1	2	3	4	Σ

6.0/4.0 VU Formale Methoden der Informatik (185.291) Dec 10, 2019						
Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)			

1.) Consider the following decision problem:

INDEPENDENT DOMINATING SET (IDS)

INSTANCE: A directed graph G = (V, E).

QUESTION: Does there exists a set $S\subseteq V$ of vertices, such that

- (1) for each $(u, v) \in E$, $\{u, v\} \not\subseteq S$;
- (2) for each $v \in V$ either $v \in S$ or there exists an $(u, v) \in E$, such that $u \in S$.
- (a) The following function f provides a polynomial-time many-one reduction from **IDS** to **SAT**: for a directed graph G = (V, E), let

$$f(G) = \bigwedge_{(u,v)\in E} (\neg x_u \lor \neg x_v) \land \bigwedge_{v\in V} (x_v \lor \bigvee_{(u,v)\in E} x_u).$$

It holds that G is a yes-instance of **IDS** \iff f(G) is a yes-instance of **SAT**. Prove the \iff direction of the claim.

(10 points)

(b) Given that **SAT** is NP-complete, what can be said about the complexity of **IDS** from the above reduction? NP-hardness of **IDS**, NP-membership of **IDS**, neither of them, or both (NP-completeness of **IDS**)

2.) (a) Let φ be the first-order formula

$$\forall x \forall y \left[\left(r(x,y) \to (p(x) \to p(y)) \right) \land \left(r(x,y) \to (p(y) \to p(x)) \right) \right] \,.$$

- i. Is φ valid? If yes, present a proof. If no, give a counter-example and prove that it falsifies $\varphi.$
- ii. Replace r in φ by \doteq (equality) resulting in ψ . Is ψ E-valid? Argue formally!

(5 points)

(b) Show the following:

 φ^{EUF} is satisfiable iff $\mathit{FC}^E \wedge \mathit{flat}^E$ is satisfiable.

 FC^{E} and $flat^{E}$ are obtained from φ^{EUF} by Ackermann's reduction. (Hint: FC^{E} is the same for φ^{EUF} and $\neg \varphi^{EUF}$.) (10 points) **3.)** (a) Let p be the following program:

$$x := 3;$$

 $y := 1;$
while $y \ge N$ do
 $x := x - 4 * y + 2;$
 $y := y - 1$
od

Give a loop invariant for the **while** loop in p and prove the validity of the partial correctness triple $\{N < 0\} p \{x = 2 * N * N - 4 * N + 3\}.$

(10 points)

(b) We add **for** loops with the following syntax to the IMP language.

for $v := e_1$ until e_2 do c od,

where v is a variable, e_1 and e_2 are arithmetic expressions and c is a program. The informal semantics of the **for** loop is as follows.

- v is initialized to e_1 ;
- in every loop iteration, c is executed and then v is incremented, i.e., v := v + 1;
- the loop terminates when $v > e_2$.

Stated differently, the above **for** loop is equivalent to

$$v := e_1$$
; while $v \le e_2$ do $c; v := v + 1$ od.

Prove the soundness of or provide a counterexample to the following proof rule.

$$\frac{\{P\} \ v := e_1 \ \{I\} \quad \{I \land v \le e_2\} \ c; v := v + 1 \ \{I\}}{\{P\} \ \textbf{for} \ v := e_1 \ \textbf{until} \ e_2 \ \textbf{do} \ c \ \textbf{od} \ \{I \land v > e_2\}}$$

4.) (a) Provide a simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(5 points)

(b) Consider the following Kripke structure M:

For each of the following formulae $\varphi,$

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{F}(a)$				
$\mathbf{X}(b \wedge c)$				
$\mathbf{AG}(b \wedge c)$				
$\mathbf{AX}(a)$				
$\mathbf{E}[(b) \ \mathbf{U} \ (a)]$				

(c) LTL tautologies

ii.

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer. i.

$$p \Rightarrow \top \mathbf{U} \ (\perp \mathbf{U} \ p)$$

 $q \wedge \mathbf{FG}p \Rightarrow q \mathbf{U} (\mathbf{G}p)$

Grading scheme: 0-29 nicht genügend, 30-35 genügend, 36-41 befriedigend, 42-47 gut, 48-60 sehr gut