1.) Consider the following decision problem:

REACHING LINE in LESS STEPS (RLLS)

INSTANCE: A tuple \((\Pi_1, \Pi_2, I, n_1, n_2)\), where \(\Pi_1, \Pi_2\) are programs that take a string as input, \(I\) a string, and \(n_1, n_2\) integers.

QUESTION: Does \(\Pi_1\) when applied to \(I\) reach line \(n_1\) (of the source code of \(\Pi_1\)) in strictly less computation steps than \(\Pi_2\) when applied to \(I\) reaches line \(n_2\) (of the source code of \(\Pi_2\))?

Remark: If neither \(\Pi_1\) reaches line \(n_1\) nor \(\Pi_2\) reaches line \(n_2\), we have a negative instance of RLLS.

(1) By providing a suitable many-one reduction from the **HALTING** problem, prove that **REACHING LINE in LESS STEPS** is undecidable.

(2) Is **REACHING LINE in LESS STEPS** semi-decidable? Explain your answer.

(15 points)
(a) Consider $\varphi: a[i] = e \rightarrow a(i \triangleleft e) = a$. If φ is T_{A}^n-valid then provide a proof using the semantic argument method from the lecture. If φ is not T_{A}^n-valid then provide a counter-example. Besides the equality axioms, you have the following ones for arrays.

i. $\forall a, i, j \ (i \neq j \rightarrow a[i] \equiv a[j])$ (array congruence)

ii. $\forall a, v, i, j \ (i \neq j \rightarrow a(i \triangleleft v)[j] \equiv v)$ (read-over-write 1)

iii. $\forall a, v, i, j \ (i \neq j \rightarrow a(i \triangleleft v)[j] \equiv a[j])$ (read-over-write 2)

iv. $\forall a, b \ ((\forall j \ a[j] \equiv b[j]) \leftrightarrow a \equiv b)$ (extensionality)

Please be precise. In a proof indicate exactly why proof lines follow from some other(s). If you use derived rules you have to prove them. Recall that a counter-example has to satisfy all axioms and falsifies φ.

(11 points)

(b) First define the concept of a theory and of a T-interpretation. Then use them to define:

i. the T-satisfiability of a formula;

ii. the T-validity of a formula.

Additionally define the completeness of a theory T.

(4 points)
3.) Note that all programs within this exercise are programs over the integers, that is, every program variable can only take integer values.

(a) Show that the Hoare triple \([y \geq 0] \ p \ [x = 5 \ast y + 2]\) is valid with respect to total correctness, where \(p\) is the following program:

\[
\begin{align*}
c &:= y; \\
x &:= 2; \\
\textbf{while} \ c > 0 \ \textbf{do} \\
\quad x &:= x + 5; \\
\quad c &:= c - 1 \\
\textbf{od}
\end{align*}
\]

(b) Let \(q\) be the program

\[
\begin{align*}
r &:= 0; \ a := x; \ b := y; \\
\textbf{while} \ (a \geq 0 \lor b \geq 0) \ \textbf{do} \\
\quad \textbf{if} \ a \geq b \\
\quad \quad \textbf{then} \ r := r + 1; \ a := a - 1 \\
\quad \quad \textbf{else} \ r := r + 1; \ b := b - 1 \\
\quad \textbf{od}
\end{align*}
\]

Prove that the Hoare triple \(\{true\} \ c \ {r = x + y}\) is invalid.

Hint: Provide a counterexample, i.e., a state that does not satisfy the correctness assertion.

(2 points)

(c) Let \(q\) be the program from exercise 3b. State the weakest precondition \(P\) such that the triple \(\{P\} \ q \ {r = x + y}\) is valid.

You are *not* required to prove that \(P\) is the weakest precondition.

(2 points)
4.) (a) Provide a simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0, the initial state of M_2 is t_0:

Kripke structure M_1:

- s_0: \{b\}
- s_1: \{a\}
- s_2: \{c\}
- s_4: \{b\}

Kripke structure M_2:

- t_0: \{b\}
- t_2: \{a\}
- t_4: \{c\}
- t_3: \{b\}
- t_1: \{c\}
- t_5: \{b\}

(5 points)
(b) Consider the following Kripke structure M:

\[
\begin{array}{c}
\text{s0: \{a\}} \\
\text{s1: \{b\}} \\
\text{s2: \{a\}} \\
\text{s3: \{a, c\}} \\
\text{s4: \{a\}}
\end{array}
\]

For each of the following formulae φ,

i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and

ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

<table>
<thead>
<tr>
<th>φ</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$((a \land c) \mathbf{U} (a))$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$AF(a \land c)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$AX(b)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E[(c) \mathbf{U} (b)]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5 points)
(c) **LTL tautologies**

Prove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π in M, or find a Kripke structure M and path π in M, for which the formula does not hold and justify your answer.

i.
$$F(Fp \land Gq) \Rightarrow Fp \land FGq$$

ii.
$$F(Fp \land Gq) \Leftarrow Fp \land FGq$$

(5 points)