1.) We provide next a reduction from **2-COLORABILITY** to **2-SAT**. Let \(G = (V, E) \) be an arbitrary undirected graph (i.e. an arbitrary instance of **2-COLORABILITY**), where \(V = \{v_1, \ldots, v_n\} \). For the reduction we use propositional variables \(x_1, \ldots, x_n \). Then the instance \(\varphi_G \) of **2-SAT** resulting from \(G \) is defined as follows:

\[
\varphi_G = \bigwedge_{[v_i, v_j] \in E} \left(x_i \lor x_j \right) \land \left(\neg x_i \lor \neg x_j \right).
\]

Task: Prove the "⇒" direction in the proof of correctness of the reduction, i.e. prove the following statement: if \(G \) is a positive instance of **2-COLORABILITY**, then \(\varphi_G \) is a positive instance of **2-SAT**.

(15 points)

2.) (a) Let \(\varphi^{EUF} \) be the following **EUF**-formula:

\[
\varphi^{EUF} := x = y \land f(x) = g(y) \land z = g(f(y)) \land z \neq g(f(x)) \land P(g(f(y)), x)
\]

where \(f \) and \(g \) denote uninterpreted functions and \(P \) denotes an uninterpreted predicate. Is \(\varphi^{EUF} \) \(E \)-satisfiable or \(E \)-unsatisfiable?

Either provide a concrete \(E \)-interpretation showing that \(\varphi^{EUF} \) is \(E \)-satisfiable or a detailed proof showing that \(\varphi^{EUF} \) is \(E \)-unsatisfiable.

(5 points)

(b) Consider the **EUF**-formula \(\varphi^{EUF} \) from above (Exercise 2a):

\[
\varphi^{EUF} := x = y \land f(x) = g(y) \land z = g(f(y)) \land z \neq g(f(x)) \land P(g(f(y)), x)
\]

Apply Ackermann's reduction to obtain an \(E \)-formula \(\varphi^E \) from \(\varphi^{EUF} \) so that \(\varphi^E \) is \(E \)-satisfiable if and only if \(\varphi^{EUF} \) is \(E \)-satisfiable.

(Attention: here we consider satisfiability-equivalence, and not validity-equivalence.)

(10 points)

3.) Consider the following modified if-rule:

\[
\begin{aligned}
\{ F \land e \} & \ p \{ G \} & \{ F \} & \ q \{ G \} \\
\{ F \} & \text{if } e \text{ then } p \text{ else } q \ fi \{ G \} & \text{if}^{'}
\end{aligned}
\]

(a) Show that this rule is admissible regarding partial correctness.

(4 points)

(b) Show that the Hoare calculus for partial correctness is no longer complete, if we replace the regular if-rule by the modified one.

(7 points)

(c) Characterize all programs \(p \) that satisfy \(\wp(p, \text{true}) = \text{true} \), i.e., specify a condition such that the equation holds exactly when \(p \) satisfies this condition.

(4 points)
A rule \(\{F\} p \{G\} \) is admissible regarding partial correctness, if the conclusion \(\{F\} p \{G\} \) is partially correct whenever all premises \(X_1, \ldots, X_n \) are valid formulas/partially correct assertions.

Hoare calculus for partial correctness:

\[
\begin{align*}
\{F\} \text{skip} \{F\} \\
\{F\} \text{abort} \{G\} \\
\{F[v/e]\} v := e \{F\} \\
\{F\} p \{G\} \{G\} q \{H\} \\
\{F\} p; q \{H\} \\
\{F\} \text{if} e \text{ then } p \text{ else } q \{G\} \\
\{\text{Inv} \land e\} p \{\text{Inv}\} \\
\{\text{Inv}\} \text{while} e \text{ do } p \text{ od} \{\text{Inv} \land \neg e\} \\
F \rightarrow F' \{F'\} p \{G'\} G' \rightarrow G \\
\{F\} p \{G\}
\end{align*}
\]

4.) (a) Provide a non-empty simulation relation \(H \) that witnesses \(M_1 \leq M_2 \), where \(M_1 \) and \(M_2 \) are shown below. The initial state of \(M_1 \) is \(s_0 \), the initial state of \(M_2 \) is \(t_0 \):

Kripke structure \(M_1 \):

Kripke structure \(M_2 \):

(b) Consider the following Kripke structure \(M \):

For each of the following formulae \(\varphi \),
i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
ii. list the states \(s_i \) on which the formula \(\varphi \) holds; i.e. for which states \(s_i \) do we have \(M, s_i \models \varphi \)?

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>CTL</th>
<th>LTL</th>
<th>CTL*</th>
<th>States (s_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(b \land c))</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>(X(a \land b \land c))</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>((b) \mathbf{U} (b))</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>(EG(c))</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>(E[(a \land b) \mathbf{U} (a)])</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td></td>
</tr>
</tbody>
</table>

(5 points)

(c) **CTL Model Checking Algorithm**

Let \(K = (S, T, L) \) be a Kripke structure and let \(p \) be an atomic proposition. Give an algorithm that computes the set of all states \(s \in S \) that satisfy \(EGp \).

(6 points)