1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) June 9, 2020								
Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)				

1.) Consider the following decision problem:

HALTING AFTER LINE-REMOVAL (HALR)

INSTANCE: A tuple (Π, I) , where Π is a program that takes a string as input; I a string.

QUESTION: Does there exist a line of code in Π , such that when the line is removed from Π , the resulting program (a) is syntactically correct and (b) halts on I?

(1) By providing a suitable many-one reduction from the **HALTING** problem, prove that **HALR** is undecidable.

(2) Is **HALR** semi-decidable? Explain your answer.

(15 points)

2.) We consider a slightly restricted and simplified form M of the Ackermann-Péter function, which we discussed in the exercise part.

Algorithm 1: The function M			
Input: x, y, tw	o <i>positive</i> integers		
Output: The o	computed positive integer value for x, y		
1 if $x == 1$ then			
2 \lfloor return $2y;$			
\mathbf{s} else if $y == 1$	then		
4 $\ $ return x ;			
$_{5}$ else return M	$(x-1, \mathcal{M}(x, y-1));$		

(a) Let \mathbb{N} denote the natural numbers without 0. Use well-founded induction to show

 $\forall x \,\forall y \, \big((x \in \mathbb{N} \land y \in \mathbb{N}) \to \mathrm{M}(x, y) \ge 2y \big).$

(11 points)

(b) Suppose M_{C} is an implementation of M in the C programming language with x and y of type unsigned integers of size 32 bit (i.e., of type uint32_t). Is

$$M(x',y') = M_{C}(x',y')$$

true for all integers x', y' satisfying $1 \le x', y' \le \text{UINT32_MAX}$, where UINT32_MAX is the largest value for a variable of type uint32_t ?

If so, then prove this fact. Otherwise provide a counterexample with an exact explanation of what is computed and what is happening. (4 points)

(15 points)

3.) Let p be the following IMP program:

```
while y < 10 do

x := x + z + 1;

z := z + 2;

y := y + 1

od
```

where x, y, z are program variables. For each Hoare triple below, prove/disprove its total correctness. If the Hoare triple is correct, prove its total correctness by providing a formal proof. If the Hoare triple is not correct, provide a counterexample.

- (3a) Hoare triple: $[x = 0 \land y = 0 \land z = 0] p [x = 100].$
- (3b) Hoare triple: $[x = 0 \land y = 20 \land z = 0] p [x = 100].$

(15 points)

4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(5 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

_

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{X}(a \wedge b)$				
$\mathbf{AX}(b)$				
$\mathbf{EG}(a)$				
$\mathbf{EX}(a \wedge b)$				
$\mathbf{E}[(a \wedge b \wedge c) \ \mathbf{U} \ (c)]$				

(5 points)

(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i. $(p \mathbf{U} (\mathbf{X}q)) \mathbf{U} r \Leftrightarrow p \mathbf{U} ((\mathbf{X}q) \mathbf{U} r)$ ii. $((\mathbf{F}p) \Rightarrow q) \Rightarrow (p \Rightarrow \mathbf{F}q)$

(5 points)

Grading scheme: 0–29 nicht genügend, 30–35 genügend, 36–41 befriedigend, 42–47 gut, 48–60 sehr gut