semi-decidable, our reduction from (a) shows that **HALTING**-**X** is not semi-decidable.
 - A reduction from **HALTING-X** to **HALTING** would show that **HALTING-X** is semi-decidable.
 - A reduction from **HALTING-X** to **HALTING** would show that **HALTING-X** is undecidable.

(6 points)

- 2.) (a) Consider the clauses C_1, \ldots, C_5 in dimacs format (in this order, shown in the box) which are given as input to a SAT solver. Apply CDCL to solve the CNF using the convention that if a variable is assigned as a decision, then it is assigned 'false'. Further, select variable 2 as the first decision variable that is assigned.
 - Each time when a conflict occurs and after backtracking, draw the implication graph and indicate all UIPs and mark the first UIP. For the first UIP, indicate its asserting conflict clause.

1 0 -1 10 0 -1 2 3 0 -3 -4 -10 0 -3 4 -10 0

• Is the given CNF satisfiable, unsatisfiable, or valid? Justify your answer.

(4 points)

(b) Consider the theory \mathcal{T}_A of arrays and the following formula

$$\varphi \colon \quad (i_1 \doteq j \land a[j] \doteq v_1) \to (i_1 \doteq i_2 \lor a \langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \doteq a[j]) .$$

If φ is \mathcal{T}_A -valid, then provide a proof in the semantic argument method (similarly to the proofs in the lecture and on the extra sheets). If φ is not \mathcal{T}_A -valid, then provide a counter-example.

Besides the equality axioms reflexivity, symmetry and transitivity, you have the following ones for arrays.

- $\forall a, i, j \ (i \doteq j \rightarrow a[i] \doteq a[j])$ (array congruence)
- $\forall a, v, i, j \ (i \doteq j \rightarrow a \langle i \triangleleft v \rangle [j] \doteq v)$ (read-over-write 1)
- $\forall a, v, i, j \ (i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] = a[j])$ (read-over-write 2)

Please be precise. In a proof indicate exactly why proof lines follow from some other(s) and name the used rule. If you use derived rules you have to prove them. (11 points)

3.) (a) Let p be the following program:

$$x := 0; y := 3; z := 3;$$

while $x < n$ do
 $x := x + 1;$
 $y := y + 2 * z;$
 $z := z + 3$

Give a loop invariant and variant for the **while** loop in p and prove the validity of the total correctness triple [n > 1] p [y = n * z + 3].

Hint: Make sure that your invariant expresses equalities among y, z, x, as well as equalities among z, x.

(10 points)

(b) Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that the total correctness triple [A] p [B] is valid. Trivial means equivalent to true or false, so your precondition A and postcondition B should not be equivalent to true or false. The program p is given below.

Program p:

if
$$x = 0$$
 then skip else abort (2 points)

(c) Consider the following partial correctness triple:

$${x = y} \ x := y + 1; y := x - 1 \ {x = y + 1}$$

Is the above Hoare triple valid? If so, give a formal proof. Otherwise, give a counterexample.

(3 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. indicate whether the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

(If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.)

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{F}(a \wedge b)$				
$\mathbf{F}(a \wedge b)$ $\mathbf{EG}(a)$ $\mathbf{AX}(a)$ $b \ \mathbf{U} \ c$				
$\mathbf{AX}(a)$				
$b \mathbf{U} c$				
$\mathbf{EF}(c)$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

- i. $(a \wedge ((\mathbf{X}a) \ \mathbf{U} \ (\mathbf{G}b))) \Rightarrow \mathbf{F}(a \wedge \mathbf{G}b)$
- ii. $\mathbf{F}(a \wedge \mathbf{G}b) \Rightarrow (a \wedge ((\mathbf{X}a) \ \mathbf{U} \ (\mathbf{G}b)))$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut