1.) (a) Consider the following decision problem:

INDEPENDENT DOMINATING SET (IDS)

INSTANCE: A directed graph $G = (V, E)$.

QUESTION: Does there exist a set $S \subseteq V$ of vertices, such that

1. For each $(u,v) \in E$, $\{u,v\} \not\subseteq S$;
2. For each $v \in V$, either $v \in S$ or there exists an $(u,v) \in E$, such that $u \in S$.

The following function f provides a polynomial-time many-one reduction from IDS to SAT: for a directed graph $G = (V, E)$, let

$$f(G) = \bigwedge_{(u,v) \in E} (\neg x_u \lor \neg x_v) \land \bigwedge_{v \in V} (x_v \lor \bigvee_{(u,v) \in E} x_u) .$$

It holds that G is a yes-instance of IDS $\iff f(G)$ is a yes-instance of SAT.

Prove the \Rightarrow direction of the claim.

(10 points)
(b) Given that SAT is NP-complete, what can be said about the complexity of IDS from the above reduction? NP-hardness of IDS, NP-membership of IDS, neither of them, or both (NP-completeness of IDS)

(5 points)
2.) (a) The topic of this exercise is translation validation (discussed in the fifth lecture of the second block). Given a statement in a source program of the form

\[z = (y_1 * x) + (y_2 * x) \] \hspace{1cm} (S)

and the result of the compiler optimization of the form

\[u_1 = y_1 + y_2, \quad u_2 = u_1 * x, \] \hspace{1cm} (O)

the goal is to check the correctness of the translation.

i. Formulate the verification condition.

\[(VC) \]

ii. Formulate the abstract verification condition (using uninterpreted functions).

\[(AVC) \]

iii. Prove the correctness of the translation process (using the semantic proof method from the third lecture (on First-order Logic and Theories), or present a counterexample for (AVC). The symbols \(u_1, u_2, x, y_1, y_2, z \) are all free variables!

Hint: Do not use Ackermann!

(6 points)
(b) Let \(\varphi \) be the first-order formula

\[
\forall x \forall y \left[(r(x, y) \rightarrow (p(x) \rightarrow p(y))) \land (r(x, y) \rightarrow (p(y) \rightarrow p(x))) \right].
\]

i. Is \(\varphi \) valid? If yes, present a proof. If no, give a counter-example and prove that it falsifies \(\varphi \).

ii. Replace \(r \) in \(\varphi \) by \(= \) (equality) resulting in \(\psi \). Is \(\psi \) \(E \)-valid? Argue formally!

(9 points)
3. (a) Show that the assertion

\[F : y > 0 \]

\[x := 0; \]

\[i := y; \]

\[\textbf{while} \ i > 0 \ \textbf{do} \]

\[x := x + 2; \]

\[i := i - 1 \]

\[\textbf{od} \]

\[G : x = 2 \ast y \]

is correct with respect to partial correctness. (12 points)
(b) Consider the program q below.

\[
y := 1;
\]
\[
\textbf{while } x > 0 \textbf{ do}
\]
\[
\text{if } y > 0 \text{ then}
\]
\[
x := x - 1;
y := y - 1
\]
\[
\text{else}
\]
\[
y := y + 5
\]
\[
\textbf{od}
\]

Find a loop variant t that is positive at the start of each loop iteration, and strictly decreases with each loop iteration.

(3 points)
4.) (a) The Kripke structure $M_1 = (S, S_0, R, AP, L)$ is depicted below, with $S_0 = \{t_1, t_2\}$ and $AP = \{\otimes, \triangledown, \triangle, \star\}$.

i. Find a Kripke structure M_2 with the smallest number of states and transitions, for which $M_1 \leq M_2$, and write down a witnessing simulation relation.

ii. Show that there exists no Kripke structure M_3 with fewer states than M_2, for which $M_1 \leq M_3$.

iii. Does $M_2 \leq M_1$ hold?
(b) Consider the following Kripke structure M:

For each of the following formulae φ,

i. check the respective box if the formula is in CTL, and

ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

Recall that for an LTL formula φ it holds that $M, s \models \varphi \iff M, s \models A \varphi$.

<table>
<thead>
<tr>
<th>φ</th>
<th>CTL</th>
<th>States s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(a)$</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$AG(b \land c)$</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$AX(a \land c)$</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$A[(b) \ U (c)]$</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>$E[(b \land c) \ U (a)]$</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

(5 points)
(c) **LTL tautologies**

Prove or disprove that the following formulas are tautologies, i.e., they hold for every Kripke structure M and every path π:

i.
$$XFp \iff XFXp$$

ii.
$$\left(G\neg p\right) \cup p \iff p$$

(5 points)