6.0/4.0 VU Formale Methoden der Informatik 185.291 May 4, 2018

Kennz. (study id)	Matrikelnummer (student id)	Nachname (surname)	Vorname (first name)

1.) An undirected graph is called a *non-terminal graph* if each vertex in the graph has at least two edges to other vertices. Examples: $(\{a, b, c\}, \{[a, b], [b, c], [a, c]\})$ is non-terminal, while $(\{a, b, c\}, \{[a, b], [b, c]\})$ or $(\{a, b, c, d\}, \{[a, b], [b, c], [a, c]\})$ are not.

Consider the following problem:

3-COLORABILITY-NT

INSTANCE: A non-terminal graph G = (V, E).

QUESTION: Does there exists a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

Use the fact that the standard version of the **3-COLORABILITY** problem is NP-complete, to prove that **3-COLORABILITY-NT** is NP-complete as well. Give a brief argument for NP-membership and show NP-hardness by a reduction from **3-COLORABILITY**.

Recall that **3-COLORABILITY** is defined as follows:

3-COLORABILITY

INSTANCE: An undirected graph G = (V, E).

QUESTION: Does there exists a function μ from vertices in V to values in $\{0, 1, 2\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

Hint: When reducing from **3-COLORABILITY** to **3-COLORABILITY-NT**, replace (certain) vertices by a triangle.

(15 points)

(a) Recall that arrays are represented functionally. For instance, write(a, i, e) is denoted by a(i ≤ e). Similarly, read(a, k) is denoted by a[k]. Show that the following formula a(i ≤ e)(j ≤ f)[k] = g ∧ j ≠ k ∧ i = j → a[k] = g is T_A-valid. Please justify any step in your proof in detail.

Besides the equality axioms, you have the following ones for the arrays.

i. $\forall a, i, j \ (i \doteq j \rightarrow a[i] \doteq a[j])$	(array congruence)
ii. $\forall a, v, i, j \ (i \doteq j \rightarrow a \langle i \triangleleft v \rangle [j] \doteq v)$	(read-over-write 1)
iii. $\forall a, v, i, j \ (i \neq j \rightarrow a \langle i \triangleleft v \rangle [j] \doteq a[j])$	(read-over-write 2)
	(12 points)

(b) Show that the propositional resolution rule is sound. (3 points)

3.) Consider the following axioms of Hoare calculus:

$$\{G[v/e]\} v := e \{G\}$$
(as)
$$\{F\} v := e \{F[v/e]\}$$
(xx)
$$\{F\} v := e \{\exists v' (F[v/v'] \land v = e[v/v'])\}$$
(as')
$$\{F\} v := e \{F \land v = e\}$$
(as'') provided v does not occur in F and e provided v does not occur in F and e

(a) Show that the axioms (as) and (as') are equivalent, i.e., that a complete calculus needs only one of the axioms.
(6 points)

- (b) Show that the axiom (as") is sound, i.e., that each instance of it is a true correctness assertion. You may assume that (as) and (as') are sound. (3 points)
- (c) Show that the axiom (xx) is not sound.
- (d) Show that the Hoare calculus is not complete if it contains axiom (as") but neither (as) nor (as'). (3 points)
- 4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(3 points)

For each of the following formulae φ ,

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

arphi	CTL	LTL	CTL^*	States s_i
$\mathbf{G}(b)$				
$\mathbf{AF}(c)$				
$((c) \mathbf{U} (a))$				
$\mathbf{EG}(c)$				
$\mathbf{E}[(a \wedge b) \ \mathbf{U} \ (c)]$				

(5 points)

(c) LTL tautologies

Prove or disprove (e.g. by providing a counter-example) the following LTL formulas: i.

 $(p \ \mathbf{U} \ \neg q) \rightarrow (\neg \mathbf{G} q)$ ii.

 $(\mathbf{FG}p) o (\mathbf{GF}p)$

iii.

 $\mathbf{F}\mathbf{X}p\to\mathbf{X}\mathbf{G}p$

(6 points)