6.0/4.0 VU Formale Methoden der Informatik (185.291) January 27, 2017

Kennzahl (study id)	Matrikelnummer (student id)	Familienname (family name)	Vorname (first name)	Gruppe (version)

1.) Consider the following problem:

PROB

INSTANCE: A pair (G_1, G_2) of undirected graphs.

QUESTION: Is it true that G_1 is 3-colorable or G_2 is not 3-colorable? I.e. is it the case that G_1 is a positive instance of **3-COLORABILITY** or G_2 is a negative instance of **3-COLORABILITY**?

By providing a suitable reduction from an NP-complete problem, prove that **PROB** is an NP-hard problem. Argue formally that your reduction is correct.

Recall that **3-COLORABILITY** is defined as follows:

3-COLORABILITY

INSTANCE: An undirected graph G = (V, E).

QUESTION: Does there exist a function μ from vertices in V to values in $\{1, 2, 3\}$ such that $\mu(v_1) \neq \mu(v_2)$ for any edge $[v_1, v_2] \in E$.

(15 points)

(a) Let T be a theory with an unary function symbol f/1 and a binary predicate symbol ≈/2 such that T forces ≈/2 to be symmetric and transitive. Additionally, T includes the following axioms related to f and ≈:

$\forall x \forall y : f(x) \approx f(y) \rightarrow x \approx y$	Axiom 1
$\forall x: f(x) \approx f(f(x))$	Axiom 2

Give a detailed proof that the formula $f(f(f(a))) \approx f(f(b)) \rightarrow a \approx b$ is T-valid.

(6 points)

(b) Let ψ be a propositional formula in conjunctive normal form, and let C be a non-tautological clause containing a literal p such that the literal $\neg p$ does not occur in ψ . Give a detailed proof of the following statement:

 $\psi \wedge C$ is satisfiable if and only if ψ is satisfiable

(9 points)

3.) Consider the following axioms of Hoare calculus:

$$\left\{ \begin{array}{ll} G[v/e] \right\} v := e \left\{ \begin{array}{ll} G \right\} & (\text{as}) & \left\{ \begin{array}{ll} F \right\} v := e \left\{ \begin{array}{ll} F[v/e] \right\} & (\text{xx}) \end{array} \right. \\ \left\{ \begin{array}{ll} F \right\} v := e \left\{ \begin{array}{ll} \exists v' \left(F[v/v'] \wedge v = e[v/v'] \right) \right\} (\text{as}') & \left\{ \begin{array}{ll} F \right\} v := e \left\{ \begin{array}{ll} F \wedge v = e \right\} & (\text{as}'') \end{array} \right. \\ \text{provided } v' \text{ does not occur in } F \text{ and } e & \text{provided } v \text{ does not occur in } F \text{ and } e \end{array} \right.$$

(a) Show that the axioms (as) and (as') are equivalent, i.e., that a complete calculus needs only one of the axioms. (6 points)

- (b) Show that the axiom (as") is sound, i.e., that each instance of it is a true correctness assertion. You may assume that (as) and (as') are sound. (3 points)
- (c) Show that the axiom (xx) is not sound.
- (d) Show that the Hoare calculus is not complete if it contains axiom (as") but neither (as) nor (as'). (3 points)
- 4.) (a) Provide a non-empty simulation relation H that witnesses $M_1 \leq M_2$, where M_1 and M_2 are shown below. The initial state of M_1 is s_0 , the initial state of M_2 is t_0 :

Kripke structure M_1 :

Kripke structure M_2 :

(4 points)

(3 points)

(b) Consider the following Kripke structure M:

For each of the following formulae φ ,

- i. check the respective box if the formula is in CTL, LTL, and/or CTL*, and
- ii. list the states s_i on which the formula φ holds; i.e. for which states s_i do we have $M, s_i \models \varphi$?

φ	CTL	LTL	CTL^*	States s_i
$\mathbf{X}(a)$				
$\mathbf{EX}(a)$				
$(b \wedge c)$ U c				
$\mathbf{EF}(a)$				

(4 points)

(c) Let M = (S, I, R, L) be a Kripke structure over a set of propositional symbols AP.

We define a Kripke structure $\hat{M} = (\hat{S}, \hat{I}, \hat{R}, \hat{L})$ as follows:

- $\hat{S} = 2^{AP}$, i.e., a state $\hat{s} \in \hat{S}$ is a subset of AP,
- $\hat{I} = \{\hat{s} \in \hat{S} \mid \exists s \in I. \ L(s) = \hat{s}\}$, i.e., a state $\hat{s} \in \hat{S}$ is an initial state of \hat{M} if there is an initial state $s \in I$ such that s is labeled with \hat{s} .
- $\hat{R} = \{(\hat{s}, \hat{t}) \in \hat{S} \times \hat{S} \mid \exists s, t \in S. \ \hat{s} = L(s) \land \hat{t} = L(t) \land (s, t) \in R\}$, i.e., for each transition $(\hat{s}, \hat{t}) \in \hat{R}$ there are states $s, t \in S$ such that there is a transition from s to t and s is labeled with \hat{s} and t is labeled with \hat{t} ,
- $\hat{L}(\hat{s}) = \hat{s}$ for all $\hat{s} \in \hat{S}$, i.e., each state $\hat{s} \in \hat{S}$ is labeled with the atomic propositions it contains.

Prove that for any ACTL formula φ over propositions from AP the following holds:

If
$$\hat{M} \models \varphi$$
, then $M \models \varphi$

Hint: You can use the following theorem from the lecture: Let M_1 and M_2 be Kripke structures such that $M_1 \preceq M_2$. Let φ be an ACTL* formula. If $M_2 \models \varphi$, then $M_1 \models \varphi$.

(7 points)