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1.) An undirected graph (V,E) is called a mirror graph if the following conditions hold:

• V can be partitioned into two sets of equal size V ′ = {v′1, . . . , v′n} and V ′′ = {v′′1 , . . . , v′′n};
• for all i ∈ {1, . . . , n} the edge [v′i, v

′′
i ] is in E;

• for all i, j ∈ {1, . . . , n}, [v′i, v
′
j ] ∈ E iff [v′′i , v

′′
j ] ∈ E;

• no other edges are contained in E.

In words, a mirror graph has each vertex from V ′ connected to a clone from V ′′ and the
graph over V ′ is mirrored in V ′′.

Consider the following new problem 3COLMG and recall the NP-complete problem 3COL
defined below:

3-COLORABILITY-MIRROR GRAPH (3COLMG)

INSTANCE: A mirror-graph G = (V,E).

QUESTION: Does there exists a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

3-COLORABILITY (3COL)

INSTANCE: An undirected graph G = (V,E).

QUESTION: Does there exists a function µ from vertices in V to values in {0, 1, 2} such
that µ(v1) 6= µ(v2) for any edge [v1, v2] ∈ E.

(a) The following function f provides a polynomial-time many-one reduction from 3COL
to 3COLMG: for a directed graph G = ({v1, . . . , vn}, E), let

f(G) =
(
{v′1, v′′1 , . . . , v′n, v′′n},
{[v′i, v′′i ] | i = 1 . . . n} ∪
{[v′i, v′j ], [v′′i , v′′j ] | [vi, vj ] ∈ E}

)
Show that G is a yes-instance of 3COL ⇐⇒ f(G) is a yes-instance of 3COLMG.

(9 points)

(b) Tick the correct statements (for ticking a correct statement a certain number of points
is given; ticking an incorrect statement results in a substraction of the same amount;
you cannot go below 0 points):

◦ Given that 3COL is in NP, our reduction shows that 3COLMG is also in NP.

◦ Given that 3COL is in NP, our reduction shows that 3COLMG is NP-hard.

◦ Given that 3COL is NP-hard, our reduction shows that 3COLMG is also NP-
hard.

◦ Given that 3COL is NP-hard, our reduction shows that 3COLMG is in NP.

◦ Since 3COLMG is a special case of 3COL, 3COLMG must be contained in NP.

◦ Since 3COLMG is a special case of 3COL, 3COLMG must be NP-hard.

(6 points)





2.) (a) First define the concept of a theory and of a T -interpretation. Then use them to define:

i. the T -satisfiability of a formula;

ii. the T -validity of a formula.

Additionally define the completeness of a theory T . (3 points)

(b) Consider the function M, defined as follows.

Algorithm 1: The function M

Input: x, y, two positive integers
Output: The computed positive integer value for x, y

1 if x == 1 then
2 return 2y;

3 else if y == 1 then
4 return x;

5 else return M(x− 1,M(x, y − 1));

Let N denote the natural numbers without 0. Use well-founded induction to show

∀x ∀y
(
(x ∈ N ∧ y ∈ N) → M(x, y) ≥ 2y

)
.

(10 points)

(c) Suppose MC is a correct implementation of M in the C programming language with x
and y of type unsigned integers of size 32 bit (i.e., of type uint32 t). Is

M(x′, y′) = MC(x
′, y′)

true for all integers x′, y′ satisfying 1 ≤ x′, y′ ≤ UINT32 MAX, where UINT32 MAX is the
largest value for a variable of type uint32 t?

If so, then prove this fact. Otherwise provide a counterexample with an exact explana-
tion of what is computed and what is happening. (2 points)





3.) (a) Let p be the following program:

y := n;
while y > 0 do
x := x− 4 ∗ y + 2;
y := y − 1

od

Give a loop invariant for the while loop in p and prove the validity of the partial
correctness triple {n > 0 ∧ x = 2 ∗ n2 + 1} p {x = 1}.

(9 points)

(b) Provide a non-trivial pre-condition A and a non-trivial post-condition B, such that the
total correctness triple {A} p {B} is valid. Trivial means equivalent to true or false,
so your precondition A and postcondition B should not be equivalent to true or false.
The program p is given below.

Program p:
y := x+ y;
while x 6= y do
y := y + 1;
x := x+ 3;

od

(2 points)

(c) Provide a state σ such that σ |= [N ≥ 0] abort [B]. In case such a σ does not exist,
explain why there exists no such σ.

(2 points)

(d) What went wrong in the following argumentation:

”In order to prove {A} p {B} for any program p, we can simply start at the bottom of
p and compute the weakest liberal precondition of the last expression with respect to B.
We use the result as the new postcondition and work my way up to the first line of code.
If the weakest liberal precondition of the first line is implied by A, we successfully proved
partial correctness of {A} p {B}. ”

Give a concise answer, 2-3 sentences suffice!

(2 points)





4.) (a) Provide a non-empty simulation relation H that witnesses M1 ≤ M2, where M1 and
M2 are shown below. The initial state of M1 is s0, the initial state of M2 is t0:

Kripke structure M1: Kripke structure M2:

s0: {b}

s3: {a} s4: {a}

s1: {b}

s2: {c}

t0: {b}

t3: {c}

t5: {a}

t1: {b}

t4: {c}

t2: {b}

(4 points)



(b) Consider the following Kripke structure M :

s0: {a} s1: {a, c}

s2: {a} s3: {a, b, c} s4: {a, b, c}

For each of the following formulae ϕ,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states si on which the formula ϕ holds; i.e. for which states si do we
have M, si |= ϕ?

ϕ CTL LTL CTL* States si

F(c) � � �

AX(c) � � �

E[(a) U (b)] � � �

G(a ∧ b) � � �

EG(a) � � �

(5 points)



(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke struc-
ture M and every path π in M , or find a Kripke structure M and path π in M , for
which the formula does not hold and justify your answer.

i. ((¬a U b) U ¬c)⇔ (¬a U (b U ¬c))
ii. (FGa)⇒ G(a ∨XFa)

(6 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut


