1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) Dec 9, 2020							
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)				

1.) An undirected graph (V, E) is called a *distance2-graph* if the there exists a vertex in V such that all vertices are reached via a path of length at most 2.

For example, the graph $(\{a_1, b_1, c_1, a_2, b_2, c_2, x\}, \{[a_1, a_2], [b_1, b_2], [c_1, c_2], [a_2, x], [b_2, x], [c_2, x]\})$ is a distance2-graph (since each vertex is reached from x via a path of length at most 2), while $(\{a, b, c, d\}, \{[a, b], [b, c], [c, d]\})$ is not.

Consider the following new problem 3COLD2 and recall the NP-complete problem 3COL defined below:

3-COLORABILITY-DISTANCE2-GRAPH (3COLD2)

INSTANCE: A distance2-graph G = (V, E).

QUESTION: Does there exists a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

3-COLORABILITY (3COL)

INSTANCE: An undirected graph G = (V, E).

QUESTION: Does there exists a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

(a) The following function f provides a polynomial-time many-one reduction from **3COL** to **3COLD2**: for a directed graph $G = (\{v_1, \ldots, v_n\}, E)$, let

$$f(G) = \begin{pmatrix} \{v'_1, v''_1, \dots, v'_n, v''_n\} \cup \{x\}, \\ \{[v'_i, v''_i], [v''_i, x] \mid i = 1 \dots n\} \cup \\ \{[v'_i, v'_j] \mid [v_i, v_j] \in E\} \end{pmatrix}$$

Show that G is a yes-instance of **3COL** \iff f(G) is a yes-instance of **3COLD2**.

(9 points)

- (b) Tick the correct statements (for ticking a correct statement a certain number of points is given; ticking an incorrect statement results in a substraction of the same amount; you cannot go below 0 points):
 - Since **3COLD2** is a sub-problem of **3COL**, **3COLMG** must be NP-hard.
 - Since **3COLD2** is a sub-problem of **3COL**, **3COLD2** must be contained in NP.
 - Given that **3COL** is NP-hard, our reduction shows that **3COLD2** is also NP-hard.
 - $\circ~$ Given that $\mathbf{3COL}$ is NP-hard, our reduction shows that $\mathbf{3COLD2}$ is in NP.
 - Given that **3COL** is in NP, our reduction shows that **3COLD2** is also in NP.
 - Given that **3COL** is in NP, our reduction shows that **3COLD2** is NP-hard.

(6 points)

- 2.) (a) First define the concept of a theory and of a \mathcal{T} -interpretation. Then use them to define:
 - i. the \mathcal{T} -satisfiability of a formula;

ii. the $\mathcal T\text{-validity}$ of a formula.

_

Additionally define the completeness of a theory \mathcal{T} .

(3 points)

(b) Consider the function P, defined as follows.

Algorithm 1: The function P			
Input: x, y , two non-negative integers			
Output: The computed non-negative integer value for x, y			
1 if $x == 0$ then			
2 return $y + 1;$			
\mathbf{s} else if $y == 0$ then			
4 \lfloor return $P(x-1,1);$			
5 else return $P(x - 1, P(x, y - 1));$			

Show, using well-founded induction, that

$$\forall x \,\forall y \, \left((x \in \mathbb{N}_0 \,\land\, y \in \mathbb{N}_0) \,\to\, \mathcal{P}(x, y) > y \right)$$

(10 points)

(c) Suppose P_c is a correct implementation of P in the C programming language with x and y of type unsigned integers of size 64 bit (i.e., of type uint64_t). Is

$$\mathbf{P}(x',y') = \mathbf{P}_{\mathbf{C}}(x',y')$$

true for all integers x', y' satisfying $0 \le x', y' \le \text{UINT64_MAX}$, where UINT64_MAX is the largest value for a variable of type uint64_t ?

If so, then prove this fact. Otherwise provide a counterexample with an exact explanation of what is computed and what is happening. (2 points)

3.) (a) Let p be the following program:

$$y := n;$$

while $y > 0$ do
 $x := x - 8 * y + 4;$
 $y := y - 1$
od

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{n > 0 \land x = 4 * n^2 + 2\} p \{x = 2\}.$

(9 points)

(b) Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that the total correctness triple {A} p {B} is valid. Trivial means equivalent to true or false, so your precondition A and postcondition B should not be equivalent to true or false. The program p is given below.

Program p:

$$\begin{aligned} x &:= y + x; \\ \textbf{while } x \neq y \ \textbf{do} \\ y &:= y + 1; \\ x &:= x - 1; \\ \textbf{od} \end{aligned}$$

(2 points)

(c) Explain why wp(abort, B) = false, whereas wlp(abort, B) = true for any B.

Give a concise answer!

(2 points)

(d) Explain the role of t in the following verification condition which ensures the total correctness **while** loop:

$$VC(\textbf{while } b \textbf{ do } p \textbf{ od}, B) = (I \land \neg b) \implies B$$

$$\bigwedge (I \land b) \implies t \ge 0$$

$$\bigwedge (I \land b \land t = t_0) \implies wp(p, I \land t < t_0)$$

$$\bigwedge VC(p, I \land t < t_0)$$

Why do we need t_0 ?

Give a concise answer!

(2 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(b) Consider the following Kripke structure M:

For each of the following formulae $\varphi,$

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{AX}(y)$				
$\mathbf{EG}(z)$				
$\mathbf{F}(y)$				
$\mathbf{G}(x \wedge z)$				
$\mathbf{E}[(z) \ \mathbf{U} \ (x)]$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$((p \mathbf{U} \neg q) \mathbf{U} \neg r) \Leftrightarrow (p \mathbf{U} (\neg q \mathbf{U} \neg r))$$

ii. $\mathbf{F}(p \land \mathbf{XG}p) \Rightarrow \mathbf{GF}p$

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut