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1.) Recall the NP-complete problem SAT and its specialization 3SAT which is also NP-complete:

3SAT

INSTANCE: A propositional formula ϕ in 3-CNF, i.e. of the form
∧n

i=1(li1 ∨ li2 ∨ li3).

QUESTION: Does there exists a truth assignment T that makes ϕ true?

Now consider the following further restriction:

3SATX

INSTANCE: A propositional formula ϕ in 3-CNF, where each variable occurs negatively
at most two times (i.e., at most two times in the scope of negation).

QUESTION: Does there exists a truth assignment T that makes ϕ true?

(a) The following function f provides a polynomial-time many-one reduction from 3SAT
to 3SATX: for a formula ϕ =

∧n
i=1(li1 ∨ li2 ∨ li3) over variables V let

f(ϕ) =
( ∧

v∈V

(
(¬v ∨ ¬v ∨ ¬v̄) ∧ (v ∨ v ∨ v̄)

)
∧

n∧
i=1

(l∗i1 ∨ l∗i2 ∨ l∗i3)
)

where l∗ij = v if lij = v and l∗ij = v̄ if lij = ¬v (i.e., we replace each literal ¬v in ϕ by v̄
for all v ∈ V ).

It can be shown that ϕ is a yes-instance of 3SAT⇐⇒ f(ϕ) is a yes-instance of 3SATX.
Provide a proof for the =⇒ direction.

(9 points)

(b) Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

◦ Since 3SAT is NP-hard, our reduction from (a) shows that 3SATX is in NP.

◦ Since 3SAT is NP-hard, our reduction from (a) shows that 3SATX is NP-hard.

◦ Since 3SAT is in NP, our reduction from (a) shows that 3SATX is NP-hard.

◦ Since 3SATX is a special case of SAT, 3SATX must be contained in NP.

◦ Since 3SATX is a special case of 3SAT, 3SATX must be contained in NP.

◦ Since 3SATX is a special case of 3SAT, 3SATX must be NP-hard.

(6 points)



2.) (a) We consider the theory TA of arrays from the lecture.

i. What is the signature of this theory?

ii. What kinds of axioms are available in this theory? Please name them.

iii. Consider a TA-formula ψ and suppose that ψ is not valid. What is a counter-example
to TA-validity of ψ and what properties has this counter-example to satisfy?

(4 points)

(b) Consider the theory TA of arrays and the following formula

ϕ :
(
∀j a[j]

.
= b〈i / v〉[j]

)
→ a[i]

.
= v .

If ϕ is TA-valid, then provide a proof in the semantic argument method (similarly to
the proofs in the lecture and on the extra sheets). If ϕ is not TA-valid, then provide a
counter-example.

Besides the equality axioms reflexivity, symmetry and transitivity, you have the follow-
ing ones for arrays.

• ∀a, i, j
(
i
.
= j → a[i]

.
= a[j]

)
(array congruence)

• ∀a, v, i, j
(
i
.
= j → a〈i / v〉[j] .= v

)
(read-over-write 1)

• ∀a, v, i, j
(
i 6 .= j → a〈i / v〉[j] .= a[j]

)
(read-over-write 2)

Please be precise. In a proof indicate exactly why proof lines follow from some other(s)
and name the used rule. If you use derived rules you have to prove them. (11 points)



3.) (a) Let p be the following program:

x := 0; z := 0; y := 0;
while y < n do
x := x+ 2;
z := z + 5;
y := y + 1

od

Give a loop invariant for the while loop in p and prove the validity of the partial
correctness triple {n > 1} p {z − x = 3 ∗ n}.

(9 points)

(b) Let p be the following program:

while a > 0 ∧ b > 0 do
if a > b then
a := a− b;

else
b := b− a

od

Provide a loop variant t for the while loop in p strong enough to prove the validity
of the total correctness triple [a ≥ 0 ∧ b ≥ 0] p [a = 0 ∨ b = 0]. You may assume the
invariant to be true.

You are not required to write a proof here, just state a suitable variant.

(2 points)

(c) Is the following theorem correct?

”For all assertions A, B and programs p, it holds that {A} p {B} is valid if and only if
(V C(p,B) ∧ (A ⇒ wlp (p,B)) ). ”

If it is, give an argument why. If not, what is wrong?

Be concise and write no more than 1-2 sentences. (2 points)

(d) Let n,m be integer-valued constants and A an assertion. Is there a state σ such that
σ |= [n 6= m] abort [A]? If so, provide such a state σ. If, not, explain why there exists
no such σ.

(2 points)



4.) (a) Provide a non-empty simulation relation H that witnesses M1 ≤ M2, where M1 and
M2 are shown below. The initial state of M1 is s0, the initial state of M2 is t0:

Kripke structure M1: Kripke structure M2:

s0: {b}

s2: {a} s3: {a}

s1: {c}

s4: {b}

t0: {b}

t1: {a}

t3: {c} t5: {c}

t2: {b}

t4: {b}

(4 points)



(b) Consider the following Kripke structure M :

s0: {a, b, c}

s2: {a, c}

s1: {a, c}

s3: {a, b, c}

s4: {b, c}

For each of the following formulae ϕ,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula ϕ holds; i.e. for which states si do we
have M, si |= ϕ?
Hint: If ϕ is a path formula, list the states si such that M, si |= Aϕ.

ϕ CTL LTL CTL* States si

G(a) � � �

E[(a) U (b)] � � �

F(a ∧ b) � � �

AF(c) � � �

X(b) � � �

(5 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and every path π in M , or find a Kripke structure M and path π in M , for
which the formula does not hold and justify your answer.

i. G(a⇒ Fb)⇒ ((GFa)⇒ (GFb))

ii. ((GFa)⇒ (GFb))⇒ G(a⇒ Fb)

(6 points)


