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1.) An undirected graph (V,E) is called a distance2-graph if the there exists a vertex in V such
that all vertices are reached via a path of length at most 2.

For example, the graph ({a1, b1, c1, a2, b2, c2, x}, {[a1, a2], [b1, b2], [c1, c2], [a2, x], [b2, x], [c2, x]})
is a distance2-graph (since each vertex is reached from x via a path of length at most 2),
while ({a, b, c, d}, {[a, b], [b, c], [c, d]}) is not.

Consider the following new problem 3COLD2 and recall the NP-complete problem 3COL
defined below:

3-COLORABILITY-DISTANCE2-GRAPH (3COLD2)

INSTANCE: A distance2-graph G = (V,E).

QUESTION: Does there exists a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

3-COLORABILITY (3COL)

INSTANCE: An undirected graph G = (V,E).

QUESTION: Does there exists a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLD2: for a directed graph G = ({v1, . . . , vn}, E), let

f(G) =
(
{v′1, v′′1 , . . . , v′n, v′′n} ∪ {x},
{[v′i, v′′i ], [v′′i , x] | i = 1 . . . n} ∪
{[v′i, v′j ] | [vi, vj ] ∈ E}

)
Show that G is a yes-instance of 3COL ⇐⇒ f(G) is a yes-instance of 3COLD2.

(9 points)

(b) Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

◦ Since 3COLD2 is a sub-problem of 3COL, 3COLMG must be NP-hard.

◦ Since 3COLD2 is a sub-problem of 3COL, 3COLD2 must be contained in NP.

◦ Given that 3COL is NP-hard, our reduction shows that 3COLD2 is also NP-hard.

◦ Given that 3COL is NP-hard, our reduction shows that 3COLD2 is in NP.

◦ Given that 3COL is in NP, our reduction shows that 3COLD2 is also in NP.

◦ Given that 3COL is in NP, our reduction shows that 3COLD2 is NP-hard.

(6 points)





2.) (a) First define the concept of a theory and of a T -interpretation. Then use them to define:

i. the T -satisfiability of a formula;

ii. the T -validity of a formula.

Additionally define the completeness of a theory T . (3 points)

(b) Consider the function P, defined as follows.

Algorithm 1: The function P

Input: x, y, two non-negative integers
Output: The computed non-negative integer value for x, y

1 if x == 0 then
2 return y + 1;

3 else if y == 0 then
4 return P(x− 1, 1);

5 else return P(x− 1,P(x, y − 1));

Show, using well-founded induction, that

∀x ∀y
(
(x ∈ N0 ∧ y ∈ N0) → P(x, y) > y

)
(10 points)

(c) Suppose PC is a correct implementation of P in the C programming language with x and
y of type unsigned integers of size 64 bit (i.e., of type uint64 t). Is

P(x′, y′) = PC(x
′, y′)

true for all integers x′, y′ satisfying 0 ≤ x′, y′ ≤ UINT64 MAX, where UINT64 MAX is the
largest value for a variable of type uint64 t?

If so, then prove this fact. Otherwise provide a counterexample with an exact explana-
tion of what is computed and what is happening. (2 points)





3.) (a) Let p be the following program:

y := n;
while y > 0 do
x := x− 8 ∗ y + 4;
y := y − 1

od

Give a loop invariant for the while loop in p and prove the validity of the partial
correctness triple {n > 0 ∧ x = 4 ∗ n2 + 2} p {x = 2}.

(9 points)

(b) Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that the
total correctness triple {A} p {B} is valid. Trivial means equivalent to true or false,
so your precondition A and postcondition B should not be equivalent to true or false.
The program p is given below.

Program p:
x := y + x;
while x 6= y do
y := y + 1;
x := x− 1;

od

(2 points)

(c) Explain why wp(abort , B) = false, whereas wlp(abort , B) = true for any B.

Give a concise answer!

(2 points)

(d) Explain the role of t in the following verification condition which ensures the total
correctness while loop:

VC(while b do p od, B) = (I ∧ ¬b) =⇒ B∧
(I ∧ b) =⇒ t ≥ 0∧
(I ∧ b ∧ t = t0) =⇒ wp(p, I ∧ t < t0)∧
VC(p, I ∧ t < t0)

Why do we need t0?

Give a concise answer! (2 points)





4.) (a) Provide a non-empty simulation relation H that witnesses M1 ≤ M2, where M1 and
M2 are shown below. The initial state of M1 is s0, the initial state of M2 is t0:

Kripke structure M1: Kripke structure M2:

s0: {x}

s2: {z} s1: {z}

s4: {x}

s3: {y}

t0: {x}

t2: {y}

t4: {z}

t1: {x}

t5: {y}

t3: {x}

(4 points)



(b) Consider the following Kripke structure M :

s2: {x, y, z}s1: {y, z} s3: {x, y, z}s0: {z} s4: {z}

For each of the following formulae ϕ,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula ϕ holds; i.e. for which states si do we
have M, si |= ϕ?

ϕ CTL LTL CTL* States si

AX(y) � � �

EG(z) � � �

F(y) � � �

G(x ∧ z) � � �

E[(z) U (x)] � � �

(5 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and every path π in M , or find a Kripke structure M and path π in M , for
which the formula does not hold and justify your answer.

i. ((p U ¬q) U ¬r)⇔ (p U (¬q U ¬r))
ii. F(p ∧XGp)⇒ GFp

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


