1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 January, 29 2021					
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)		

1.) Recall the NP-complete problem SAT and its specialization 3SAT which is also NP-complete:

3SAT

INSTANCE: A propositional formula φ in 3-CNF, i.e. of the form $\bigwedge_{i=1}^{n} (l_{i1} \vee l_{i2} \vee l_{i3})$. QUESTION: Does there exists a truth assignment T that makes φ true?

Now consider the following further restriction:

3SATX

INSTANCE: A propositional formula φ in 3-CNF, where each variable occurs positively at most two times (i.e., at most two times a variable is not in the scope of negation).

QUESTION: Does there exists a truth assignment T that makes φ true?

(a) The following function f provides a polynomial-time many-one reduction from **3SAT** to **3SATX**: for a formula $\varphi = \bigwedge_{i=1}^{n} (l_{i1} \vee l_{i2} \vee l_{i3})$ over variables V let

$$\begin{split} f(\varphi) &= \Big(& \bigwedge_{v \in V} \left((\neg v \lor \neg v \lor \neg \bar{v}) \land (v \lor v \lor \bar{v}) \right) \land \\ & \bigwedge_{i=1}^n (l_{i1}^* \lor l_{i2}^* \lor l_{i3}^*) \Big) \end{split}$$

where $l_{ij}^* = \neg v$ if $l_{ij} = \neg v$ and $l_{ij}^* = \neg \overline{v}$ if $l_{ij} = v$ (i.e., we replace each literal v in φ by $\neg \overline{v}$ for all $v \in V$).

It can be shown that φ is a yes-instance of **3SAT** $\iff f(\varphi)$ is a yes-instance of **3SATX**. Provide a proof for the \implies direction.

(9 points)

- (b) Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):
 - Since **3SAT** is NP-hard, our reduction from (a) shows that **3SATX** is in NP.
 - Since **3SAT** is NP-hard, our reduction from (a) shows that **3SATX** is NP-hard.
 - Since **3SAT** is in NP, our reduction from (a) shows that **3SATX** is NP-hard.
 - Since **3SATX** is a special case of **SAT**, **3SATX** must be contained in NP.
 - Since **3SATX** is a special case of **3SAT**, **3SATX** must be contained in NP.
 - Since **3SATX** is a special case of **3SAT**, **3SATX** must be NP-hard.

(6 points)

- **2.)** (a) We consider the theory \mathcal{T}_A of arrays from the lecture.
 - i. What is the signature of this theory?
 - ii. What kinds of axioms are available in this theory? Please name them.
 - iii. Consider a \mathcal{T}_A -formula ψ and suppose that ψ is not valid. What is a counter-example to \mathcal{T}_A -validity of ψ and what properties has this counter-example to satisfy?

(4 points)

(b) Consider the theory \mathcal{T}_A of arrays and the following formula

$$\varphi \colon \quad a[i] \neq v \to \left(\exists j \ a[j] \neq b \langle i \triangleleft v \rangle[j]\right)$$

If φ is \mathcal{T}_A -valid, then provide a proof in the semantic argument method (similarly to the proofs in the lecture and on the extra sheets). If φ is not \mathcal{T}_A -valid, then provide a counter-example.

Besides the equality axioms reflexivity, symmetry and transitivity, you have the following ones for arrays.

•	$orall a, i, j \ ig(i \doteq j \ ightarrow \ a[i] \doteq a[j] ig)$	(array congruence)
•	$\forall a, v, i, j \ \left(i \doteq j \ \rightarrow \ a \langle i \triangleleft v \rangle[j] \doteq v\right)$	(read-over-write 1)
•	$\forall a, v, i, j \ \left(i \neq j \ \rightarrow \ a \langle i \triangleleft v \rangle[j] \doteq a[j]\right)$	(read-over-write 2)

Please be precise. In a proof indicate exactly why proof lines follow from some other(s) and name the used rule. If you use derived rules you have to prove them. (11 points)

3.) (a) Let p be the following program:

```
 \begin{array}{l} x := 0; z := 0; y := 0; \\ \textbf{while } x < n \ \textbf{do} \\ y := y + 3; \\ z := z + 5; \\ x := x + 1 \\ \textbf{od} \end{array}
```

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{n > 1\} p \{z - y = 2 * n\}$.

(9 points)

(b) Let p be the following program:

```
\begin{array}{l} n:=0\\ {\bf while}\ x>0\wedge y>0\ {\bf do}\\ {\bf if}\ n=0\ {\bf then}\\ y:=y+1;\\ x:=x-2;\\ {\bf else}\\ x:=x+1\\ y:=y-2\\ n:=1-n\\ {\bf od} \end{array}
```

Provide a loop variant t for the **while** loop in p strong enough to prove the validity of the total correctness triple $[x \ge 0 \land y \ge 0] p [x \le 0 \lor y \le 0]$. You may assume the invariant to be *true*.

You are **not** required to write a proof here, just state a suitable variant.

(2 points)

(c) Is the following theorem correct?

"For all assertions A, B and programs p, it holds that [A] p [B] is valid if and only if $(VC(p, B) \land (A \Rightarrow wp(p, B)))$."

If it is, give an argument why. If not, what is wrong?

Be concise and write no more than 1-2 sentences.

(d) Let n, m be integer-valued constants and A an assertion. Is there a state σ and a program \mathbf{p} such that $\sigma \models \{true\} \mathbf{p} \{false\}$? If so, provide such a state σ and program \mathbf{p} . If, not, explain why there exists no such σ .

(2 points)

(2 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

Hint: If φ is a path formula, list the states s_i such that $M, s_i \models \mathbf{A}\varphi$.

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{E}[(z) \ \mathbf{U} \ (x)]$				
$\mathbf{X}(x)$				
$\mathbf{AF}(y)$				
$\mathbf{G}(z)$				
$\mathbf{F}(x \wedge z)$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$((\mathbf{GF}x) \Rightarrow (\mathbf{GF}y)) \Rightarrow \mathbf{G}(x \Rightarrow \mathbf{F}y)$$

ii. $\mathbf{G}(x \Rightarrow \mathbf{F}y) \Rightarrow ((\mathbf{GF}x) \Rightarrow (\mathbf{GF}y))$

(6 points)