1	2	3	4	Σ	Grade

6.0/4.0 VU Formale Methoden der Informatik 185.291 October, 16 2020								
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)				

1.) Consider the following decision problem:

HALTING AFTER LINE-FLIP (HALF)

INSTANCE: A tuple $(\Pi, I),$ where Π is a program that takes a string as input; I a string.

QUESTION: Do there exist two consecutive lines of code in Π , such that when the two lines are flipped (i.e., the order of the two lines is reversed) in Π , the resulting program (a) is syntactically correct and (b) halts on I?

(1) By providing a suitable many-one reduction from the ${\bf HALTING}$ problem, prove that ${\bf HALF}$ is undecidable.

(2) Is **HALF** semi-decidable? Explain your answer.

(15 points)

2.) (a) Let φ be the first-order formula

$$\forall x \forall y \left\lfloor \left((r(x,y) \land p(x)) \to p(y) \right) \land \left(r(x,y) \to (p(y) \to p(x)) \right) \right\rfloor \,.$$

- i. Is φ valid? If yes, present a proof. If no, give a counter-example and prove that it falsifies $\varphi.$
- ii. Replace r in φ by \doteq (equality) resulting in ψ . Is ψ E-valid? Argue formally!

(5 points)

(b) Show the following:

 φ^{EUF} is E-satisfiable iff $FC^{E}\wedge \mathit{flat}^{E}$ is E-satisfiable.

 FC^E and $flat^E$ are obtained from φ^{EUF} by Ackermann's reduction.(Hint: FC^E is the same for φ^{EUF} and $\neg \varphi^{EUF}$.)(10 points)

3.) (a) Let p be the following program:

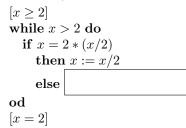
```
\begin{array}{l} x:=1;\\ y:=-2;\\ z:=2;\\ {\bf while}\; x < N\; {\bf do}\\ x:=x-2*y-2*z+1;\\ y:=y-2\\ z:=z+2\\ {\bf od} \end{array}
```

Provide a formal proof of the partial correctness triple $\{N \ge 1\} p \{z = 2 * N\}$.

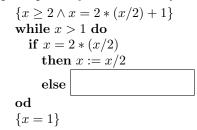
Note: Give an appropriate loop invariant for the **while** loop in p, to be further used in proving the partial correctness of the above Hoare triple.

(10 points)

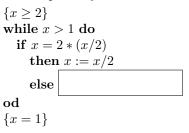
- (b) Fill in the blank such that ...
 - ... the following Hoare triple is totally correct.



... the following Hoare triple is partially but *not* totally correct.



... the following Hoare triple is *not* partially correct.



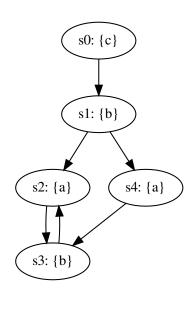
(5 points)

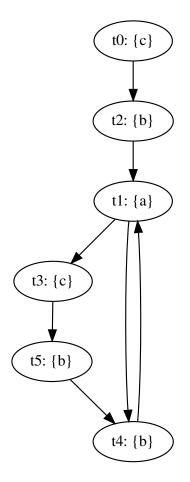
Note: Recall that / denotes integer division. Give a short informal justifications for your solutions. One or two sentences per example suffice and no formal proof is needed.

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

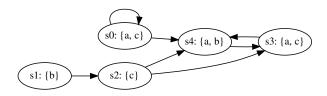
Kripke structure M_2 :





(4 points)

(b) Consider the following Kripke structure M:



For each of the following formulae φ ,

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

φ	LTL	CTL^*	States s_i
$\mathbf{G}(a)$			
$c ~ \mathbf{U} ~ b$			
$\mathbf{AF}(a \wedge b)$			
$\mathbf{EF}(a \wedge b)$			
$ \begin{array}{c} \mathbf{G}(a) \\ c \ \mathbf{U} \ b \\ \mathbf{AF}(a \wedge b) \\ \mathbf{EF}(a \wedge b) \\ \mathbf{X}(a) \end{array} $			

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

- i. $\mathbf{X}(p \ \mathbf{U} \ q) \Leftrightarrow (\mathbf{X}p) \ \mathbf{U} \ (\mathbf{X}q)$
- ii. $\mathbf{FGF}p \Leftrightarrow \mathbf{GFG}p$

(6 points)