1.) Consider the following decision problem:

REMOVE VERTEX 3-COL (RV3COL)

INSTANCE: An undirected graph $G = (V, E)$.

QUESTION: Does there exists a vertex $x \in V$ such that the removal of x from G yields a 3-colorable graph.

Formally, does there exist $x \in V$ such that the graph $(V \setminus \{x\}, E')$ with $E' = \{(u, v) \in E \mid u \neq x \text{ and } v \neq x\}$ is 3-colorable.

Show NP-hardness of RV3COL by providing a polynomial-time many-one reduction from the standard 3-COL problem. Prove the correctness of your reduction.

Recall that 3-COL is defined as follows:

3-COL

INSTANCE: An undirected graph $G = (V, E)$.

QUESTION: Does there exist a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.
2.) In the exercise part, we considered the Ackermann-Péter function which is as follows.

\begin{algorithm}
\textbf{Algorithm 1}: The Ackermann-Péter function \(\text{AP} \)
\begin{algorithmic}
\Input \(x, y \), two non-negative integers
\Output The computed non-negative integer value for \(x, y \)
\State \textbf{if} \(x == 0 \) \textbf{then}
\State \quad \Return \(y + 1 \);
\State \textbf{else if} \(y == 0 \) \textbf{then}
\State \quad \Return \(\text{AP}(x−1,1) \);
\State \textbf{else return} \(\text{AP}(x−1,\text{AP}(x,y−1)) \);
\end{algorithmic}
\end{algorithm}

Show, using well-founded induction, that

\[\forall x \forall y \left((x \in \mathbb{N}_0 \land y \in \mathbb{N}_0) \implies \text{AP}(x,y) > y \right) \]
3.) (a) Let p be the following IMP program:

```
while $y < n$ do
    $x := x + 4 * y + 2$;
    $y := y + 1$
end
```

Prove the total correctness of the following Hoare triple:

$$[n = 10 \land x = 0 \land y = 0] \mathbin{p} [x = 200].$$

(10 points)
(b) Consider the following proof rule:

\[
\begin{array}{c}
\{ A \} \ x := a_1 \ { B } \quad \{ B \land x \leq a_2 \} \ p; \ x := x + 1 \ { B } \\
\hline
\{ A \} \ x := a_1; \textbf{while} \ x \leq a_2 \ \textbf{do} \ p; \ x := x + 1 \ \textbf{od} \ { B } \land x = a_2 + 1
\end{array}
\]

where \(x \) is a variable, \(a_1, a_2 \) are arithmetic expressions, \(p \) is a program, and \(A, B \) are assertions.

Is this proof rule sound? If yes, give a formal proof. Otherwise, give a counterexample.

(5 points)
4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0, the initial state of M_2 is t_0:

Kripke structure M_1:

- s_0: \{a\}
- s_2: \{b\}
- s_3: \{c\}
- s_4: \{a\}
- s_1: \{b\}

Kripke structure M_2:

- t_0: \{a\}
- t_3: \{b\}
- t_1: \{c\}
- t_4: \{b\}
- t_5: \{c\}
- t_2: \{b\}

(4 points)
(b) Consider the following Kripke structure M:

For each of the following formulae φ,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

\[
\begin{array}{|l|c|c|c|c|}
\hline
\varphi & \text{CTL} & \text{LTL} & \text{CTL*} & \text{States } s_i \\
\hline
G(a) & & & & \\
X(a \land b \land c) & & & & \\
AF(b) & & & & \\
A[(a \land c) U (c)] & & & & \\
E[(b \land c) U (b)] & & & & \\
\hline
\end{array}
\]

(5 points)
(c) LTL tautologies

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i. $Fp \iff ((XG\neg p) \Rightarrow p)$
ii. $(Xp) \ U q \iff X(p \ U q)$

(6 points)